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Abstract: Palladium-catalyzed oxidative annulations
between phenols and alkenylcarboxylic acids pro-
duced a library of benzofuran compounds. Depend-
ing on the nature of the substitution of the phenol
precursor, either 2,3-dialkylbenzofurans or 2-alkyl-
3-methylene-2,3-dihydrobenzofurans can be synthe-
sized with excellent regioselectivity. Reactions be-
tween conjugated 5-phenylpenta-2,4-dienoic acids
and phenol gave 3-alkylidenedihydrobenzofuran al-
kaloid motifs while biologically active 7-arylbenzo-
furan derivatives were prepared by starting from 2-
phenylphenols. More interestingly, selective incor-
poration of deuterium from D2O has been discov-
ered, which offers an attractive one-step method to
access deuterated compounds.
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Benzofurans are an important class of heterocyclic
compounds[1] with unique biological activities.[2] Nota-
ble instances include derivatives of benzofurans
acting as antitumor agents,[3] angiotensin II inhibi-
tors,[4] and 5-lipoxygenase inhibitors etc.[5] Therefore,
synthesis of these organic motifs has drawn significant
attention from the synthetic community.[6] Recently,
we have contributed to this area by synthesizing
a wide array of 2-substituted benzofurans through

a unique Pd-catalyzed annulation of simple phenols
and olefins.[7] Of more interest was an orthogonal ap-
proach with cinnamic acids, which gave rise to 3-sub-
stituted benzofurans with excellent selectivity.[8] In
this context, we became interested in the prospect of
synthesizing 2,3-disubstituted benzofuran derivatives
starting from phenols. Although numerous ap-
proaches have been made to synthesize these scaf-
folds,[9] the widely adopted method is the transition
metal-catalyzed annulation[10] by using pre-functional-
ized phenol,[6a,11] thus limiting the scope of the reac-
tion to a considerable extent. Free phenols also have
been employed in several cases but reactions with cin-
namic acids remained exceedingly rare.[12]

In addition, we disclose a one-step method to syn-
thesize deuterium-labeled benzofurans in the pres-
ence of D2O (Scheme 1). Deuterated compounds are
ubiquitous in the realms of metabolic studies, mecha-
nistic experimentations and most importantly in mass
spectrometry.[13] Furthermore, deuterium incorporated
compounds are found to improve the therapeutic and
metabolic profiles of a drug candidate.[14] To the best
of our knowledge, the synthesis of deuterated benzo-
furans from unbiased phenol remains unsolved as yet.

At the beginning of our investigation, we hypothe-
sized about an alteration of the reaction mode upon
changing the coupling partner from cinnmic acids to
a,b-unsaturated aliphatic acids (Scheme 2). This pre-
liminary idea was based on the putative intermediate
(A) which is less likely to undergo a direct oxopallda-
tion due to the decreased stabilization of the incipient
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negative charge (monobenzyl vs. dibenzyl center). In
fact, in the next step an allylpalladium species B can
be envisaged with the tentative migration of the
double bond to the more substituted position, which
can generate disubstituted benzofurans as opposed to
the 3-substituted ones observed previously.[8] In ac-
cordance with this hypothesis, we commenced our ini-
tial studies with a reaction of 2-chloro-4-nitrophenol
and 8-nonenoic acid with the catalyst Pd/1,10-phen in
the presence of Cu(OAc)2·H2O as the terminal oxi-
dant. After several sets of optimization, we found that
desired disubstituted benzofurans can be synthesized
efficiently in dichloroethane (DCE) solvent at
130 88C.[15]

The scope of the phenol coupling partners was
studied subsequently under the optimized reaction
condition (3a–4k). Depending on the nature of substi-
tution of the phenols, we observed formation of
either 3-methylene-2,3-dihydrobenzofuran (3) or 2,3-

dialkylbenzofuran (4) derivatives (Table 1). The 8-
nonenoic acid reacted with 4-cyanophenol to produce
3-methylene-2,3-dihydrobenzofuran as the major
product (3b) along with isomer 4b in trace amount
(3b/4b, 10:1). In a similar fashion, 4-nitrophenol react-
ed with the same olefin to produce 3c in preparatively
useful yields. Such compounds were previously syn-
thesized by ruthenium-carbene promoted cycloisome-
rization of O-allyl-o-vinylphenols.[16] In the present
case, formation of 3 likely involved a b-migratory in-
sertion and b-hydride elimination pathway (vide
infra).

