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With the increasing importance and complexity of data pipelines, data quality became
one of the key challenges in modern software applications. The importance of data
quality has been recognized beyond the field of data engineering and database
management systems (DBMSs). Also, for machine learning (ML) applications, high
data quality standards are crucial to ensure robust predictive performance and
responsible usage of automated decision making. One of the most frequent data
quality problems is missing values. Incomplete datasets can break data pipelines and
can have a devastating impact on downstream ML applications when not detected.
While statisticians and, more recently, ML researchers have introduced a variety of
approaches to impute missing values, comprehensive benchmarks comparing
classical and modern imputation approaches under fair and realistic conditions are
underrepresented. Here, we aim to fill this gap. We conduct a comprehensive suite of
experiments on a large number of datasets with heterogeneous data and realistic
missingness conditions, comparing both novel deep learning approaches and
classical ML imputation methods when either only test or train and test data are
affected by missing data. Each imputation method is evaluated regarding the
imputation quality and the impact imputation has on a downstream ML task. Our
results provide valuable insights into the performance of a variety of imputation
methods under realistic conditions. We hope that our results help researchers and
engineers to guide their data preprocessing method selection for automated data
quality improvement.
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1 INTRODUCTION

In recent years, complex data pipelines have become a central component of many software
systems. It has been widely recognized that monitoring and improving data quality in these
modern software applications is an important challenge at the intersection of database
management systems (DBMSs) and machine learning (ML) (Schelter et al., 2018a; Abedjan
et al., 2018). A substantial part of the engineering efforts required for maintaining large-scale
production systems is dedicated to data quality, especially when ML components are involved
(Sculley et al., 2015; Böse et al., 2017).

Poor data quality can quickly break software applications and cause application downtimes, often
leading to significant economic costs. Moreover, poor data quality can foster unfair automated
decisions, which marginalize minorities or have other negative societal impacts (Stoyanovich et al.,
2020; Yang et al., 2020; Bender et al., 2021). For this reason, many researchers started investigating to
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what extent monitoring of data quality can be automated
(Abedjan et al., 2016; Baylor et al., 2017; Schelter et al., 2018b;
Rukat et al., 2020). While some aspects of such monitoring, such
as the consistency of data types, are easy to automate, others, such
as semantic correctness1, are still the subject of active research
(Biessmann et al., 2021). However, even if automatic monitoring
tools, such as those proposed in the work of Schelter et al. (2017),
would be used, a central challenge remains: How can we
automatically fix the detected data quality issues?

One of the most frequent data quality problems is missing
values (Kumar et al., 2017). Reasons for incomplete data are
manifold: data might be accidentally not recorded, lost through
application or transmission errors, intentionally not filled in by
users, or result from data integration errors. Throughout the
past few decades, researchers from different communities have
been contributing to an increasingly large arsenal of methods to
impute missing values. Statisticians laid the theoretical
foundations for missing value imputation (Rubin, 1976) by
describing different missingness patterns (more details are
given in Section 3.2). Statistical approaches have been
proposed to handle missing values (Schafer and Graham,
2002). Simple strategies include dropping incomplete
observations or replacing missing values with constant
mathematically valid values. While this might be a reasonable
solution to ensure robust functioning of data pipelines, such
approaches often reduce the amount of available data for
downstream tasks and, depending on the missingness
pattern, might also bias downstream applications
(Stoyanovich et al., 2020; Yang et al., 2020) and, thus, further
decrease data quality (Little and Rubin, 2002; Schafer and
Graham, 2002).

Another line of imputation research in the statistics
community focuses on multiple imputation (MI) (Rubin,
1987). In MI, one replaces missing values with multiple
predictions from an imputation model. Those M > 1 complete
datasets can be used to assess the uncertainty of imputed values.
The most popular and widely used MI technique is multiple
imputation by chained equations (MICE) (Little and Rubin, 2002;
van Buuren, 2018), which is very flexible and can be implemented
with different models. While some applications can benefit from
this uncertainty information, integrating this uncertainty
information in data pipelines can be challenging. From a
practitioner’s point of view, point estimates are much simpler
to integrate into conventional data pipelines. This is why we
restrict our analysis to point estimate imputations. Note,
however, that all the experiments conducted in this work
could, in principle, also be evaluated with respect to their
uncertainty estimates in a MICE setting, using the examined
imputation methods as the model underlying the MICE
estimator.

More recently, also ML approaches have increasingly been
used for imputation. Popular methods include k-nearest
neighbors (k-NNs) (Batista and Monard, 2003), matrix
factorization (Troyanskaya et al., 2001; Koren et al., 2009;

Mazumder et al., 2010), random-forest–based approaches
(Stekhoven and Bühlmann, 2012), discriminative deep learning
methods (Biessmann et al., 2018), and generative deep learning
methods (Shang et al., 2017; Yoon et al., 2018; Li et al., 2019;
Nazábal et al., 2020; Qiu et al., 2020).

Most imputation studies provide solid experimental
evidence that the respective proposed method in the
application setting investigated outperforms other
competitors’ baselines. Yet, it remains hard to assess which
imputation method consistently performs best in a large
spectrum of application scenarios and datasets under
realistic missingness conditions. In particular, most
benchmarks do not systematically report and compare
both imputation quality and the impact of the imputation
on downstream ML applications with baselines in a wide
range of situations.

In this article, we aim at filling this gap. We benchmark a
representative set of imputation methods on a large number of
datasets under realistic missingness conditions with respect to
imputation quality and the impact on the predictive
performance of downstream ML models. For our
experiments, we use 69 fully observed datasets from OpenML
(Vanschoren et al., 2013) with numeric and categorical
columns. Each dataset is associated with a downstream ML
task (binary classification, multiclass classification, and
regression). We run experiments by artificially introducing
varying fractions of missing values of the three missingness
patterns (MCAR, MAR, and MNAR, see also Section 3). We
then measure both the imputation performance and impact on
downstream performance in two application scenarios: 1)
missing values in the test data; i.e., we train on complete
data and corrupt (and impute) only test data and 2) both
training and test data have missing values; i.e., we train and
test on corrupted data.

The rest of this article is structured as follows. In Section
2, we review the related work on imputation benchmarking
efforts and continue in Section 3 with an overview of the
missingness conditions and imputation methods
investigated in this study. A detailed description of our
benchmark suite and its implementation follows in
Section 4. The results of our experiments are described
and visualized in Section 5. We then highlight the key
findings in Section 6 and, finally, draw our conclusions in
Section 7.

2 RELATED WORK

The body of literature that is related to our work consists of
two types of studies. Some focus on presenting new or
improved imputation methods and compare them with
existing and baseline approaches in broader settings,
similar to benchmark papers (Bertsimas et al., 2017;
Zhang et al., 2018). Others are benchmark studies and
compare imputation strategies (Poulos and Valle, 2018;
Jadhav et al., 2019; Woznica and Biecek, 2020). However,
both have in common that they often focus on specific1A great example from life sciences is given in the work of Ziemann et al. (2016).

