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Abstract

Feature selection (FS) can eliminate many redundant, irrelevant, and noisy features in high-

dimensional data to improve machine learning or data mining models’ prediction, classifica-

tion, and computational performance. We proposed an improved whale optimization algo-

rithm (IWOA) and improved k-nearest neighbors (IKNN) classifier approaches for feature

selection (IWOAIKFS). Firstly, WOA is improved by using chaotic elite reverse individual,

probability selection of skew distribution, nonlinear adjustment of control parameters and

position correction strategy to enhance the search performance of the algorithm for feature

subsets. Secondly, the sample similarity measurement criterion and weighted voting crite-

rion based on the simulated annealing algorithm to solve the weight matrix M are proposed

to improve the KNN classifier and improve the evaluation performance of the algorithm on

feature subsets. The experimental results show: IWOA not only has better optimization per-

formance when solving benchmark functions of different dimensions, but also when used

with IKNN for feature selection, IWOAIKFS has better classification and robustness.

1. Introduction

With the continuous development and progress of science and technology and its continuous

use in biomedicine, astronomy, agriculture, finance, and engineering, various forms of data

have shown exponential growth [1]. However, original datasets usually contain many redun-

dant, uncorrelated, and noisy features, making data mining very difficult [2]. Feature selection

(FS) refers to a method that selects the optimal feature subset from many original features and

restores all the features in the original datasets as much as possible with the smallest number of

features [3]. FS has become a key preprocessing step for machine learning and pattern recogni-

tion [4].

According to different evaluation methods, FS was roughly divided into 3 categories: wrap-

per, filter, and embedding [5]. The wrapper-based model combined the FS process with prede-

termined learning algorithms (e.g., classifiers) and used learning algorithms to evaluate each

feature subset. Its characteristic is that the solution accuracy is high, but the solution speed is

slow. The filter-based model evaluated and filtered candidate subsets through the intrinsic

attributes of the features without relying on any learning algorithm. Its characteristic is that
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the solution is fast, but it cannot reflect the relevance of various dimensions when extracting

feature subsets. The embedding-based model is a combination of wrapper and filter. The FS

mechanism is integrated into the training process of the learning algorithm and features are

automatically selected while training the model [6–9].

Searching for feature subsets is a key problem of FS [10]. The process can be regarded as a

combinatorial optimization problem to seek the optimal feature subset in a limited feature

space. This process can be searched and solved by exhaustive methods and heuristic methods.

However, exhaustive and heuristic methods need to traverse every dataset sample when per-

forming FS, the algorithm search space increases, resulting in increased algorithm time com-

plexity and high computational cost [11].

In order to improve the speed and efficiency of algorithm searching for feature subsets, a

class of meta-heuristic algorithms inspired by natural evolution has been proposed. Due to its

simple heuristic mechanism and strong global exploration ability, it has been widely used in

various fields. Therefore, researchers use meta-heuristic algorithm as a search strategy for fea-

ture subsets in FS, and a series of more meaningful research results have been achieved so far

[12–17]. For example: grey wolf optimizer (GWO) [18] was improved by Seth, JK, etc. for

binary gray wolf optimization algorithm for intrusion detection [19], and Two binary gray

wolf optimization algorithms proposed by Emary E et al. after improving GWO [20], Al-Tashi

Q et al. mixed GWO and PSO binary gray wolf algorithm [21]; Too J et al. improved binary

ASO algorithm based on S-shaped and V-shaped transfer functions [22] and quadratic binary

Harris hawk optimization (QBHHO) algorithm [23]; Kumar L et al. proposed a hybrid binary

particle swarm algorithm and sine cosine algorithm (HPSOSCA) using V-shaped transfer

function to change particle position [24]; Improved MBO for feature selection problems by

Alweshah M et al. [25]; Mafarja M and Mirjalili S improved WOA for feature selection prob-

lems [26] and so on. In addition, Remora optimization algorithm (ROA) [27], African vulture

optimization algorithm (AVOA) [28], Gorilla troops optimizer (GTO) [29], Wild horse opti-

mizer (WHO) [30], Binary chimp optimization algorithm (BChOA) [31], Arithmetic optimi-

zation algorithm (AOA) [32], Aquila optimizer (AO) [33] and other meta-heuristic algorithms

are also being explored for feature selection problems.