Relatively less electron-deficient phenols were also
found to be suitable under the present system. A
keto-substituted phenol could produce 3-methyl-sub-
stituted 4f as the major product along with the exocy-
clic isomer in an negligible amount (4f/3f, 56:1). Simi-
lar products were also observed in 4g–4k. Despite our
best efforts, the preference for 3 vs. 4 (Table 1)
cannot be rationalized at this point. We speculated
that a subtle difference in electronic nature of phenols
(e.g., strongly electron-deficient phenols gave 3) is
crucial for these product formations. Although 3 is
known to isomerize to the corresponding 3-methyl-
2,3-disubstituted benzofuran (4) under acidic condi-
tions,[17] we failed to promote such a transformation in
our laboratory (e.g., with 3a). In addition to the syn-
thesis of benzofurans, naphthofurans (e.g., 4e ; 4e/3e,
26:1) can also be synthesized, which are integral com-
ponents in natural products and pharmacologically
relevant compounds.[18] Expectedly, electron-rich phe-
nols reacted with 4-pentenoic acid to produce 2,3-di-
methyl-substituted benzofuran compounds 4j and 4k
with useful synthetic yields.

Subsequently, we planned to synthesize 7-arylben-
zofuran derivatives which are present in a number of
natural products.[19] Note that the synthesis of 7-aryl-
benzofuran from simple precursors remained prob-
lematic up to date (Scheme 3).

Scheme 1. Our approaches to benzofuran synthesis.

Scheme 2. Mechanistic outline.

Scheme 3. Synthesis of 2,3-disubstituted-7-arylbenzofurans.
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Table 1. Scope with different phenols and a,b-unsaturated carboxylic acids.[a]
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Next, the scope of the present method was expand-
ed to 3-alkylidenedihydrobenzofuran derivatives,
which are very relevant to alkaloid chemistry, by re-
acting conjugated 5-phenylpenta-2,4-dienoic acid with
phenol.[1b,20] Ylide hydrolysis and intramolecular cycli-
zation were previously explored to synthesize these 3-
alkylidenedihydrobenzofuran compounds.[21] Howev-
er, under the present conditions, an array of 3-alkyli-
denedihydrobenzofuran derivatives (6) could be syn-
thesized in a much simpler way in good yields
(Table 2).

In view of the lability of the carboxylic proton, deu-
terium-exchange was planned with the addition of
D2O under standard reaction conditions. After a brief
optimization effort we found that 500 mL D2O are suf-
ficient to obtain the maximum percentage of deuteri-
um incorporation.[15] Employing the present approach,
an array of deuterated benzofuran analogues were ac-
cessed in one step (Scheme 4). Furthermore, deuterat-
ed 3-methylene-2,3-dihydrobenzofuran derivatives
were also synthesized in a similar fashion. The 8-non-

enoic acid in the presence of the electron -withdraw-
ing partner like 2-chloro-4-nitrophenol (3’’a) and 4-cy-
anophenol (3’’b) provided the desired benzofuran
products in 65% and 47% yields, respectively. Substi-
tution on the phenol coupling partner like t-Bu and
Ph gave the expected 2,3-disubstituted benzofurans,
where a ¢CD3 group is present on the 3-position (4’’a
and 4’’b). Dimethoxy-substituted phenol resulted in
non-selective over deuteration (4’’c) due to the acidic
nature of protons present in the ortho-position of the
methoxy group. Next, we synthesized deuterated 3-al-
kylidenedihydrobenzofuran derivatives from conju-
gated 5-phenylpenta-2,4-dienoic acid and phenol with
synthetically useful yields (6’’a–6’’c). Note that, by
using PhOH-d5 as coupling partner in the absence of
D2O, we did not observe any deuterium scrambling
(Scheme 5).

Based on the experimental observations, a plausible
mechanism of 3-methylene-2,3-dihydrobenzofuran
and 2,3-disubstituted benzofuran synthesis is depicted
in Scheme 6. Formation of a phenanthroline-palladi-

Table 2. Scope with conjugated a,b-unsaturated carboxylic acids.[a]

[a] Reaction conditions: 1 (0.75 mmol, 3 equiv.), 2 (0.25 mmol, 1 equiv.), Pd(OAc)2

(0.025 mmol, 10 mol%), 1,10-phenanthroline (0.05 mmol, 20 mol%), Cu(OAc)2

(0.25 mmol, 1 equiv.), ClCH2CH2Cl (4 mL), 130 88C for 24 h in an O2 atm. Yields
are those of the isolated products. Compounds were characterized by 1D and 2D
NMR.

[b] Bathophenanthroline as the ligand.

