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Abstract: Vinegar, composed of various organic acids, amino acids, and volatile compounds, has
been newly recognized as a functional food with health benefits. Vinegar is produced through
alcoholic fermentation of various raw materials followed by acetic acid fermentation, and detailed
processes greatly vary between different vinegar products. This study performed metabolite profiling
of various vinegar products using gas chromatography–mass spectrometry to identify metabolites
that are specific to vinegar production processes. In particular, seven traditional vinegars that
underwent spontaneous and slow alcoholic and acetic acid fermentations were compared to four
commercial vinegars that were produced through fast acetic acid fermentation using distilled ethanol.
A total of 102 volatile and 78 nonvolatile compounds were detected, and the principal component
analysis of metabolites clearly distinguished between the traditional and commercial vinegars. Ten
metabolites were identified as specific or significantly different compounds depending on vinegar
production processes, most of which had originated from complex microbial metabolism during
traditional vinegar fermentation. These process-specific compounds of vinegars may serve as
potential biomarkers for fermentation process controls as well as authenticity and quality evaluation.

Keywords: GC/MS; metabolomics; vinegar; lactic acid; propanoic acid; erythritol; 2,3-butanediol

1. Introduction

Vinegar is currently recognized as a functional food due to its potential health benefits,
including antioxidant [1], antidiabetic [2], cholesterol-lowering [3], weight-reducing [4],
and immune-boosting [5] activities. The most representative vinegars include balsamic,
apple, and brown rice vinegars, and their authentic traditional products are preferred
by consumers [6]. Recent metabolomic analysis of traditional vinegars suggested that
vinegar fermentation processes alter vinegar compounds and possibly their functional
properties [7–12].

Traditional vinegar is produced by two consecutive fermentation processes: alcoholic
fermentation and acetic acid fermentation. During alcoholic fermentation, yeast (Saccha-
romyces cerevisiae) converts fermentable sugars in the raw materials into ethanol. Then,
acetic acid bacteria are introduced and ethanol is oxidized into acetic acid [13]. Traditional
vinegar fermentation is often performed spontaneously by indigenous microorganisms,
leading to a slow and complex fermentation process [14]. On the other hand, most of the
commercially available vinegars are produced by fast acetic acid fermentation of distilled
ethanol by a starter culture (the mother of vinegar) [15].
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Vinegar is composed of various organic acids, amino acids, and volatile compounds
that originate from raw materials and are produced by microbial fermentation. Different
metabolite profiles of vinegar contribute to different flavors and functional properties [16,17].
Previously, non-volatile metabolites of Korean traditional vinegars were compared to those
of commercial vinegars, and the presence and levels of some sugars and acids were
identified as being significantly different between the two groups [18]. However, the
unique volatile metabolites of Korean traditional vinegars have rarely been investigated.

In this study, volatile and non-volatile metabolite profiling of traditional and com-
mercial vinegars in Korea was performed using gas chromatography–mass spectrometry.
Specifically, all seven traditional vinegars certified so far in Korea (the Ministry of Agricul-
ture, Food and Rural Affairs, Korea) were used for the comparative metabolite profiling.
Additionally, vinegars made from various ingredients were included in both groups (tra-
ditional vs. commercial) to focus on different fermentation processes rather than raw
materials. Through this comparative metabolite profiling, the purpose of this study is to
identify vinegar compounds specific to traditional fermentation processes.

2. Results and Discussion
2.1. Metabolomic Differences between Traditional Vinegars and Commercial Vinegars

From the GC/MS analysis of seven traditional vinegar (TV) and four commercial
vinegar (CV) samples (Table 1), 102 volatile and 78 nonvolatile compounds were identified.
The partial least square discriminant analysis (PLS-DA) of the volatile and nonvolatile
metabolites separated the compounds by the TV and CV groups, as shown in the score
plots (Figure 1). The distribution of the vinegar samples on the score plots suggested
greater diversity in metabolites of the TVs than those of the CVs. The variable importance
in projection (VIP) scores of the metabolites were positively correlated with the −Log
(p-value) for the volatile and nonvolatile compounds (Figure 1B,D); the correlation was
stronger for the volatile compounds. This result suggests that the metabolomic differences
between the TVs and CVs are better characterized by the volatile compounds. Although the
comparison of TVs and CVs for their non-volatile and volatile compounds was conducted
for the first time in this study, some recent studies have also pointed out that aroma
profiles of vinegars are critically changed by different fermentation processes as well as
raw materials [9,19].