Frontiers in Big Data | www.frontiersin.org July 2021 | Volume 4 | Article 6936742

Jäger et al. Benchmark for Data Imputation Methods

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


aspects or use cases and do not aim at an extensive
comparison.

Poulos and Valle (2018) compared the downstream task
performance on two binary classification datasets (N � 48, 842,
and N � 435) with imputed and incomplete data. Therefore, they
varied the amount of MCAR and MNAR values from 0% to 40%
in categorical features. For the imputation, they used six models:
mode, random, k-NN, logistic regression, random forest, and
SVM. The authors optimize the hyperparameters for one of the
three downstream tasks but not for the imputation models. They
conclude that using a k-NN imputation model performs best in
most situations.

Similarly, Jadhav et al. (2019) compare seven imputation
methods (random, median, k-NN, predictive mean matching,
Bayesian linear regression, linear regression, and non-
Bayesian) without optimizing their hyperparameters based
on five small and numeric datasets (max. 1,030 observations).
The authors discuss different missingness patterns but do not
state which one they used in their experiments. However, they
measured the methods’ imputation performance for 10% to
50% missing values. Again, the authors show that k-NN
imputation is best independent of the dataset and
missingness fraction.

Woznica and Biecek (2020) evaluate and compare seven
imputation methods (random, mean, softImpute, miss-
Forest, VIM kknn, VIM hotdeck, and MICE) combined
with five classification models regarding their predictive
performance. Therefore, they use 13 binary classification
datasets with missing values in at least one column, which
is why they do not know the data’s missingness pattern. The
amount of missing values ranges between 1% and about 33%.
In contrast to the work of Poulos and Valle (2018) and
Jadhav et al. (2019), the authors could cope with the
situation where only incomplete data are available for
training. In their setting, they could not find a single best
imputation method. However, they show that the
combination of the imputation method, downstream
model, and metric (F1 or AUC) influences the results.

The following two articles differ from others because they
aim to compare the proposed method against the existing
approaches. Zhang et al. (2018) implement an iterative
expectation-maximization (EM) algorithm that learns and
optimizes a latent representation of the data distribution,
parameterized by a deep neural network, to perform the
imputation. They use ten classification and three regression
task datasets and 11 imputation baselines (zero, mean,
median, MICE, miss-Forest, softImpute, k-NN, PCA,
autoencoder, denoising autoencoder, and residual
autoencoder) for comparison. The authors conducted
both evaluations, imputation and downstream task
performance, with 25%, 50%, and 75% MNAR missing
values and showed that their method outperforms the
baselines.

To the best of our knowledge, Bertsimas et al. (2017) gave
the largest and most extensive comparison, although they
focused on introducing an imputation algorithm and
presented its improvements. The proposed algorithm cross

validates the choice of the best imputation method out of
k-NN, SVM, or tree-based imputation methods, where the
hyperparameters are also cross validated. The authors then
benchmarked their approach on 84 classification and
regression tasks against five imputation methods: mean,
predictive mean matching, Bayesian PCA, k-NN, and
iterative k-NN. They measured the imputation and
downstream task performance on 10% to 50% MCAR and
MNAR missing values. The authors show that the proposed
method outperforms the baselines, closely followed by k-NN
and iterative k-NN.

We summarize the abovementioned articles and related
benchmarks in Table 1. Most benchmarks use broad
missingness fractions but lack realistic missingness
conditions or a large number of heterogeneous datasets.
Furthermore, no article systematically compares the
imputation quality and impact on downstream tasks for
imputation methods trained on complete and incomplete
data. Studies presenting novel imputation methods based
on deep learning often lack a comprehensive comparison
with classical methods under realistic conditions, with few
exceptions (Zhang et al., 2018). To summarize the
contributions of our work, we complement existing
research by providing a broad and comprehensive
benchmark imputation method with respect to the
following dimensions:

1) Number and heterogeneity of datasets:
We use 69 datasets with numeric and categorical columns

2) Varying downstream tasks:
We use 21 regression, 31 binary classification, and 17
multiclass classification tasks

3) Realistic missingness patterns and the amount of missing
values:
We use MCAR, MAR, and MNAR missingness patterns and
1%, 10%, 30%, and 50% missing values

4) Imputation methods and optimized hyperparameters:
We use six imputation methods that range from simple
baselines to modern deep generative models

5) Evaluation on imputation performance and impact on
downstream task performance:
We systematically compare the imputation methods based
on their imputation performance and how they impact the
performance of a downstream model

6) Training on complete and incomplete data:
We simulate and compare the performance when
imputation models can learn from complete and
incomplete data

3 METHODS

One of the main goals of this work is to provide a
comprehensive evaluation of missing value imputation
methods under realistic conditions. In particular, we focus
on two aspects: 1) a broad suite of real-world datasets and
tasks and 2) realistic missingness patterns. The following
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sections describe the datasets and missingness patterns we
considered and the data preprocessing steps. Then follows a
detailed description of the compared imputation methods,
the used hyperparameter optimization strategies, and metrics
for evaluation.

3.1 Datasets
We focus on a comprehensive evaluation with several
numeric datasets and tasks (regression, binary
classification, and multiclass classification). The OpenML
database (Vanschoren et al., 2013) contains thousands of
datasets and provides an API. The Python package scikit-
learn (Pedregosa et al., 2011) can use this API to download
datasets and create well-formatted DataFrames that encode
the data properly.

We filter available datasets as follows. To calculate the
imputation performance, we need ground truth datasets
without missing values. Moreover, especially deep learning
models need sufficient data to learn their task properly.
However, because we plan to run many experiments, the
datasets must not be too big to keep training times feasible.
For this reason, we choose datasets without missing values that
contain 5 to 25 features and 3.000 to 100.000 observations. We

then removed duplicated, corrupted, and Sparse ARFF2

formatted datasets.
The resulting 69 datasets are composed of 21 regression, 31

binary classification, and 17 multiclass classification datasets. The
supplementary material contains a detailed list of all datasets and

TABLE 1 | An overview of related benchmarks. In contrast to our benchmark, all other studies focus on specific aspects such as downstream tasks or missingness
conditions. Most importantly, no paper systematically compares imputation methods trained on complete and incomplete datasets. Abbreviations: the symbol # stands
for the number, Bmeans baselines, Impmeans imputation quality, Downmeans impact on the downstream task, Compmeans complete data, Incompmeans incomplete
data.

