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Abstract: Owing to their unique topology and physical properties, micelles based on miktoarm
amphiphilic star block copolymers play an important role in the biomedical field for drug
delivery. Herein, we developed a series of AB2-type poly(D,L-lactide-co-glycolide)-b-poly(N-acryloyl
morpholine) (PLGA-b-PNAM2) miktoarm star block copolymers by reversible addition–
fragmentation chain–transfer polymerization and ring-opening copolymerization. The resulting
miktoarm star polymers were investigated by 1H NMR spectroscopy and gel permeation
chromatography. The critical micellar concentration value of the micelles increases with an increase in
PNAM block length. As revealed by transmission electron microscopy and dynamic light scattering,
the amphiphilic miktoarm star block copolymers can self-assemble to form spherical micellar
aggregates in water. The anticancer drug doxorubicin (DOX) was encapsulated by polymeric micelles;
the drug-loading efficiency and drug-loading content of the DOX-loaded micelles were 81.7% and
9.1%, respectively. Acidic environments triggered the dissociation of the polymeric micelles, which led
to the more release of DOX in pH 6.4 than pH 7.4. The amphiphilic PLGA-b-PNAM2 miktoarm star
block copolymers may have broad application as nanocarriers for controlled drug delivery.

Keywords: miktoarm amphiphilic block copolymers; drug delivery; RAFT polymerization;
ROP polymerization

1. Introduction

In the current decade, polymeric micelles based on amphiphilic block copolymers (ABCs) have
been broadly explored as nanocarriers in the drug-delivery field due to their advantages such as long
circulation, molecular design, therapeutic effect and biocompatibility. In addition, the ability of ABCs to
self-assemble into complex structures has allowed improved drug loading [1,2]. The hydrophobic core
of ABCs offers great potential to load hydrophobic drugs and controlled drug release through micellar
dissociation, polymer erosion/degradation or diffusion mechanisms [3,4]. Among ABCs, the miktoarm
star copolymers synthesized with varying polymer arms and molecular weights have been attractive
owing to their interesting properties [5–7]. Miktoarm polymers contain two or more polymeric
units with various chemical structures. The miktoarm-block copolymers demonstrate exclusive
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phase-separation behavior either in solution or in bulk compared with linear-block copolymers
due to the organization of the polymers, in which two constructional blocks are connected to a
distinct confluence point [8–11]. This ability imparts miktoarm-block copolymers with wide potentials
for use as nanocarriers of drugs compared with corresponding linear-block copolymers [12–16].
The synthesis of AB2 miktoarm-block copolymers is mostly practicable with a classification of
different polymerization methods. To date, few reports have been published for the preparation of
AB2-type miktoarm-block copolymers and their drug-delivery application [10,17–21]. Chong et al.
have reported the AB2-type miktoarm star polymers containing monomethoxy poly(ethylene glycol)
(mPEG) and poly(D,L-lactide-co-glycolide) (PLGA) blocks and the general advantage of these
miktoarm-block copolymers as nanocarriers for ibuprofen [10]. Yoon et al. reported PEG–PCL2,
and they investigated the self-aggregated structure, in vitro drug release using DOX and antitumor
activities [17]. Soliman et al. also demonstrated the PEG–PCL2 miktoarm polymers for the nimodipine
(NIM) drug release and these NIM-loaded miktoarm polymers were evaluated against murine
microglia cell line in vitro for inflammation [18]. Yin et al. developed PEG–poly(L-lactide)2 miktoarm
block copolymers. These polymersomes demonstrated the potent drug-loading capacities of DOX
and showed significant drug release after 48 h [19]. Recently, we have prepared a AB2-type of
miktoarm-block copolymer composed of poly(N-acryloylmorpholine) and poly(D,L-lactide) as a nano
carrier for drug delivery [22]. PLGA is a generally explored drug carrier for the treatment of several
diseases and some invention products of PLGA are currently used in clinical trial [1,23]. The key
attraction for further exploitation of PLGA is its biodegradability and biocompatibility, along with
good bioresorptivity of its degradation products [24,25]. However, its capability in drug-release
application is limited by the high hydrophobicity of PLGA [23,26,27]. Poly(N-acryloylmorpholine)
(PNAM)—a water-soluble polymer—is an acrylamide derivative with a heterocyclic tetrahydrooxazine
substituent [28–30]. PNAM is one of promising polymers, similarly advantageous as PEG for biologic
applications due to its solubility in various organic solvents and biocompatibility [31,32]. Because of
these properties, they find numerous applications in the biomedical field. They are also utilized
in chromatography, strong-stage combination of peptides, catalysis and arrangement of composite
semi-penetrable layers [33–36]. Considering the advantages of both PLGA and PNAM polymers,
a combination of the polymers to make a miktoarm-block copolymer could offer more promising results
that can be used for drug-delivery applications. Herein, we first report a miktoarm star block copolymer
consisting of PLGA hydrophobic blocks and PNAM hydrophilic blocks, prepared from the reversible
addition–fragmentation chain–transfer (RAFT) method. The miktoarm star block copolymers could
self-aggregate to form spherical micellar aggregates in water, which were investigated by dynamic
light scattering (DLS) and transmission electron microscopy (TEM). An anticancer drug, DOX was
efficiently encapsulated into micelles, and the DOX-loaded micelles exhibited sustained controlled
drug-delivery properties.