Among them, WOA is a new meta-heuristic algorithm inspired by the social behavior of

humpback whales by Mirjalili et al. [34] to simulate the hunting behavior of whales. Because of

its fast convergence speed, high accuracy, and few parameters when solving some optimization

problems, WOA is widely used in various engineering practices and FS. According to the dif-

ferent improvement mechanisms, the existing WOA-based FS methods are roughly divided

into three categories:

The first category is the classic WOA FS method based on binary variants. The classic

WOA method is transformed into a binary WOA algorithm through a sigmoid function or a

V-shaped function, and the optimal feature subset is searched for using the strong global

search ability of WOA, thereby improving the classification accuracy of the dataset. This kind

of method is applied in medical dataset [35, 36], breast cancer dataset [37], network intrusion

detection [38, 39], spam filtering [40], dimensionality reduction of high dimensional data [41,

42], etc.

The second category is the improved WOA algorithm that enhances the algorithm’s global

exploration and local development functions. The performance of WOA is enhanced by modi-

fying the parameters and introducing operators, and the efficiency of FS is improved. This

type of method usually enhances the exploration and development capabilities of WOA by

increasing the diversity of the initial population (Elite Opposition-Based Learning [43] and

Chaos strategy [44]), nonlinear correction of control parameters [26, 45, 46] and algorithm

location update [47–51] improve the algorithm’s search performance for feature subsets.
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The third category is the improved strategy of the cross-fusion of the WOA algorithm and

other algorithms. The optimization performance of WOA is enhanced by fusing the search

characteristics of different algorithms, thus improving the search efficiency of the optimal fea-

ture subset. For example, the fusion of different algorithms such as WOA and salp swarm algo-

rithm (SSA) [52], WOA and flower pollination algorithm (FPA) [53], WOA and GWO [54],

WOA and simulated annealing (SA) [16], WOA and GA [55] can improve the convergence

performance of the original algorithm effectively and achieve meaningful results in FS.

The evaluation of feature subsets is also a key issue of FS [10]. This process can be seen as a

binary classification problem to evaluate the optimal feature subset through the classifier. After

the meta-heuristic algorithm is used to search the feature subset, the k-nearest neighbors

(KNN) classifier and support vector machine (SVM) classifier are usually used to evaluate the

feature subset. The KNN classifier is the most used classifier when obtaining the best feature

subset on the UCI knowledge base. SVM classifiers are mainly used in different applications

such as medical diagnosis, pattern recognition, and image analysis [8, 17]. Studies have shown

that different classifiers have significant differences in the results of FS [56]. Improving the

KNN classifier and applying it to FS by fusing it with improved WOA is another motivation

for the work of this paper.

The above studies have done good work on the FS problem in different periods and differ-

ent fields. However, no optimization algorithm can completely solve all problems according to

NO-Free-Lunch (NFL) [57]. This is also the basis and motivation of the work of this article.

Therefore, for two key issues in FS: the search and evaluation of feature subsets. The main con-

tributions of this paper are as follows:

• An improved whale optimization algorithm (IWOA) is proposed based on chaotic reverse

elite individuals and skew distribution. IWOA and 8 meta-heuristic algorithms (ASO,

GWO, HHO, MFO, MVO, SSA, TSA, and WOA) were compared in two dimensions (30D

and 100D) of 8 benchmark functions, verifying that IWOA has good superior performance.

• An improved KNN classifier (IKNN) is proposed based on a weight matrix M and a

weighted classification strategy. The comparison of IKNN and 5 classifiers (KNN, Naive

Bayes, C4.5, SVM, and BP neural network) on 8 datasets have shown that IKNN has good

classification performance.

• A FS method based on IWOA and IKNN (IWOAIKFS) is proposed. As a wrapper-based

model, IWOAIKFS is an FS method that uses IWOA fusion IKNN to search and evaluate

feature subsets.

• IWOAIKFS was applied to evaluate 15 datasets. The results are compared with 15 datasets

evaluated with 6 FS methods based on meta-heuristic algorithms (ASO, GWO, HHO, SCA,

SSA, and WOA). The comparison has shown that IWOAIKFS has higher classification accu-

racy and stable performance than 6 FS methods.

The remaining paper is organized as follows: Section 2 is the standard WOA algorithm and

an improved whale optimization algorithm (IWOA). In Section 3, the standard KNN classifier

is discussed, and the improved KNN classification algorithm (IKNN) is discussed and pro-

posed. In Section 4, an IKNN FS method is discussed and proposed based on IWOA. In Sec-

tion 5, the experimental results of three experiments are discussed and analyzed. Section 5.3 is

the IWOA comparative experiment and discussion. Section 5.4 is the IKNN comparative

experiment and discussion. Section 5.5 is the IWOAIKFS comparative experiment and discus-

sion. In Section 6, the current work and possibly future research work are summarized.
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2. Improved whale optimization algorithm based on chaotic elite

reverse individual and skew distribution

2.1. WOA

The whale optimization algorithm is a meta-heuristic algorithm inspired by the social behavior

of humpback whales by Mirjalili et al. [34] to simulate whales searching for prey, surrounding

prey, and a spiral bubble net preying on prey. It is supposed that there are N whales in the pop-

ulation foraging in d dimensional space, the position of the ith whale is X!i.