Study # Datasets/tasks # B Missingness Evaluation Training on

Pattern Fraction Imp Down Comp Incomp

Poulos and Valle (2018) 2 binary classification 6 MCAR MAR 0%, 10%, 20%, 30%, 40% No Yes Unclear
Jadhav et al. (2019) 5 datasets 7 Unclear 10%, 20%, 30%, 40%, 50% Yes No Unclear
Woznica and Biecek (2020) 13 binary classification 7 Uncleara 1%– ∼ 33% No Yes No Yes
Zhang et al. (2018) 10 classification

3 regression
11 MNAR 25%, 50%, 75% Yes Yesb Unclear

Bertsimas et al. (2017) 84 datasets (classification and regression) 5 MCAR MNAR 10%, 20%, 30%, 40%, 50% Yes Yesb Unclear
Ours 21 regression 6 MCAR MAR MNAR 1%, 10%, 30%, 50% Yes Yes Yes Yes

31 binary classification
17 multiclass classification

aAuthors use incomplete datasets and, therefore, do not know the missingness pattern
bFor a subset of the experiments, i. e, not systematical.

TABLE 2 | Applying the MCAR condition to column height discards five out of ten
values independent of the height values.

Height HeightMCAR

179.0 ?
192.0 ?
189.0 189.0
156.0 156.0
175.0 ?
170.0 170.0
181.0 ?
197.0 ?
156.0 156.0
160.0 160.0

TABLE 3 | In the MAR condition, height values are discarded dependent on values
in another column, here gender. All discarded height values correspond to
rows in which gender was male.

Height Gender HeightMAR

200.0 M ?
191.0 M ?
198.0 F 198.0
155.0 M ?
206.0 M ?
152.0 F 152.0
175.0 F 175.0
159.0 M ?
153.0 F 153.0
209.0 M 209.0

TABLE 4 | In the MNAR condition, height values are discarded dependent on the
actual height values. All discarded values correspond to small height values.

Height HeightMNAR

154.0 ?
181.0 181.0
207.0 207.0
194.0 194.0
153.0 ?
156.0 ?
198.0 198.0
185.0 185.0
155.0 ?
164.0 ?

2Attribute-relation file format.
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further information, such as OpenML ID, name, and the number
of observations and features.

3.2 Missingness Patterns
Most research on missing value imputation considers three
different types of missingness patterns:

• Missing completely at random (MCAR, see Table 2):
Values are discarded independently of any other values

• Missing at random (MAR, see Table 3):
Values in column c are discarded depending on values in
another column k≠ c

• Missing not at random (MNAR, see Table 4)
Values in column c are discarded depending on their
value in c

The missingness pattern most often used in the literature on
missing value imputation is MCAR. Here, the missing values are
chosen independently at random. Usually, the implementations
of this condition draw a random number from a uniform
distribution and discard a value if that random number was
below the desired missingness ratio. Few studies report results on
the more challenging conditions MAR and MNAR. We here aim
for realistic modeling of these missingness patterns inspired by
observations in large-scale real-world datasets as investigated in
the work of Biessmann et al. (2018). We use an implementation
proposed in the work of Schelter et al. (2020) and Schelter et al.
(2021), which selects two random percentiles of the values in a
column, one for the lower and the other for the upper bound of
the value range considered. In the MAR condition, we discard
values if values in a random other column fall in that percentile.
In the MNAR condition, we discard values in a column if the
values themselves fall in that random percentile range.

3.3 Data Preprocessing
Data preprocessing is often an essential part of ML pipelines to
achieve good results (Sculley et al., 2015). In our experiments, we
apply the following three preprocessing steps for all the
imputation methods:

• Encode categorical columns:
Categories are transformed into a numerical representation,
which is defined on the training set and equally applied to
the test set

• Replace missing values:
To avoid the imputation model from failing

• Normalize the data:
The columns are rescaled to the same range, which is
defined on the training set and equally applied to the test set

However, the concrete techniques for discriminative
imputation, as described in Section 3.4.1, Section 3.4.2,
Section 3.4.3, and Section 3.4.4, and generative approaches,
as described in Section 3.4.5, are different.

For discriminative imputation approaches, we substitute
missing values with their column-wise mean/mode value, one-
hot encode categorical columns, and normalize the data to zero

mean and unit variance. For generative imputation
approaches, we need to preserve the number of columns.
For this reason, we encode the categories of categorical
columns as values from 0 to n − 1, where n is the number
of categories. Then, the missing values are replaced with
random uniform noise from 0 to 0.01, and finally, the data
are min–max scaled ranging from 0 to 1.

3.4 Imputation Methods
In this section, we describe our six different imputationmethods. The
overall goal of an imputation method is to train a model on a dataset
X ∈ Rn×d � [x1, x2, . . . , xi−1, xi+1, . . . , xd], where d is the number of
features, n is the number of observations, and xi denotes the to-be-
imputed column. To abstract crucial steps such as preprocessing the
data (see Section 3.3) and cross validating the imputation method’s
hyperparameters (see Section 3.5), we define a framework
implemented by all of the following imputation approaches.

3.4.1 Mean/Mode Imputation
As a simple imputation baseline, we use the column-wise mean
for numerical or mode, i.e., the most frequent value, for
categorical columns to fill missing values.

3.4.2 K-NN Imputation
A popular ML imputation baseline is k-NN imputation, also
known as Hot-Deck imputation (Batista and Monard, 2003). For
our implementation thereof, we use scikit-learn’s
KNeighborsClassifier for categorical to-be-imputed columns
and KNeighborsRegressor for numerical columns, respectively.

3.4.3 Random Forest Imputation
Similarl to the k-NN imputation approach, as described in
Section 3.4.2, we implement the random forest imputation
method using scikit-learn’s RandomForestClassifier and
RandomForestRegressor.

3.4.4 Discriminative Deep Learning Imputation
In recent years, the popularity of deep-learning–based models
has increased substantially. Consequently, also the application
of deep learning methods for imputation has become more
popular. A query on Google Scholar for deep learning
imputation shows that the number of publications increased
from 2,110 publications in 2010 to 10,100 publications in 2020,
an increase of over 470%, while the number of publications
found for the term imputation alone actually slightly decreased
from 41,700 in 2010 to 40,700 in 2020. For example,
Biessmann et al. (2018) show that simple deep learning
models can achieve good imputation results. To represent a
range of possible DL-based imputation models, we
decide to optimize the model’s architecture. For this reason,
we use the AutoML3 library autokeras (Jin et al., 2019) to
implement the discriminative deep learning imputation
method. For categorical columns, we use autokeras’

3“Automated machine learning (AutoML) (. . .) automatically set [the model’s]
hyperparameters to optimize performance,” Hutter and Frank (2019).
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StructuredDataClassifier and for numerical columns
StructuredDataRegressor. Both the classes take care of
properly encoding the data themselves and optimizing the
model’s architecture and hyperparameters. We use
max trials � 50, which means autokeras tries up to 50
different model architecture and hyperparameter
combinations, and epochs � 50, such that each model is
trained for a maximum of 50 epochs (autokeras uses early
stopping by default).