[a] Reaction conditions: 1 (0.75 mmol, 3 equiv.), 2 (0.25 mmol, 1 equiv.), Pd(OAc)2

(0.025 mmol, 10 mol%), 1,10-phenanthroline (0.05 mmol, 20 mol%), Cu(OAc)2

(0.25 mmol, 1 equiv.), ClCH2CH2Cl (4 mL), 130 88C for 24 h in an O2 atm. Yields are
those of the isolated major products. Compound ratio was determined on the basis of
GC-MS analysis of the reaction mixture. Compound 3:4 ratio was mentioned for en-
tries 3a–3d and compound 4:3 ratio was mentioned for entries 4e–4k. The minor prod-
uct could not be isolated in pure form.

[b] Compound was characterized by 1D and 2D NMR.
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um(II) complex increases the solubility and electro-
philicity of the resulting catalyst. We tentatively
speculated that the electrophilic palladium center will
coordinate to the ortho-position of the phenol to give
a palladium-phenolic complex.[12e,22] Then a,b-unsatu-
rated carboxylic acids will be inserted across the C¢
Pd bond and subsequent decarboxylation will give the
Pd-allyl species (Int-I).[8,23] In the presence of palladi-
um, intermediate I will cyclize to form Int-II, which is
the key species for the formation of 3 and 4.[1b,7,11c]

Syn b-hydride elimination from intermediate II leads
to the formation of the desired benzofuran products
and regenerates the Pd(0) species.[7] This Pd(0) is
readily oxidised to Pd(II) by Cu(OAc)2·H2O under an
oxygen atmosphere to maintain the catalytic process.

A reasonable pathway to obtain 3’’ and 4’’
(Scheme 4) via deuterium incorporation, b-migratory
insertion and b-hydride elimination can also be envis-
aged (Scheme 7).

Scheme 4. D2O addition under standard conditions. Reaction conditions: 1 (0.75 mmol, 3 equiv.), 2 (0.25 mmol, 1 equiv.),
Pd(OAc)2 (0.025 mmol, 10 mol%), 1,10-phenanthroline (0.05 mmol, 20 mol%), Cu(OAc)2 (0.25 mmol, 1 equiv.), D2O
(500 mL), ClCH2CH2Cl (4 mL), 130 88C for 24 h in an O2 atm. Yields are those of the isolated products.
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In summary, 2, 3-disubstituted benzofuran ana-
logues are synthesized from readily available phenols
and aliphatic a,b-unsaturated carboxylic acids. Excel-
lent regioselectivity and use of inexpensive reagents
make this method synthetically useful. An inverse in-
sertion with a,b-unsaturated carboxylic acids com-
pared to alkenes, was observed upon ortho-pallada-
tion of phenol. Additionally, this method can be uti-
lized for the preparation of deuterated benzofuran
compounds. Further mechanistic investigations and
expansion of such strategies are currently underway
in our laboratory.

Scheme 5. Complementary isotope labeling study using deu-
terated phenol.

Scheme 6. Formation of 3 and 4.

Scheme 7. Formation of 3’’ and 4’’.

2336 asc.wiley-vch.de Õ 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Adv. Synth. Catal. 2015, 357, 2331 – 2338

UPDATESSoumitra Agasti et al.

http://asc.wiley-vch.de


Experimental Section

General Procedure

To an oven-dried screw cap reaction tube charged with
a magnetic stir-bar, Pd(OAc)2 (10 mol%, 0.025 mmol,
5.6 mg), 1,10-phenonthroline monohydrate (20 mol%,
0.05 mmol, 10 mg) or bathophenanthroline (20 mol%,
0.05 mmol, 16.62 mg), Cu(OAc)2·H2O (0.25 mmol, 50 mg)
were added. Then phenol (0.75 mmol) and a,b-unsaturated
carboxylic acid (0.25 mmol) were introduced into the reac-
tion mixture. Solid compounds were weighed before the
other reagents, whereas liquid phenols/a,b-unsaturated car-
boxylic acids were added by micro-liter syringe and labora-
tory syringe under an air atmosphere. In the reaction tube
4 mL ClCH2CH2Cl were added and O2 was purged in the re-
action mixture for 15 min. For the deuterated compounds
(3’’a–6’’c), 500 mL D2O were added by micro-liter syringe
under the positive pressure of oxygen. Then the reaction
mixture was vigorously stirred in a preheated oil bath at
130 88C for 24 h. After completion, the reaction mixture was
filtered through a celite pad with ethyl acetate as the wash-
ing solvent. The ethyl acetate layer was washed with brine
solution and dried over anhydrous Na2SO4, and evaporated
under reduced pressure. The residue was purified by column
chromatography.
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