2.1.1. Searching for prey. Before determining the approximate location of the prey whales

update the location of the group through random walks and location sharing mechanisms.

The process can be expressed as:

X!ðt þ 1Þ ¼ Xrand
��!

� A
!
� Drand
��!

ð1Þ

Drand
��!

¼ jC
!
� Xrand
��!
ðtÞ � X!ðtÞ ð2Þ

Where t represents the current number of iterations, X!ðt þ 1Þ represents the location of the

whale at the (t + 1)th time, Xrand
��!

represents the location of the random individual in the whale

group (initial group), Drand
��!

represents the distance between the current individual and the ran-

dom individual whale. Besides, A
!

and C
!

are the coefficient vector, which can be expressed as:

A
!
¼ 2a r!� a ð3Þ

C
!
¼ 2 r! ð4Þ

where r!2 ½0; 1�, a is the algorithm convergence factor, which decreases from 2 to 0 as the

iteration progresses, expressed as:

a ¼ 2 �
2� t
tmax

ð5Þ

where t represents the current number of iterations, tmax is the maximum iterations of the

algorithm. It can be seen from Eqs (1) (3) and (5) that when A
!
�
�
�

�
�
� > 1 the algorithm simulates

the process of whale searching for prey and explores the location of the optimal solution in the

solution space. As the algorithm continues to iterate,

�
�
�A
!
�
�
� decreases linearly with a, until

A
!
�
�
�

�
�
� � 1, the algorithm enters the stage of encircling the prey.

2.1.2. Approaching and encircling the prey. As the number of iterations increases, the

location of the prey is determined by the optimal whale in the whale group. Other whale indi-

viduals gradually approach their prey by shrinking and enclosing through position sharing.

This process can be expressed as:

X!ðt þ 1Þ ¼ X�
�!
ðtÞ � A

!
� D! ð6Þ

where X�
�!
ðtÞ represents the optimal solution position vector in the current whale population,

D!¼ jC
!
� X�
�!
ðtÞ � X!ðtÞj represents the distance between the optimal whale individual and

other individuals.
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2.1.3. Encircling and capturing prey. When a school of whales approaches their prey,

humpback whales’ prey on the prey through the spiral position update method. The spiral

position update method is expressed as:

X!ðt þ 1Þ ¼ D!0 � ebl � cosð2plÞ þ X�
�!

ð7Þ

where D!0 ¼
�
�
� X�
�!
ðtÞ � X!ðtÞ

�
�
� represents the current distance between the whale and its prey, b

is a constant defining the shape of the logarithmic spiral. l is a random number between [–1,1].

Assuming that the probability of a whale performing any of these behaviors is 50%, the whale

encircling and hunting behavior can be expressed as:

X!ðt þ 1Þ ¼
X�
�!
ðtÞ � A

!
� D!; p < 0:5

D!0 � ebl � cosð2plÞ þ X�
�!
ðtÞ; p � 0:5

ð8Þ

(

where p is a random number between [0, 1].

2.2. IWOA

In order to better improve the convergence speed and accuracy of WOA, WOA was improved

from 4 aspects: population initialization, probability selection, Parameter correction and posi-

tion update.

2.2.1. Population initialization based on chaotic reverse elite individuals. In the whale

optimization algorithm, the initial position of the whale group has great constraints on prey.

When the distance between the whale group and the prey is closer, the whale can prey on the

prey faster. Therefore, the location of the initial population of whales is important for solving

the optimal value of the algorithm. Chaos strategy [58] elite opposition-based learning [59] as

effective improvement strategies for population initialization are widely used in generating ini-

tialization populations of various meta-heuristic algorithms. However, using chaos strategy

alone or using elite opposition-based learning alone to generate the initial population of the

algorithm ignores the uniform distribution of the initial population in the solution space and

the retention of elite individuals. Therefore, this paper proposed a population initialization

strategy based on the chaotic reverse elite individuals by combining the Gaussian chaos strat-

egy and the Elite Opposition-Based Learning.