3.4.5 Generative Deep Learning Imputation
All of the abovementioned approaches essentially follow the
ideas known in the statistics literature as fully conditional
specification (FCS) (van Buuren, 2018): a discriminative
model is trained on all but one column as features and the
remaining column as the target variable. A well-known FCS
method is multiple imputation with chained equations (MICE)
(Little and Rubin, 2002). FCS has the advantage to be
applicable to any supervised learning method, but it has the
decisive disadvantage that, for each to-be-imputed column, a
new model has to be trained. Generative approaches are
different in that they train just one model for an entire
table. All matrix-factorization–based approaches, such as
those in the work of Troyanskaya et al. (2001); Koren et al.
(2009); Mazumder et al. (2010), can be thought of as examples
of generative models for imputation. We do not consider those
linear generative models here as they have been shown to be
outperformed by the mentioned methods and focus on deep
learning variants of generative models only.

Generative deep learning methods can be broadly categorized
into two classes: variational autoencoders (VAEs) (Kingma and
Welling, 2014)4 and generative adversarial networks (GANs)
(Goodfellow et al., 2014). In the following, we shortly
highlight some representative imputation methods based on
either of these two and describe the implementation used in
our experiments.

3.4.5.1 Variational Autoencoder Imputation
VAEs learn to encode their input into a distribution over the
latent space and decode by sampling from this distribution
(Kingma and Welling, 2014). Imputation methods based on
this type of generative model include those in the work of
Nazábal et al. (2020); Qiu et al. (2020); and Ma et al. (2020).
Rather than comparing all the existing implementations, we
focus on the original VAE imputation method for the sake of
comparability with other approaches. To find the best model
architecture, i.e., the number of hidden layers and their sizes,
we follow the approach proposed by Camino et al. (2019). We
optimized using zero, one, or two hidden layer(s) for the
encoder and decoder and fixed their sizes relative to the
input dimension, i.e., the table’s number of columns. If
existing, the encoder’s first hidden layer has 50% of the
input layer’s neurons and the second layer 30%. The

decoder’s sizes are vice versa for upsampling the
information to the same size as the input data. The latent
space is also fixed to 20% of the input dimension. For training,
we use Adam optimizer with default hyperparameters, batch
size of 64, and early stopping within 50 epochs.

3.4.5.2 Generative Adversarial Network Imputation
GANs consist of two parts—a generator and a discriminator
(Goodfellow et al., 2014). In an adversarial process, the
generator learns to generate samples that are as close as
possible to the data distribution, and the discriminator learns
to distinguish whether an example is true or generated.
Imputation approaches based on GANs include those in the
work of Yoon et al. (2018); Shang et al. (2017); and Li et al.
(2019). Here, we employ one of the most popular approaches of
GAN-based imputation, Generative Adversarial Imputation
Nets (GAIN) (Yoon et al., 2018). GAIN adapts the original
GAN architecture as follows. The generator’s input is the
concatenation of the input data and a binary matrix that
represents the missing values. The discriminator learns to
reconstruct the mask matrix. Its input is the concatenation of
the generator’s output and a hint matrix, which reveals partial
information about the missingness of the original data. The
computation of the hint matrix incorporates the introduced
hyperparameter hint rate. A second hyperparameter α that
GAIN introduces helps to balance the generator’s
performance for observed and missing values. For training,
we use Adam optimizer with default hyperparameters except
for the learning rate for the generator and the discriminator,
batch size of 64, and early stopping within 50 epochs.

3.5 Hyperparameter Optimization
Optimizing and cross validating hyperparameters are crucial to
gain insights into a model’s performance, robustness, and
training time. Therefore, we choose for each imputation
model the, as we find, most important hyperparameters and
optimize them using cross-validated grid-search. For the k-NN
and random forest imputation methods, we use 5-fold cross
validation, whereas we only 3-fold cross validate VAE and
GAIN to reduce the overall training time. Table 5 gives an
overview of all the imputation approaches and their
hyperparameters we optimize, and the number of
combinations. We do not define hyperparameter grids for
mean/mode and DL imputation, as the former is
parameterless and the latter is optimized by autokeras.

3.6 Evaluation Metrics
To evaluate our experiments, we use two metrics: root mean
square error (RMSE) andmacro F1-score. The RMSE is defined as

RMSE �

�������������
1
N

∑N
i�0

(yi − ŷi)2

√√
, (1)

where N is the number of observations, yi is the observed values,
and ŷi is the predicted values. The macro F1-score is defined as
the mean of class-wise F1-scores:

4We focus on probabilistic autoencoders here as there are more imputation
methods available for VAEs.
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macro F1 � 1
C
∑C
i�0

F1i, (2)

where i is the class index, C is the number of classes, and the
definition of F1 is

F1 � TP
TP + 1

2 (FP + FN), (3)

where TP is the number of true positives, FP is the number of false
positives, and FN is the number of false negatives.

Imputing categorical columns can be seen as a
classification task. Accordingly, we measure performance in
this case and for downstream classification tasks by the
macro F1-score. In the following, we use the terms F1-score
and F1 synonymously formacro F1-score. For regression tasks
and imputing numerical columns, we use the RMSE. Since F1
is a score measure, larger values imply better performance. On
the other hand, RMSE is an error measure: a smaller value
indicates better performance.

4 IMPLEMENTATION AND EXPERIMENTS

In this section, we describe our benchmark suite in detail and its
implementation.

As described in Section 3.4, we define a framework that
provides for each of the six implemented imputation
approaches a common API with the methods fit and
transform. Fit trains the imputation model on given data
while cross-validating a set of hyperparameters, and transform
allows imputing missing values of the to-be-imputed column the
imputation model is trained on. For our implementation, we use
tensorflow version 2.4.1, scikit-learn version 0.24.1, and autokeras
version 1.0.12.

The Python package jenga5 (Schelter et al., 2021) provides two
features we use to implement our experiments. First, it

implements the mechanisms to discard values for the
missingness patterns MCAR, MAR, and MNAR, as
described in Section 3.2. Second, it provides a wrapper for
OpenML datasets, creates an 80/20 training-test split, and can
automatically train a baseline model for the downstream task
defined by the dataset. We use the default task settings of jenga
in which scikit-learn’s SGDClassifier is used for classification
and SGDRegressor for regression tasks. As preprocessing
steps, it first replaces missing values with a constant, and
second, one-hot encodes categorical columns and normalizes
numerical columns to zero mean and unit variance. Finally, to
train a robust model, it 5-fold cross validates the
hyperparameters loss, penalty, and alpha using grid search.
Jenga reports the baseline model’s performance (F1 for
classification, RMSE for regression) on the test set.

4.1 Experimental Settings
Our experimental settings are listed in Table 6. Each experiment
is executed three times, and the average performance metrics are
reported.

For each of the datasets, we sample one to-be-imputed column
upfront, which remains static throughout our experiments.

We split the experiments into four parts. In Experiment 1, we
compare imputation approaches with respect to their imputation
quality (Section 4.1.1), and in Experiment 2, we compare
imputation methods with respect to the impact on
downstream tasks (Section 4.1.2). Both experiments are
repeated in two application scenarios: Scenario 1 (with
complete training data, see Section 4.1.3) and Scenario 2 (with
incomplete training data, see Section 4.1.4).