A total of 180 metabolites were identified from the TVs and CVs (Table 2, Supplemen-
tary Materials Table S1). Twenty of these metabolites were classified as being significantly
different between the two groups (VIP scores > 1.0, PLS-DA; p < 0.05, t-test); among them,
18 metabolites were significantly more abundant in traditional vinegars, five of which were
only detected in traditional vinegars (TV-only). On the other hand, two metabolites (ethyl
3-(methylthio)propionate and asparagine) were detected at significantly higher levels in
commercial vinegars, and the former was only detected in commercial vinegars (CV-only).
Eighteen out of 20 of the most significantly different metabolites were more abundant in
the TV samples, suggesting that traditional vinegars were more enriched by both volatile
and nonvolatile compounds.

Vinegar metabolites are enriched during fermentation and aging processes. Recently,
it was found that the contents of some metabolites of vinegars such as lactic acid increased
mostly during alcoholic fermentation [7]. In addition, aroma profiling of Chinese vinegars
using GC/MS and GC-O suggested that volatile compounds are enriched during vinegar
aging [10]. Similarly, an NMR-based metabolomic study reported that the concentrations
of most vinegar metabolites increased after aging longer than a year [20]. Because TVs
undergo alcoholic fermentation and require longer fermentation and aging periods, com-
pounds that are significantly more abundant in TVs would be closely associated with
fermentation processes. Meanwhile, in a prior study comparing non-volatile compounds
of TVs and CVs, various sugars were significantly more abundant in CVs [18]. However,
those sugars were not representative compounds of CVs in the present study due to large
variations.
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Table 1. Vinegar samples used in this study.

Traditional
Vinegars (*)

Geographical Origin
in Korea Raw Materials Acetate (g/L) Ethanol (g/L) Glucose +

Fructose (g/L)

TV1 (101) Yeongdong, Chungbuk Persimmon 37.6 ± 0.2 13.7 ± 0.2 0
TV2 (746) Icheon, Gyeonggi Persimmon 62.4 ± 1.6 1.7 ± 0.1 0.3 ± 0.03
TV3 (163) Jinju, Gyeongnam Persimmon 50.3 ± 0.1 2.5 ± 0.1 0
TV4 (553) Wanju, Jeonbuk Persimmon 35.2 ± 0.1 13.1 ± 0.3 0
TV5 (135) Jeongeup, Jeonbuk Persimmon 41.1 ± 1.7 12.7 ± 0.7 46.5 ± 2.2
TV6 (794) Yeongcheon, Gyeongbuk Brown rice 42.8 ± 1.5 0.4 ± 0.5 30.7 ± 1.1
TV7 (378) Yecheon, Gyeongbuk Multigrains 53.4 ± 0.7 4.6 ± 0.1 2.2 ± 0.3

Commercial
Vinegars Manufacturer Raw Materials Acetate (g/L) Ethanol (g/L) Glucose +

Fructose (g/L)

CV1 Ottogi Apple 64.5 ± 2.0 1.4 ± 0.03 11.3 ± 0.4
CV2 Ottogi plum 63.5 ± 1.2 1.4 ± 0.1 4.1 ± 0.01
CV3 Daesang Apple 51.6 ± 0.4 1.0 ± 0.04 8.8 ± 0.1
CV4 Ottogi Brown rice 65.9 ± 1.1 1.5 ± 0.1 3.1 ± 0.1

* Certification numbers (in parenthesis) issued by the Ministry of Agriculture, Food and Rural Affairs, Korea.
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(D) compounds. 
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ent TV samples. Except for phenylalanine ethyl ester, four of the TV-only compounds 
were detected in all the traditional vinegar samples. 