2. Results and Discussion

2.1. Synthesis of PLGA-b-PNAM2, the AB2-Type Miktoarm Star Block Copolymers

The three miktoarm amphiphilic star block copolymers of PLGA-b-PNAM2 were prepared by
the two-step method which consisted of the synthesis of PLGA macroinitiators by the ring-opening
polymerization (ROP) of glycolide and D,L-lactide, followed by the RAFT polymerization of NAM
(Scheme 1). In the first step, the ring opening copolymerization of glycolide and D,L-lactide (70/30, w/w)
was carried out in the presence of the miktoarm initiator using 1,8-diazabicyclo [5.4.0] undec-7-ene
(DBU) as a catalyst at room temperature. The 1H NMR spectra of the PLGA macro initiator is presented
in Figure 1a. The signals at 4.88–4.78 ppm, 5.25–5.12 and 1.59–1.52 ppm correspond to the PLGA and
poly(D,L-lactic acid) (PDLLA) backbones, whereas the signal at 4.64–4.62 ppm corresponds to the
xanthate functional group of the miktoarm initiator. Therefore, 1H NMR investigation confirms that
the PLGA macroinitiator was successfully prepared. The integrated peak areas “b” of the PDLLA
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backbone chain and “a” of the PGA backbone chain were compared by the integrated peak area of “k”
of the chain-end xanthate moiety of the miktoarm initiator, to estimate the Mn (NMR) of the PLGA
copolymer, which was calculated to be 4800 g mol−1. The gel permeation chromatography (GPC)
study of the copolymer specified that the molecular weight (Mn) and dispersity (Ð) were 5300 g mol−1

and 1.20 (Figure 2). In the next step, miktoarm PLGA-b-PNAM2 star block copolymers were prepared
through RAFT polymerization of NAM monomers with the PLGA macroinitiator at 80 ◦C for 8 h.
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Table 1. Typical results of PLLA–b–(PNAM)2 miktoarm star block copolymers a.

Run Miktoarm Polymer NAM b

(Equiv)
Conv. c

(%)
Mn(NMR) d

(g/mol)
Mn(GPC) e

(g/mol) Ð

PLGA PLGA26–macroinitiator – 88 4800 5300 1.20
M1 PLGA26–b–(PNAM21)2 50 90 10,760 11,600 1.38
M2 PLGA26–b–(PNAM40)2 100 86 16,140 17,400 1.40
M3 PLGA26–b–(PNAM81)2 200 82 25,800 28,000 1.46

a using 2, 2/-Azobis(isobutyronitrile) (AIBN) initiators (0.5 equivalent) with respect to the poly(D,L-lactide-co
-glycolide) (PLGA) macroinitiator in dimethylformamide (DMF) at 80 ◦C for 8 h; b with respect to the PLGA
macroinitiator.; c measured gravimetrically; d calculated by 1HNMR; e measured by gel permeation chromatography
(GPC), calibrated against PMMA standards.
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PLGA-b-PNAM2 star block copolymer (Table 1).

The PLGA-b-PNAM2 miktoarm star block copolymers with different PNAM chain lengths were
synthesized by changing the feed ratios of the PLGA macroinitiator to NAM. These miktoarm star
block copolymers are denominated M1, M2 and M3. The successful synthesis of the miktoarm star
block copolymer was revealed by the 1H NMR spectrum. As shown in Figure 1b, new proton peaks are
observed at 2.3–2.8 (q), 3.0–4.0 (r) and 1.70–1.90 (p) ppm, due to the presence of PNAM backbone chains.
The GPC chromatogram shows that the elution times of the three miktoarm-block copolymers are
shorter than that of the PLGA macroinitiator as can be seen in Figure 2, which indicates the formation
of the desired miktoarm-block copolymers. The decrease in the retention time in order of M1, M2 and
M3 suggests that the molecular weights of the miktoarm star block copolymers increase as the feed
ratios of NAM monomers increase (Table 1) [37].