TABLE 5 | An overview of all imputation methods and their hyperparameters we optimized.Mean/mode imputation does not have any hyperparameters, and Discriminative
DL is optimized using autokeras, which is why we do not explicitly define a hyperparameter grid.

Imputation method Hyperparameters Grid size

Name Values

Mean/mode — — —

k-NN n neighbors (1, 3, 5) 3
Random forest n estimators (10, 50, 100) 3

Discriminative DLa — — —

VAE n hidden layers (0, 1, 2) 3

GAIN alpha (1, 10) 16
hint rate (0.7, 0.9) —

generator learning rate (0.0001, 0.0005) —

discriminator learning rate (0.00001, 0.00005) —

aOptimized using autokeras, see Section 3.4.4.

TABLE 6 | Overview of our experimental settings. We focus on covering an
extensive range of the dimensions described in Section 2. In total, there are
4, 968 experiments, which we repeat three times to report the mean imputation/
downstream score.

Parameter Values

Datasets 69 (see Supplementary Material)
Imputation methods Mean/mode, k-NN, random forest, DL, GAIN, VAE
Missingness patterns MCAR, MAR, MNAR
Missingness fractions 1%, 10%, 30%,50%

5Software package “to study the effects of common data corruptions (e.g., missing
values and broken character encodings) on the prediction quality of ML models.”
Source: https://github.com/schelterlabs/jenga
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4.1.1 Experiment 1: Imputation Quality
With this experiment, we aim to reveal how accurately the
imputation methods can impute the original values. With the
help of jenga, we spread the desired number of missing values
across all the columns of the test set. For a certain missingness
pattern and fraction, e.g., 30% MAR, we introduce 30%

N missing
values of this pattern to each of the N columns. The evaluation of
the imputation quality is then performed using the to-be-imputed
column’s discarded values as ground truth and the imputation
model’s predictions. If the to-be-imputed column is categorical,
we report the F1-score, and for numerical columns, the RMSE.

Since this work focuses on point estimates of imputed values,
the assessment of the inherent uncertainty of imputed values is
beyond the scope of this evaluation. We are aware of this
limitation and use a second experiment to avoid relying on
these single-value summaries. Explanations and other
directions to overcome those limitations are, e.g., provided by
Wang et al. (2021).

4.1.2 Experiment 2: Impact on the Downstream Task
In Experiment 2, we evaluate the impact of the different
imputation approaches on numerous downstream ML tasks.
For discriminative models, it is necessary to train one
imputation model for each column with missing values. This
fact, combined with our large number of experimental conditions
(see Table 6), results in vast computational costs. To reduce
those, while covering all relevant experimental conditions, we
decided to discard values only in the test sets’ to-be-imputed
column.

To summarize, the entire experimental procedure is as follows:

1) We train the baseline model of the downstream ML task on
the training set and report its baseline score (F1 for
classification and RMSE for regression tasks) on the test set

2) After discarding values in the to-be-imputed column, we
again use the trained baseline model and calculate its score
on the incomplete test set, hence the name incomplete

3) We then impute the missing values of the test set and, once
more, using the trained baseline model, calculate the
imputed score

4) Finally, we report the impact on the downstream task’s
performance as the percent change of the imputation over
the incomplete data relative to the baseline performance on
fully observed test data:

impact on downstream task � imputed − incomplete
baseline

(4)

4.1.3 Scenario 1: Training on Complete Data
ML researchers commonly use complete (or fully observed) data
to train, tune, and validate their ML applications. This is a
reasonable assumption as the quality of the training data can
be controlled better than that of the test data when the model is
deployed in production. For instance, one can use crowdsourced
tasks to collect all necessary features in the training data or use
sampling schemes that ensure complete and representative

training data. In this scenario, one can easily train an
imputation model on complete data and use it to impute
missing values in the test data before it is fed into the
downstream ML model. We use Scenario 1 to simulate such
situations and run both experiments, as described in Section
4.1.1 and Section 4.1.2.

4.1.4 Scenario 2: Training on Incomplete
Another common scenario is that not only the test data but also
the training data have missing values. Thus, the imputation and
downstream ML model has to be trained on incomplete training
data. Also, in this scenario, we should expect missing values in the
test data, which have to be imputed before applying the
downstream ML model. To evaluate this application scenario,
we adapt Experiment 1 and Experiment 2 slightly.

We first introduce missing values in the training and test set
and then train the baseline and imputation models based on these
incomplete data. The calculation of the imputation quality
(Experiment 1, Section 4.1.1) remains the same. However, to
calculate the impact on the downstream task, we lack the
availability of the baseline score on complete data. Therefore,
we adapt Eq. 4 by replacing the baseline denominator with
incomplete. That means, in this scenario, we report the percent
change of the imputation over the incomplete data relative to the
downstream task performance on incomplete data:

impact on downstream task � imputed − incomplete
incomplete

. (5)

5 RESULTS

In this section, we describe and visualize the results of our
experiments. For the visualization, we choose to use box plots
for all four experiments/scenarios. These allow us to get a decent
impression of the distribution of the results based on quantiles. In
contrast, the confidence bands of line charts would overlap too
much to derive meaningful interpretations. The vertical split
represents the increasing difficulty for the missingness
patterns: MCAR, MAR, and MNAR. To show different effects
of imputing categorical or numerical columns, we further split the
plots horizontally. Because we randomly sample on target column
for each dataset, there are about 13% categorical (9) and 87%
numerical (60) columns. Respectively, for the second experiment,
the horizontal split presents classification and regression
downstream tasks, which are also imbalanced: 48 classification
(∼ 70%) and 21 regression tasks (∼ 30%).

5.1 Experiment 1: Imputation Quality
In this experiment, we evaluate the imputation performance of
each method when training on complete data. As described
above, our goal was to provide a broad overview of the
imputation methods’ performance on various datasets. Using
randomly sampled to-be-imputed columns on heterogeneous
data leads to a wide range of values for their evaluation metric
(F1/RMSE), making it difficult to compare. To solve this problem,
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we split the results into categorical and numerical imputations
and compute the rank for each imputation method,
missingness pattern, and fraction combination separately.
Since we use six imputation methods, there are six ranks,
where rank 1 is the best and rank 6 the worst. If two or more
methods perform equally, we assign the same rank.
Imputation methods that failed to train the model get rank
6. For each experimental setting and every dataset, we have
ordered ranks for the imputation methods. This allows us to
interpret the results relative to each other. For example, if one
imputation method ranks best, i.e., rank 1, for all datasets, we
know that all other imputation methods have at least rank 2.

5.1.1 Scenario 1: Training on Complete Data
Figure 1 presents the imputation results when training on
complete data. In about 33% of these results, GAIN failed
during training and got assigned the worst rank six.
Investigating the errors reveals that GAIN’s discriminator
loss gets NaN at some point, leading to failures on further
calculations and a failing training process. This depends
heavily on the discriminator’s learning rate and the dataset.
GAN-based models are generally known as hard to train,
which is why improvements for training GANs are introduced
to make their training process more robust, e.g., the work of
Salimans et al. (2016); Heusel et al. (2017); and Miyato et al.
(2018). However, optimizing the hyperparameters for all
datasets is out of the scope of this article. Therefore, we
decide to define the hyperparameter grids once and
incorporate the imputation methods’ robustness regarding
their hyperparameters into our evaluation.