Answering the question: The more evenly distributed the initial population is in the solu-

tion space, the greater the probability that the algorithm finds the optimal value. Compared

with random search strategy, chaotic search is widely used in the generation of initial popula-

tion due to its randomness, ergodicity, non-repetition and other characteristics. However, dif-

ferent chaotic maps have different effects on the initial population of the algorithm. Therefore,

in this paper, through the analysis and comparison of Rand, Gauss map, Tent map and Cheby-

shev map, the chaotic map suitable for the whale optimization algorithm is selected. The initial

population and the original initial population generated by the three chaotic maps are shown

in Fig 1.

In Fig 1, Fig 1(a)–1(d) represent the original initial whale population, the initial whale pop-

ulation generated by Tent mapping, the initial whale population generated by Chebyshev map-

ping, and the initial whale population generated by Gauss Generated initial whale population.

As can be seen from Fig 1, from the point of view of the generation of the initial whale popula-

tion, the whale population generated by Gauss map is more evenly distributed in space, which

provides a better guarantee for the global optimization of the algorithm.
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Gauss/mouse map:

xkþ1 ¼

1; xk ¼ 0

1

modðxk; 1Þ
; otherwise

ð9Þ

8
<

:

Where xk is the kth chaos number, k is the number of iterations, x 2 (0, 1).

Elite Opposition-Based Learning [59, 60]:

Definition 1 (opposite solution) supposes that a feasible solution of the current population

in the d dimensional search space is X!¼ ðx1; x2; � � � ; xdÞ (xj 2 [aj, bj]), then its opposite solu-

tion is X! ¼ ðx
1
; x

2
; � � � ; xdÞ, where xj ¼ rðaj þ bjÞ � xj, r 2 rand[0, 1].

Definition 2 (elite opposite solution) supposes that extreme points of ordinary individuals

in the current population by the elite individuals in the population, that is

XE
i;j ¼ XE

i;1;X
E
i;2; � � � ;X

E
i;d

� �
ð10Þ

Where i = 1, 2, � � �, N, j = 1, 2, � � �, d, XE
i;j 2 ½lbj; ubj�, lbj ¼ minðX!i;jÞ, ubj ¼ maxðX!i;jÞ, lbj and

ubj are the lower and upper bounds of the dynamic boundary, and the opposite solutions

XE
i;j ¼ XE

i;1 ;XE
i;2 ; � � � ;XE

i;d

� �
can be defined as:

XE
i;j ¼ r � ðlbj þ ubjÞ � XE

i;j ð11Þ

Where r 2 rand[0, 1]. If XE
i;j exceeds the boundary, then set

XE
i;j ¼ randðlbj þ ubjÞ ð12Þ

According to Gauss/mouse map and Elite Opposition-Based Learning, the initialization

method of chaos reverses the elite individual population proposed in this paper is as follows.

Algorithm 1. Chaotic elite reverse individual.
Input: N, d, lb = lbj,ub = ubj
1: Initialize the Positions1 with Gauss/mouse map (Eq 9)
2: Initialize the Positions2 with Elite Opposition-Based Learning
3: for1 i = 1:N
4: for2 j = 1:d
5: fitness1(i,j) = fobj(Positions1(i,j))

Fig 1. Initial population generated by 3 kinds of maps in 1000 iterations. (a) Rand, (b) Tent map, (c) Chebyshev map, (d) Gauss map.

https://doi.org/10.1371/journal.pone.0267041.g001
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6: fitness2(i,j) = fobj(Positions1(i,j))
7: if1 fitness1(i,j)<fitmess2(i,j)
8: Positions1(i,j) = Positions2(i,j)
9: end if1
10: if2 Positions1(i,j)<lb
11: Positions1(i,j) = rand()�(ub-lb)+lb
12: end if2
13: if3 Positions1(i,j)>ub
14: Positions1(i,j) = rand()�(ub-lb)+lb
15: end if3
16: end for2
17: end for1

18: Xrand
��!

= Positions1

Return: Xrand
��!

2.2.2. Probability selection strategy based on the skew distribution. WOA assumes that

the probability of a group of whales choosing to surround and prey is 50%, and the probability

p generated by each iteration of the algorithm obeys a uniformly distributed random number

between [0,1], which is inconsistent with the animal hunting guidelines in the actual nature. In

nature, when a predator finds a prey, the probability of surrounding and preying on the prey

changes accordingly with time. The probability of its generation does not obey a uniform

distribution.

In order to improve the global exploration ability and convergence accuracy of WOA, a

new probability generation method is proposed. This method divides the WOA iteration pro-

cess into three periods and then corrects the probabilities generated in each period.