It is also noticeable that the GPC curves of M3 display shoulders to higher molecular weights
while the shapes of M1 and M2 are unimodal. The bimodal-like shape of M3 may be attributed to
the star–star coupling of the propagating species of miktoarm copolymers at the high ratio of NAM
with respect to the macroinitiator [38]. In other words, the R–RAFT-type PLGA macroinitiator may
leads to star–star coupling via termination of two star polymers carrying a radical center [39]. With the
PLGA RAFT agents, two types of active propagating species, ones that are attached to the PLGA core
chain and linear chains resulting from continuous initiation, can coexist. Radical-radical termination
resulting from these species can thus produce star–star coupled polymers, star polymers with dead
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arms and linear dead polymers, which becomes pronounced at low concentrations of RAFT agent with
the polymerization carried to high conversion [38].

2.2. Self-Assembly Study of Miktoarm PLGA-b-PNAM2 Amphiphilic Star Block Copolymers

PLGA is insoluble in water, while PNAM is quite soluble in water. In Figure 1c, the 1HNMR
spectrum of M2 in D2O clearly shows the appearance of PNAM and the peaks attributed to PLGA
are suppressed in comparison with the 1H NMR spectrum obtained in chloroform-d which dissolves
both polymers (Figure 1b). This result indicates that PLGA-b-PNAM2 miktoarm star block copolymers
form micelles in water where the core and the shell consist of PLGA and PNAM chains, respectively.
Figure 3a, represents the plot of the count rate of the micelles versus the concentration of M1, M2 and
M3 in water, measured by DLS. Because a sudden increase in the count rate indicates the formation of
micelle at critical micellar concentration (CMC), CMCs were determined as ~3.08 × 10−4, ~4.24 × 10−4

and ~7.90 × 10−4 mg/mL for M1, M2 and M3, respectively. These values indicate that the CMC of the
amphiphilic miktoarm-block copolymers increases with the increase in the chain length of the PNAM
block [24].
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Figure 3b shows the plot of the size of the micelles (in diameter) versus concentration above the
CMC value of M1, M2 and M3 in water, measured by DLS. We observed that above the CMC value
the size of the micelle is stable in case of M2 and M3 whereas for M1 it changes. Further, M2 has a
low CMC value compared with that of M3. Because of this, M2 was selected as the best candidate
for further studies. We also measured the CMC and size of the micelles in various concentrations
above the CMC in PBS (pH = 7.4) at 37 ◦C. The CMC values of M1, M2 and M3 in PBS are ~3.62 × 10−4,
~6.24 × 10−4 and ~8.50 × 10−4 mg/mL, respectively. These CMC values in PBS are slightly higher than
water and the size of the micelles are also stable in PBS (pH = 7.4) at various concentration (Figure S1,
see supporting information). The stability of the micelles shows their potential as a drug nanocarrier
in biological applications. [40].

In Figure 4a, the TEM measurement of M2 micelles showed spherical shapes with an average
diameter of 47.5 nm. The hydrodynamic diameter of the M2 micelles was also examined by DLS
and the average diameter was 68.7 nm (Figure 5). The average diameter of the micelles is somewhat
larger than a theoretical value which may be calculated from a model of chain folding based on the
chain length and molecular weight. This can be attributed to the poorly defined structure of the block
copolymers. However, the size of micellar aggregates is belong to the suitable size range (40–200 nm)
of the enhanced permeability and retention(EPR) effect, while the size is large enough to preclude fast
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renal clearance [41,42]. Longer circulation allows the micelles to accumulate to a greater extent in areas
with a defective or leaky vasculature such as tumors via the EPR effect. Therefore, we investigated the
in vitro drug loading and release study using the M2 micellar aggregates.
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2.3. In Vitro Drug Loading and Release Study