Three TV-only volatile compounds are unique metabolites associated with specific 
fermentation conditions. 2,4,5-Trimethyl-1,3-dioxolane was one of the compounds not 
found after fermentation but formed and accumulated during the aging process [10]. 2-
Methoxyethyl acetate (acetic acid, methoxy-, ethyl ester) compounds are reported as fla-
vor compounds of several ethnic foods, such as Korean soybean paste [21], Chinese liquor 

Figure 1. The partial least squares-discriminant analysis (PLS-DA) of the volatile (A,B) and nonvolatile (C,D) compounds
of 11 vinegar samples (Table 1). (A,C) Score plots. (B,D) variable importance in projection (VIP) scores vs. −Log p-value
plots of the 102 volatile (B) and 72 nonvolatile (D) compounds.



Metabolites 2021, 11, 478 4 of 9

Table 2. Number of vinegar metabolites identified.

Total Metabolites Significantly Different
Metabolites *

High in Traditional
Vinegars a

High in Commercial
Vinegars b

Volatile 102 5 4 (3) 1 (1)
Nonvolatile 78 15 14 (2) 1 (0)

Total 180 20 18 (5) 2 (1)

* VIP score > 1.0 and p-value < 0.05. a The numbers in parentheses refer to the number of TV-only compounds. b The numbers in parentheses
refer to the number of CV-only compounds.

2.2. TV-Only Compounds

The five TV-only compounds only detected in traditional vinegars were 2,4,5-trimethyl-
1,3-dioxolane, 2-methoxyethyl acetate, phenylalanine ethyl ester, L-isoleucine, and phenylethy-
lamine (VIP > 1.0 and p < 0.05) (Figure 2). Some of the compounds had wide interquartile
and error ranges, suggesting that their contents varied greatly among different TV samples.
Except for phenylalanine ethyl ester, four of the TV-only compounds were detected in all
the traditional vinegar samples.
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Figure 2. The abundance of six metabolites detected only in traditional vinegar (TV-only) or commer-
cial vinegar (CV-only). The interquartile range (boxes), the largest and smallest values (error bars),
and the medians (horizontal lines in the boxes) are indicated.

Three TV-only volatile compounds are unique metabolites associated with specific
fermentation conditions. 2,4,5-Trimethyl-1,3-dioxolane was one of the compounds not
found after fermentation but formed and accumulated during the aging process [10].
2-Methoxyethyl acetate (acetic acid, methoxy-, ethyl ester) compounds are reported as
flavor compounds of several ethnic foods, such as Korean soybean paste [21], Chinese
liquor [22], and Burundian cassava flour [23]. Notably, 2-methoxyethyl acetate is detected
only at the end of soybean fermentation; thus, it is associated with complex fermentation
processes [21]. Phenylalanine ethyl ester (Phe-EE), one of the minor amino acid ethyl esters
of wines, is formed during the second half of the fermentation when ethanol concentration
is high [24,25].

Surprisingly, common food metabolites like L-isoleucine, an amino acid, and phenylethy-
lamine, an amino acid derivative, were identified as nonvolatile TV-only compounds.
L-isoleucine is one of the amino acids found in most traditionally fermented vinegars [6].
L-isoleucine and other branched-chain amino acids are associated with the production of
higher alcohols and esters during fermentation [26]. Phenylethylamine is one of the least
common biogenic amines in wine and dairy products [27,28]. Previously, phenylethylamine
was not detected in all the vinegars tested [17,29].
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Meanwhile, there were 51 other TV-only compounds, 43 volatile and eight nonvolatile
compounds, with a low significance (p > 0.05) due to sample variations, which were
independent from raw materials (Supplementary Materials Table S2). Because some of
those compounds are strongly related to fermentation, a selected group of TV-specific
compounds might be useful as a potential marker for traditional vinegars. For example, 3-
phenyllactic acid (p < 0.085), one of the aromatic hydroxy acids that contributes to vinegar’s
flavor, is produced during fermentation using phenylalanine as a precursor, mainly by
lactic acid bacteria [8].

2.3. CV-Only Compounds

Ethyl 3-(methylthio)propionate was the significant CV-only volatile compound de-
tected from two commercial vinegar samples (VIP > 1.0 and p < 0.05) (Figure 2). Ethyl
3-(methylthio)propionate has recently been identified as a flavor-active compound in Chi-
nese vinegar and Chinese liquor [9,30]. Previously, ethyl 3-methylthiopropionate was
detected only when sugars or spices were added during vinegar fermentation [9]. This
observation is consistent with our conclusion that it is specific to CVs containing various
additives.