When imputing categorical columns, there is no clear best
method. However, in many settings, the discriminative DL
approach achieves in 75% of the cases at least rank three or
better. Very similar but slightly worse results are shown by the
random forest imputation method. For MCAR with 50% missing
values and MAR with 10% to 50% missingness, the k-NN
imputation approach performs well and gets for 75% of the
cases at least rank three or better. VAE achieves in 50% of the
cases a rank between two and four. GAIN shows in most settings
consistently the worst performance: rank four or worse in 75% of
the cases. Interestingly, mean/mode imputation scores better
rank for the more complex settings with MNAR missingness
pattern.

When imputing numerical columns, the differences are more
pronounced. Random forest is the only method that achieves one
of the first three ranks in 75% of the cases throughout all the
experimental conditions. Also, k-NN shows good results, ranking
second or third in most settings in 50% of the cases. Very similar
results are achieved by the discriminative DL method that tends
to lose performance from MAR with 30% missingness to MNAR
with 50% missing values. Again VAE ranges most of the time
between ranks three and five, similar to mean/mode imputation,
and GAIN gets the worst ranks five and six.

To summarize, simple imputation methods, such as k-NN and
random forest, often perform best, closely followed by the
discriminative DL approach. However, for imputing
categorical columns with MNAR missing values, mean/mode
imputation often performs well, especially for high fractions of
missing values. The generative approaches get middle ranks
(VAE) or range on the worst ranks (GAIN).

FIGURE 1 | Imputation ranks of the imputation methods trained on complete data. Ranks are computed for each experimental condition characterized by the
dataset, missingness pattern, and missingness ratio. Since we compare six imputation methods, the possible imputation ranks range between 1 and 6. In most
conditions, random forest, k-NN, and discriminative DL perform best. Generative deep learningmethods tend to performworst. In the most challengingMNAR condition,
mean/mode imputation achieves competitive results.
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5.1.2 Scenario 2: Training on Incomplete Data
Figure 2 shows the imputation performance in Scenario 2,
i.e., when training on incomplete data. Imputing categorical
columns with increasing difficulty, the ranks of mean/mode
imputation improve. From MCAR 30% to MNAR 50%, k-NN
is in 75% of the cases on at least the third rank or better, and
often, it ranges on the first and second rank. For MNAR, its
performance degrades gradually in favor of mean/mode that
shows surprisingly good results, especially for the most
challenging settings (MNAR with 30% and 50% missing
values) where it outperforms others in at least 75% of the
cases. Random forest has very high variance, but on most
missingness fractions with MCAR pattern, it ranks in 50% of
the cases on rank two or better. For MNAR, its rank improves
with higher missingness fractions, whereas this trend reverses
for MAR. In most cases, the generative methods rank worst
(GAIN) and on the middle ranks (VAE). However, with high
missingness and when missing values are MNAR, they can
perform better.

Similar to the fully observed training case (Section 5.1.1),
imputation on numerical columns yields a clearer ranking
than for categorical missing values. The imputation methods
k-NN and random forest rank best with a tendency of random
forest to outperform k-NN, where random forest’s variance is
higher. The discriminative DL approach yields a very similar
performance to the k-NN for the MCAR and MAR settings. In

the more challenging MNAR setting, it ranks slightly worse.
For MCAR, mean/mode imputation ranks in almost all
settings in 50% of the cases between ranks four and five
and for MAR and MNAR, between ranks three and five.
Again the generative methods rank in almost all settings in
75% of the cases worse than rank four, where VAE seldom
ranks worst.

Overall, Scenario 1 (Figure 1) and Scenario 2 (Figure 2) results
for numerical columns are very similar. GAIN has become better
in Scenario 2, although it still ranks worst. For categorical
columns, generally, the ranks show higher variance. Most
imputation methods worsen when the experimental settings’
difficulty is higher, especially for MNAR, except for mean/
mode, which ranks better for MNAR. This effect is even
explicit when training on incomplete data. Generally, using
methods such as k-NN or random forest achieves best results
in most settings and cases.

5.2 Experiment 2: Impact on the
Downstream Task
In this experiment, we evaluate the imputation method’s impact
on the downstream performance in two scenarios: the imputation
model was trained on complete and incomplete data. As
described in Section 4.1.2, this time, we discard only values in
the dataset’s randomly sampled target column.

FIGURE 2 | Imputation ranks of the imputation methods trained on incomplete data. Ranks are computed for each experimental condition characterized by the
dataset, missingness pattern, and missingness ratio. Since we compare six imputation methods, the possible imputation ranks range between 1 and 6. Similar to the
training on fully observed data random forest, k-NN and discriminative DL perform better than generative deep learning methods in most settings. In the MNAR
conditions, the imputation quality of all the imputation approaches degrades in favor of mean/mode that outperforms the other for 30% and 50% missingness.
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5.2.1 Scenario 1: Training on Complete Data
Since training GAIN failed in about 33% of the experiments (see
Section 5.1.1), we exclude those from this evaluation. Figure 3
visualizes howmuch the predictive performance of a downstream
ML model improves compared to incomplete test data and
normalized by the downstream performance obtained on fully
observed test data (Eq. 4). This metric is labeled Improvement and
represented on the plots’ y-axis.

In all cases, using imputation approaches increases the
downstream performance in 75% of the cases. Not surprisingly,
independent of the downstream task and the missingness pattern,
the more the missing values exist, the better the potential
improvement, shown by the method’s increasing median and
75% quantile.

For regression tasks, all imputation methods on all settings
degrade the performance in less than 25% of the cases.
Furthermore, they hold great potential for improving the
performance in the range of ∼ 10% and ∼ 15% for 30% and
50%MCAR orMARmissing values. However, there is a tendency
from MCAR to MNAR that the potential performance degrades.
In most settings, random forest’s median improvement is the
best, followed by k-NN and discriminative DL. This effect also
holds for their potential improvement (75% quantile), except for
50% MNAR, where it is about five percentage points higher than
the others. In most settings, VAE and mean/mode increase the
downstream performance very similar but worse than the other
three, and GAIN is always the worst.

For classification tasks, few imputation methods in some
settings show degrading performance in slightly more than
25% of the cases. However, their median imputation
performance is always positive and generally higher than for
regression tasks. In general, the potential improvements of the
methods are in all settings roughly the same. As for regression
tasks, random forest, followed by k-NN and discriminate DL,
hold in 50% of the cases the best performance. Unfortunately, this
degrades from MCAR to MNAR. Surprisingly, this time, GAIN
holds much more potential improvement and performs in many
settings better than VAE, especially when the missingness
fraction is high.