DOX was incorporated into the core of M2 micelles using the dialysis system. The average
diameter of the drug-loaded micelles measured to be 71.2 nm by TEM (Figure 4b) and 112.3 nm by
DLS (Figure 5). The results revealed that the size of the DOX-loaded M2 micelles was greater than the
corresponding blank micelles [22]. The drug-loading efficiency (DLE) and drug-loading content (DLC)
of the drug-loaded M2 micelles were calculated to be 81.7% and 9.1%, respectively. The in vitro release
of DOX from M2 micelles was evaluated at different pH values (7.4 and 6.4, PBS) under physiological
conditions. As shown in Figure 6, the cumulative release of DOX from drug-loaded micelles (M2)
was ~35% at pH 7.4 after 48 h. However, the DOX release from the M2 micelles was improved and
extended to 56.0% at pH 6.4 after 48 h, which was attributed to the presence of the primary amine
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group in DOX as expected [43,44]. The primary amine group (pKa = 8.3) of DOX is more protonated at
pH 6.4 and thus its solubility in PBS increases, resulting in more favorable release from the polymer
micelles. Therefore, the observed increment in DOX release rate at acidic pH (6.4) can be treated as a
benefit for an anticancer targeting drug-delivery system.
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3. Conclusions

In summary, we developed the amphiphilic miktoarm star block copolymers of AB2-type
containing PLGA hydrophobic polymers and PNAM hydrophilic polymers, synthesized through
ROP and RAFT techniques. The size and chemical structure of the miktoarm star block copolymers
were analyzed by GPC and 1H NMR. The critical micelle concentrations of the miktoarm star block
copolymers were determined by DLS. The miktoarm star block copolymers self-assembled to form
micelles in water and the resulting micelles were examined by TEM and DLS. DOX was efficiently
encapsulated into the micelles with a DLE of 81.7% and DLC of 9.1%. The in vitro drug-release profile
of DOX-loaded micelles indicated that as the pH reduces from 7.4 to 6.4, DOX release became faster.
The amphiphilic PLGA-b-PNAM2 miktoarm star block copolymers may find broad application as
nanocarriers in controlled drug delivery.

4. Materials and Methods

4.1. Materials

Glycolide and D,L-lactide (99.0%, Sigma-Aldrich, Korea) were recrystallized in ethyl acetate.
N-acryloylmorpholine (98.0%, TCI, Seoul, Korea) was purified by distillation under reduced pressure.
Doxorubicin hydrochloride (DOX.HCl) was kindly supplied by Boryung Pharmaceutical Co.,
Ltd. (Seoul, Korea). AIBN (98%, Sigma-Aldrich, Seoul, Korea), dichloromethane (CH2Cl2, TCI),
tetrahydrofuran (THF, TCI, Korea), benzoic acid (Sigma-Aldrich, Korea), dimethylformamide (DMF,
Sigma-Aldrich, Korea) and 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU, 98%) were purchased from
Sigma-Aldrich (Korea).
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4.2. Synthesis of 2-Ethyl-2-(Hydroxyl Methyl) Propane-1, 3-Diyl Bis(2-((Ethoxy Carbonothioyl) Thio)
Propanoate) (Miktoarm Initiator)

A detailed methodology for the synthesis of the miktoarm initiator is described in the
Supporting Information.

4.3. Synthesis of PLGA Copolymer by ROP

The PLGA copolymer was prepared by ROP of D, L-lactide and glycolide using the miktoarm
initiator and DBU catalyst. In brief, 1.0 g (6.93 × 10−2 mol) of D, L-lactide and 4.0 mL of dry DCM
was placed in a 100-mL dry RB flask under nitrogen atmosphere in a glove box. Then, 20 mg
(1.20 × 10−4 mol) of the miktoarm initiator and 10 µL (10 mg, 3.9 × 10−5 mol) of DBU were added to
the above RB flask. The reaction mixture was stirred at room temperature. Then, the solution of 0.3 g
of glycolide in 2.0 mL of THF was dropwise added to the reaction mixture and the reaction continued
for 5 min. Then, the polymerization was stopped by adding 39 mg (3.9 × 10−5 mol) of benzoic acid.
The obtained copolymer was purified by precipitating in cold methanol (−10 ◦C). The copolymer was
precipitated in methanol twice and finally dried under vacuum at room temperature for 24 h.

1H NMR (600 MHz, CDCl3): δ (ppm) = 5.1–5.25 (1Hb), 4.88–478 (2Ha), 4.65–4.58 (4Hk),
4.4–4.3 (2Hd), 4.30–4.26 (2Hh), 4.1–4.0 (2He), 1.62–1.20 (3Hc + 6Hi + 6Hl), 0.87–0.85 (3Hf).

Mn(NMR) = 4800 g mol−1, Mn(GPC) = 5300 g mol−1 and Ð = 1.20.