There were 19 other CV-only volatile compounds with a low significance (p > 0.05)
due to sample variations (Table S2). The unique compounds of each sample might be
associated with the different ingredients, such as brown rice, apple, and pineapple, of the
CVs. For example, methyl 5-hexenoate, a unique volatile compound of pineapple [31], was
detected only in CV2, a pineapple-based commercial vinegar. Notably, asparagine had the
third-highest VIP score among the nonvolatile compounds due to its detection in all the
CVs and only 1 TV.

2.4. Common Vinegar Compounds

Among the 20 compounds that were significantly different between TVs and CVs,
four compounds (lactic acid, erythritol, propanoic acid, and 2,3-butanediol (denoted as
its 2 TMS derivative, 3,6-dioxa-2,7-disilaoctane and hexamethyl, in some metabolomic
studies)) were detected in all 11 vinegars tested; therefore, they were classified as common
vinegar compounds (Figure 3). The four common vinegar compounds were nonvolatile and
significantly high in TVs. Based on the median values of the common vinegar compounds,
the relative abundance of lactic acid, 2,3-Butanediol, erythritol, and propionic acids were
71, 29, 9, and 4 times higher in TVs than CVs, respectively.

Various indigenous microorganisms are present during the fermentation of TV [32],
thus explaining the high levels of lactic acid, erythritol, propanoic acid, and 2,3-butanediol
in TVs. Specifically, indigenous lactic acid bacteria are the dominant bacterial population
during the alcoholic fermentation stage of TVs [33]. Heterofermentative metabolism of lac-
tic acid bacteria leads to the accumulation of lactic acid and other minor compounds, includ-
ing propanoic acid and 2,3-Butanediol [34]. Additionally, erythritol is a byproduct of non-
Saccharomyces osmotolerant yeast, such as Candida magnoliae and Yarrowia lipolytica [35,36],
which predominates in the initial stage of static acetic acid fermentation [14,32]. During
acetic acid fermentation, ethanol concentration is reduced to 6%–7%, allowing the growth
of the non-Saccharomyces yeast such as C. magnoliae. Because most TVs are produced by
static and slow acetic acid fermentation, the oxidation of erythritol to erythrulose by acetic
acid bacteria may be limited [37], thus resulting in a high level of erythritol in TVs.
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Figure 3. The comparison of the significantly more abundant compounds in TVs than those in CVs.
Among the 20 significantly different compounds, lactic acid (A), propanoic acid (B), erythritol (C),
and 2,3-butanediol (D) were detected in all vinegar samples. The interquartile range (boxes), largest
and smallest values (error bars), and medians (horizontal lines in the boxes) are indicated for each
compound.

3. Materials and Methods
3.1. Raw Material Preparation

All 7 traditional vinegars certified so far in Korea (the Ministry of Agriculture, Food
and Rural Affairs, Korea) were purchased directly from each manufacturer, and four
representative commercial vinegars were purchased from local markets in Korea (Table 1).
Vinegars with various raw materials were selected to offset different metabolites originating
from different raw materials.

3.2. High-Performance Liquid Chromatography (HPLC) Analysis

Acetate, ethanol, glucose, and fructose (Sigma-Aldrich, St. Louis, MO, USA) were
quantitated using an HPLC (1260 series, Agilent Technologies, Santa Clara, CA, USA)
system with an RI detector and a Rezex-ROA Organic Acid H+ (8%, 150 × 4.6 mm) column
(Phenomenex Inc., Torrance, CA, USA). The column was eluted with 0.005 N H2SO4
(Sigma-Aldrich, St. Louis, MO, USA) at 0.6 mL/min and 50 ◦C. The dynamic range of the
standard curves was 0.1–5 g/L, and samples were appropriately diluted prior to analysis.
All samples were analyzed in triplicate.