All in all, independent of the experimental settings, random
forest performs in 50% of the cases best, closely followed by k-NN
and discriminative DL. In general, when using imputation, the
expected improvement is for classification higher than for
regression tasks. This effect also holds for the missingness
fractions: the higher the missingness fraction, the higher the
potential improvements. Only in less than 25% of all cases, we
found degraded downstream performance.

5.2.2 Scenario 2: Training on Incomplete Data
Figure 4 illustrates the impact imputation has on the downstream
task. We show howmany percent the predictive performance of a
downstream ML model improves compared to incomplete test
data. This metric is labeled Improvement and represented on the
plots’ y-axis. Here, the different scaling must be taken into

FIGURE 3 | Does imputation on incomplete test data improve predictive performance of a downstream ML model? We plot the improvement of the downstream
ML model after imputation with imputation models trained on fully observed data. The downstream performance is compared to the performance obtained on
incomplete test data, normalized by the ML model performance on fully observed test data. Overall, the classical ML methods and discriminative DL perform best
achieving relative improvements of up to 10% and more relative to fully observed test data.
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account, i.e., the relative improvements are considerably smaller
compared to the first scenario. One reason for this is the different
basis for calculating the relative values (see Sections 4.1.2 and
Sections 4.1.4).

The potential improvements when the imputation methods
are trained on incomplete data are marginal. In all settings,
there are hardly any improvements greater than 1%. However,
with 30% missing values or fewer, most cases have a positive
impact.

For classification tasks with up to 30% MCAR or MAR
missingness, there, for all imputation methods, but GAIN, are
mostly very small but positive improvements, where higher
missing fractions yield potentially higher improvements (75%
quantile). However, high missingness fractions shift the
improvements into the negative range, i.e., degrade the
performance. For MNAR only for 1% and 10% missing values,
we see mostly improvements, and for 30% or 50% missingness,
the downstream performance degrades in most cases.

For regression tasks, there are hardly any potential
improvements over 0.5%. On the other hand, there are also
much fewer cases where imputation potentially degrades the
performance. Outstanding is random forest, which yields in
most settings the highest performance and the generative
approaches that harm the performance when missingness is
30% or higher.

To summarize, for up to 30% missing values independent of
the missingness pattern or downstream tasks, imputation
increases the performance in most cases. Using random forest
holds the best chance in almost all settings to improve the
downstream performance.

5.3 Computational Complexity
Our results demonstrate that simpleMLmethods are often on par
with modern deep learning methods. An important question in
this context is how the various methods compare in terms of their
computational complexity: if methods yield similar predictive
performance, it is preferable to use those alternatives with the
least computational effort. To measure the training and inference
time, we use a subset of our experiments: all datasets, missingness
fractions, and imputation methods (shown in Table 6) with
MCAR pattern. We first train the imputation method on
complete data, then discard the values of the given
missingness fraction in the training set, and impute those
missing values. The wall-clock run time is measured in
seconds when calling our framework’s fit and transform
methods (see Section 4 for details), which means that the
training duration incorporates hyperparameter optimization
(see Section 3.5 for details).

Because training and inference time depends heavily on the
dataset’s size, directly averaging all experiments for the
imputation methods leads to very similar mean but extremely
high standard deviation values. For this reason, we first compute
the mean duration and the standard deviation relative to its mean
separately for training and inference for the imputation methods
on each dataset. Second, we average those values for each
imputation method and present them in Table 7. Using this
approach helps to average overall experiments and, at the same
time, gives indicators for the training and inference durations, as
well as their variance.

As expected, if the imputation model’s complexity increases,
their training duration increases too, most of the time by multiple

FIGURE 4 | Impact on the downstream task of the six imputation methods trained on incomplete data. In regression tasks, no considerable improvements are
achieved. In some cases, imputation worsened the downstream ML model. In classification tasks, in contrast, we observe slightly positive effects in some settings, but
negative effects predominate in the harder settings.
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factors. There are two exceptions: discriminative DL and VAE,
and an explanation for this could be their number of
hyperparameter combinations optimized during training. VAE
optimizes only three, GAIN 16 and discriminative DL 50
combinations, representing their training durations order.

Similarly, the inference time increases with the model’s
complexity. The differences are clear but not as high as for the
training durations. Higher inference standard deviations, e.g., for
k-NN and random forest (and discriminative DL), indicate that
the best hyperparameters found strongly vary with the
experimental settings and influence the model’s computational
complexity for inference. One reason for the discriminative DL’s
and GAIN’s high training standard deviations could be the usage
of early stopping and, at the same time, indicate that it is
important to try a huge number of hyperparameters to achieve
good results. For mean/mode, the high standard deviation is
likely an artifact of the very small training duration. Changes in
milliseconds for computations are common and represent a large
change relative to the mean/mode imputation’s mean duration.

To summarize, the increasing complexity of the imputation
methods is represented in their training and inference duration.
For training more complex models, this is supported by a higher
variance of training time, indicating the necessity to try a wide
range of hyperparameters. On the other hand, once found, the
hyperparameters for generative models influence the inference
time less than for k-NN or random forest, whose prediction times
depend heavily on the hyperparameters.

6 DISCUSSION

We investigated the performance of classical and modern
imputation approaches on a large number of heterogeneous
datasets under realistic conditions. In the following, we
highlight some of the key findings.

6.1 Simpler Imputation Methods Yield
Competitive Results
When evaluating imputation quality, our results demonstrate
that simple supervised learning methods achieve competitive
results and, in many cases, outperform modern generative

deep-learning–based approaches. In particular, in the MCAR
and MAR settings, we see in Figures 1, 2 that k-NN, random
forest, and the discriminative DL approach are, for at least 50%
of the cases, among the better ranks one, two, or three. Random
forest tends to achieve the best rank more often. This effect is
largely independent of whether the imputation methods are
trained on complete or incomplete data.

This finding is in line with the work of Poulos and Valle
(2018); Jadhav et al. (2019); and Bertsimas et al. (2017). In these
previous studies, the authors report that k-NN imputation is the
best choice in most situations. However, Jadhav et al. (2019) and
Bertsimas et al. (2017) did not incorporate a random forest
imputation method. Other comparisons show a slight
advantage of discriminative deep learning methods over
random forests (Biessmann et al., 2019), but these experiments
were conducted on a much smaller selection of datasets.

For categorical columns (see Figures 1, 2, upper row) in the
more challenging imputation settings MAR or MNAR with large
missingness fractions, the mean/mode imputation tends to
achieve better ranks. This effect can be attributed to the fact
that the sets of observed categorical values often have small
cardinality. Especially for skewed distributions, using the most
frequent value to substitute missing values is a good
approximation of the ground truth. If the training data
contains a large fraction of missing values, the underlying
dependencies exploited by learning algorithms are difficult to
capture. For this reason, mean/mode scores for higher MNAR
missing values in 75% of the cases are on rank two or better
(visualized in Figure 2). Poulos and Valle (2018) did not explicitly
calculate the ranks, but their plots show the same tendency.