4.4. Synthesis of PLGA-b-PNAM2 Miktoarm Star Block Copolymers by RAFT Polymerization (M1)

The PLGA-b-PNAM2 miktoarm star block copolymers were prepared by the RAFT method.
Typically, into a dried reaction flask, 0.1 g (0.020 mmol) of the PLGA macro initiator, 0.15 g (1.04 mmol)
of NAM and 0.7 mg (0.010 mmol) of AIBN in 4 mL of dry DMF were added. After purging with N2

gas for 30 min, the reaction started at 80 ◦C with magnetically stirring for 8 h. The polymerization was
quenched by exposing it to air in an ice bath. The product was purified by precipitation from cold
diethyl ether (−10 ◦C) and dried in a vacuum oven at 40 ◦C for 24 h, yielding a white solid (0.22 g, 88%).

1H NMR (600 MHz, CDCl3):δ (ppm) = 5.25–5.12 (1Hb), 4.88–478 (2Ha) 4.65 (4Hk), 3.9–3.1 (8Hr),
2.78–2.4 (2Hq), 1.92–1.65(1Hp), 1.58–1.20 (3Hc + 6Hi + 6Hl), 0.85–0.83 (3Hf).

Mn(NMR) = 10,670 g mol−1, Mn(GPC) = 11,600 g mol−1 and Ð = 1.38.

4.5. In Vitro Drug Loading and Release Study

Drug loading and drug release of M2 micelles were carried out by following the reported
methods [22,43]. In brief, DOX-loaded M2 micelles was geared up by dialysis method. Thirty milligrams
of PLGA-b-PNAM2 was dissolved in 2.0 mL of DMSO and the mixture was stirred at room temperature
for 6 h. Further, 3.0 mg of DOX.HCl was added dropwise, followed by the addition of 3.5 µL of
triethylamine. The reaction mixture was left to stir at room temperature for 24 h. Then, the resultant
solution was dialyzed (MW cut off = 3500 Da) against of distilled water, which was renewed periodically
for every 2 h during the course of initial 15 h, then every 4 h to remove the unloaded drug for 24 h.
After the dialysis, dialyzed drug-loaded polymer solution was filtered and lyophilized. In order to
determine the DLC and DLE, lyophilized drug-loaded polymer was dissolved in PBS at pH 7.4 and
analyzed by UV absorbance at 485 nm, using a standard calibration curve which was experimentally
obtained with different concentrations of DOX/PBS (pH = 7.4) solutions. DLC and DLE were calculated
according to the following formula:

DLC (wt%) = [Weight of loaded drug/Weight of polymer] × 100

DLE (wt%) = [Weight of loaded drug/Weight in feed] × 100

For the drug-release study, 5.0 mg of the DOX-loaded polymer was dissolved in 1.0 mL of PBS
(pH = 7.4) and transferred into a dialysis tube (MW cut off = 3500 Da). Then the tube was placed into
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10 mL of PBS. The system was kept under stirring at 37 ◦C. At a definite interval, 3.0 mL of the PBS
solution was taken out, and the solution was replenished with 3 mL of a fresh PBS solution after each
sampling. The amount of drug released was estimated by UV spectroscopy at 485 nm.

4.6. Characterization

The chemical structure, Mn and Ð of the prepared miktoarm star block copolymers were measured
by 1H NMR (JEOL, 600 MHz) and GPC (HP 1100 pump, RID detector, PL gel column). The micellar
solution of the miktoarm-block copolymer was prepared by dialysis technique. The cmc was determined
using a dynamic laser light scattering (Malvern Panalytical’s Zetasizer-1008082, Malvern Panalytical
Ltd, Great Malvern, UK). A series of solutions ranging from 1.0 to 1 × 10−6 mg/mL was prepared
from an aqueous/PBS stock solution of miktopolymer at a concentration of 1% (w/v). For transmission
electron microscopy (TEM; JEOL JEM-2010,Hitachi Ltd., Tokyo, Japan), samples were prepared by
dropping micellar solutions on carbon coated copper grids. No staining was applied to the sample.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/17/3713/s1,
Synthesis of 2-ethyl-2-(hydroxyl methyl) propane-1, 3-diyl bis(2-((ethoxy carbonthioyl) thio) propanoate) (miktoarm
initiator, Figure S1: (a) Plot of the counter rate versus the concentration of M1, M2 and M3 in water. (b) Plot of the
micellar size in diameter versus the concentration of M1, M2 and M3 in PBS (pH = 7.4) at 37 ◦C.
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