3.3. Sample Derivatization for Analysis

Vinegar samples were derivatized with some modifications to previously reported
methods [38]. For methoxyamination, 50 µL of methoxyamine hydrochloride in 0.2%
pyridine (w/v) (Sigma-Aldrich, St. Louis, MO, USA) was added to 5 µL of a dry-vacuumed
vinegar sample. This mixture was then incubated for 90 min at 30 ◦C. For trimethylsilyla-
tion, 50 µL of N-methyl-N-(trimethylsilyl)trifluoroacetamide (Sigma-Aldrich) was added
to the samples and incubated for 30 min at 37 ◦C.
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3.4. Metabolite Analysis Using Gas Chromatography–Mass Spectrometry (GC/MS)

For volatile compounds, 5 mL of samples were extracted by SPME fiber coated with
dinylbenzene/carboxen/polydimethylsiloxane (Bellefonte, PA, USA) at 50 ◦C for 60 min,
as previously described [19]. The samples were injected by MPS autosampler (Gerstel,
Muelheim, Germany) at a split mode (1:20) into the GC/MS system (7890-5977B; Agilent)
equipped with a DB-WAS column (60 m × 0.25 mm, 0.25 µm thickness; Agilent). The initial
oven temperature was set to 40 ◦C for 2 min, ramped up by 20 ◦C/min until reaching the
final temperature of 240 ◦C, at which it was held for 5 min. The mass selective spectra were
operated in scan mode with a mass range of 500–550 m/z. All samples were analyzed in
triplicate.

For nonvolatile compounds, 1-µL aliquots of derivatized samples were injected in a split
mode (1:50) into the gas chromatography–time-of-flight mass spectrometry (GC–TOF/MS)
equipped with an Agilent 7890B GC, an RTX-5Sil MS column (30 m × 0.25 mm, 0.25-µm
in thickness; Restek, Bellefonte, PA, USA), an integrated guard column (10 m × 0.25 mm,
0.25-µm in thickness; Restek), and a Pegasus HT TOF MS (Leco, St. Joseph, MI, USA). The
initial oven temperature was set to 75 ◦C for 2 min, ramped up by 15 ◦C/min until the final
temperature of 300 ◦C, and held for 1.5 min. The mass spectra of metabolites were obtained
in the mass range of 45–500 m/z at an acquisition rate of 17 spectra/s. All samples were
analyzed with six replicates. For laboratory quality control (QC), a blank and in-house
QC mixture of alanine 2,3,3,3-d4, glutamic-2,3,3,4,4-d5 acid, asparagine-15N2-d8 and xylitol
(Sigma-Aldrich, St. Louis, MO, USA) at a concentration of 0.08 mg each were analyzed
with each batch of analysis, and the coefficient of variation (CV) was kept below 10%.

3.5. Data Processing and Statistical Analysis

For data processing, raw peak area values were used, as previously described [8,18,39].
For the quality assurance of the data, CVs for measured metabolites was calculated, and it
was confirmed that the 10 metabolites with the highest abundance of each biological group
had CVs less than 10%. For identification of the metabolites, the raw data were processed
by an automated mass spectral deconvolution and identification system (AMDIS) using
the National Institute of Standard and Technology library (NIST 2014) with a similarity of
more than 70% [40,41]. The pre-processed data were further processed by SpectConnect
(http://spectconnect.mit.edu, accessed on 22 July 2021) [42] for peak alignment and for
generating the data matrix. The statistical analysis was performed using partial least
squares-discriminant analysis with STATISTICA (ver. 7.1; StatSoft, Tulsa, OK, USA) and
MultiExperiment Viewer [43,44].

4. Conclusions

In this study, the metabolite profiles of TVs and CVs were analyzed and compared.
A total of 180 volatile and nonvolatile compounds were identified, and TVs had a greater
metabolite diversity than CVs. Twenty compounds significantly influenced the differentia-
tion of TVs from CVs, which were classified into TV-only compounds, CV-only compounds,
and common vinegar compounds. The compounds high in TVs were associated with
complex microbial activities, while the compounds high in CVs were associated with com-
mercial vinegar additives. The results provide comparative metabolite profiles of vinegars
with different production processes. The selected compounds of vinegars can be applied as
potential markers for vinegar fermentation processes as well as for authentic evaluation of
vinegars in Korea.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11080478/s1, Table S1: Volatile and non-volatile metabolites detected in traditional and
commercial vinegars, Table S2: Vinegar process-specific metabolites.
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