Since GAIN failed in about 33% of settings when training data
were complete, this could be a reason why, in most cases, GAIN
achieves the worst ranks (see Figure 1). This is supported by the
fact that GAIN does not fail for settings with incomplete training
data and often shows better ranks (see Figure 2).

All in all, using random forest, discriminate DL, or k-NN is a
good choice in most experimental settings and promises the best
imputation quality. However, incorporating the model’s training
and inference time, presented in Table 7, shows that the
discriminative DL approach is substantially slower for training
and inference than the other two methods. This is because we
used the expensive default model optimization of AutoKeras.

TABLE 7 | Training and inference duration for each imputation method in seconds. We use the wall-clock run time to measure the durations for training, including
hyperparameter optimization and inference for all datasets with MCAR missingness pattern and all fractions shown in Table 6. Because training and inference durations
depend heavily on the dataset size, we first calculate the durations’mean and relative standard deviation for each imputation method on every dataset. Second, we average
those mean durations and relative standard deviations for the imputation methods and present them as Mean duration and Rel. SD separately for Training and Inference.

Imputation method Training Inference

Mean duration Relative standard deviation Mean duration Relative standard deviation

Mean/mode 0.005 0.550 0.029 0.171
k-NN 41.204 0.254 7.018 0.602
Random forest 226.077 0.119 24.048 0.236
Discriminative DL 6,275.019 0.405 440.389 0.211
VAE 71.095 0.099 11.215 0.085
GAIN 878.058 0.312 137.966 0.083
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Exploring fewer hyperparameters could decrease its imputation
performance drastically. The training duration’s high variance
indicates that trying a large number of hyperparameters is
necessary for good performance because early stopping would
finish the training if the model converges. k-NN’s standard
deviation for inference is in contrast to random forest’s very
high standard deviation. This is expected as the inference time
grows exponentially with the number of training data points. We
conclude that given the similar performance of k-NN and
random forests when the training dataset is large, random
forests (or similar methods) should be preferred over naive
k-NN implementations. Alternatively, one might use
appropriate speedups for the nearest-neighbor search, such as
kd-trees or approximate nearest-neighbor search.

To summarize, the best performing imputation approach is
random forest. It not only ranks best in most experimental
settings but also shows a good balance of training, including
optimizing hyperparameters and inference time that is not
influenced by the training set size. However, when coping with
datasets that miss 30% or more values of the pattern MNAR,
imputing categorical columns with their mode compares
favorably with more sophisticated imputation approaches.
Our results demonstrate that, especially in the challenging
scenarios where a large fraction of values is missing, there is a
high variance in the imputation performance metrics. This
shows that, in these experimental settings, we cannot
conclude that one method is consistently worse than
others. But all in all, our results suggest that high-capacity
deep learning models are not better than conventional
methods like random forests and generative models are not
consistently better than discriminative models.

6.2 Substantial Downstream Improvements
When the Imputation Method Was Trained
on Complete Data
Our results show that imputation can have a substantial
positive impact on predictive performance in downstream
ML tasks. We observe improvements in the downstream task
of 10–20% in more than 75% of our experiments. This holds
for most imputation methods; we did not observe a clear
advantage for an imputation method overall. Taking into
account the considerable differences in wall-clock run time,
our results indicate that also when choosing an imputation
method that is both fast and improves downstream predictive
performance random forests would be the preferred
imputation method.

The positive impact of imputation on downstream
performance is most pronounced when the imputation
methods were trained on fully observed data. When
imputation methods were trained on incomplete data, the
positive impact of imputing missing values in the test data was
substantially lower, sometimes even negative. While this might
seem a disadvantage, we emphasize that, in many application use
cases, we can ensure that the training data be fully observed, for
instance, by acquiring more data before training the imputation
and the downstream ML model.

6.3 Limitations
Because one of the main goals of this study is a comprehensive
comparison of imputation methods on a large number of datasets
and missingness conditions, we made some decisions that limit
our results.

First, we focus on point estimates of imputed values rather than
multiple imputations because it is 1) easier to handle in automated
pipelines and 2) can be considered a more relevant scenario in real-
world applications of imputation methods. Thus, we do not
consider the inherent uncertainty of the imputation process. We
decided to measure and compare the impact imputation methods
have on the downstream performance instead of using an
evaluation framework that explicitly evaluates the uncertainties,
e.g., proposed by Wang et al. (2021). However, comparing
imputation methods with respect to the calibration of their
uncertainty estimates is an important topic for future research
and could be conducted with the same experimental protocol that
we developed for our point estimate comparisons.

Second, the used datasets consist of a maximum of 25 features
and 100k observations. For this reason, we cannot conclude from
our experiments how the imputation methods perform on large-
scale datasets. Furthermore, our datasets only contain numerical or
categorical columns and no image- or text-based data, e.g., used in
other deep-learning–based imputation approaches (Biessmann et al.,
2018). However, in that work, the authors only considered text data
as an input field to an imputation method, not as a column that
could be imputed. Generally, most modern ML applications that
involve text data are based on rather sophisticated natural language
models. Combinations of such models with tabular data are an
important field of research (Yin et al., 2020) but beyond the scope of
most imputation research so far.

Third, to measure the imputation impact on the downstream
performance, we discarded and imputed values in only a single
column. Therefore, the impact depends heavily on the chosen
column’s importance (e.g., see the work of Schelter et al. (2021)).
Generally, the impact when using an imputation model could
vary when multiple columns are affected by missing values.

7 CONCLUSION

In this study, we developed an experimental protocol and
conducted a comprehensive benchmark for imputation
methods comparing classical and modern approaches on a
large number of datasets under realistic missingness conditions
with respect to the imputation quality and the impact on the
predictive performance of a downstream ML model. We also
evaluated how the results changed when the imputation and
downstream model were trained on incomplete data.

Our results can be summarized in two main findings. First, we
demonstrate that imputation helps to increase the downstream
predictive performance substantially regardless of the
missingness conditions. When training data are fully observed,
our results demonstrate that, in more than 75% of our
experiments, imputation leads to improvements in
downstream ML model predictive performance between 10%
and 20% for classification tasks and around 15% for regression
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tasks. We conclude that when training data are fully observed, an
imputation model should be trained along with the downstream
ML model to improve data quality problems in the data ingested
at inference time by a downstream ML component.

Second, we find that, in almost all experiments, random-
forest–based imputation achieves the best imputation quality
and the best improvements on the downstream predictive
performance. This finding is in line with previous imputation
benchmark research in more constrained experimental
conditions (see also Section 2). Yet, some aspects of these
results appear at odds with some recent work on deep
learning methods. While we are aware of the limitations of
our experiments (see also Section 6.3), we are convinced that
the experimental protocols developed in this study can help to test
imputation methods better and ultimately help to stress test these
methods under realistic conditions in large unified benchmarks
with heterogeneous datasets (Sculley et al., 2018; Bender et al.,
2021).
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