1. Early iteration. When an individual whale finds prey, the remaining whales quickly move

close to the optimal individual through the position sharing mechanism. At this time, the

probability of surrounding the prey is greater than 0.5. Therefore, the probability of hunting

behavior in the early stage of the algorithm iteration follows a negative skew distribution of

0.8.

2. Mid iteration. The whales that are close to the prey have already surrounded the prey, and

the groups of whales that are far away are constantly approaching the prey. At this time, the

probability of the entire group of whales choosing to surround and prey is equal. Therefore,

the whale encircling and hunting behavior at this time is given the probability obeys the

uniform distribution between [0, 1].

3. Late iteration. Assuming that the group of whales has surrounded the prey and began to

attack the prey. However, the probability of the whale’s successful predation follows a distri-

bution of less than 0.5 due to the prey’s own desire to survive. Therefore, the probability of

whale encircling and hunting behavior in the late iteration of the algorithm follows 0.2 Posi-

tive skew distribution.

According to the above description, the probability generation equation is given as:

p ¼

rsnð1; 0:75; 0:5; 0:1Þ; t � tmax=4

randðÞ; tmax=4 < t < tmax=2

rsnð1; 0:25; 0:5; 0:1Þ; t � tmax=2

ð13Þ

8
><

>:

Where rsn(n,location,scale,shape) is the skew distribution random number generation method

proposed by Azzalini A [61], tmax represents the maximum iterations of the algorithm. Fig 2

shows the probability generation method of whale social behavior in three different periods.
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Fig 2 and Eq (13) show that the generated probability range is not between [0, 1]. Therefore,

the boundary of the generated probability is constrained, namely

p ¼
1; p > 1

0; p < 1
ð14Þ

(

2.2.3. Nonlinear correction strategy of a and C
!

. In WOA, A
!

and C
!

are important

parameters that control whales to explore, surround and prey on prey. The value of A
!

is deter-

mined by the convergence factor a. Fig 3 shows the changes of WOA’s original parameters a

and C
!

under 1000 iterations. The convergence factor a shows a linear downward trend, indi-

cating that the distance between the whale and the prey shows a linear downward trend. C
!

is a

uniformly distributed random number between 0 and 2, indicating that the distance between

the whale and the prey changes randomly. C
!

has no obvious effect on the algorithm’s global

exploration and local mining.

Therefore, the parameters a and C
!

are modified to speed up the convergence speed of

WOA. The modified convergence factor a and C
!

are:

a ¼

1

1þ exp
t � 0:25tmaxð Þ

0:025tmax

� �þ 1; t �
tmax

2

1 �
2t
tmax

; t >
tmax

2

ð15Þ

8
>>>>><

>>>>>:

C
!
¼ 2rsnð1; 1; 0:7; 0:1Þ ð16Þ

Fig 2. Probability generation of whale social behavior. (a) Early iteration, b) Mid-iteration, c) Late iteration.

https://doi.org/10.1371/journal.pone.0267041.g002

Fig 3. Original parameter a-value, A!-value and C!-value under 1000 iterations.

https://doi.org/10.1371/journal.pone.0267041.g003
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Where a 2 [2, 0], t is the current number of iterations, and tmax is the maximum iterations of

the algorithm. The iterative curve of the updated parameters a, A
!

and C
!

at 1000 times is

shown in Fig 4.

2.2.4. Location update strategy. In WOA, the whale group approaches the optimal whale

individual and surrounds the prey when A
!
�
�
�

�
�
� < 1. In order to speed up the process of whales

moving to the optimal individual whale and quickly encircle their prey; a nonlinear decreasing

disturbance factor is introduced to enhance the local mining capability of the algorithm and

improve the accuracy of the algorithm’s convergence.

X�
�!
ðtÞ � A

!
� D!� o; A

!
�
�
�

�
�
� < 1 ð17Þ

where X�
�!
ðtÞ represents the optimal solution position vector in the current whale population,

A
!

and C
!

are coefficient vectors, ω is a nonlinear decreasing perturbation factor, which is

defined as:

o ¼ 0:8� cosð
p

2tmax
� tÞ þ 0:2 ð18Þ

The revised position update equation is:

X!ðt þ 1Þ ¼

X�
�!
ðtÞ � A

!
� D!� o; jA

!
j < 1

X�
�!
ðtÞ � A

!
� D!

� �
; jA
!
j � 1

8
><

>:
; p < 0:5

D!0 � ebl � cosð2plÞ þ X�
�!
ðtÞ; p � 0:5

8
>>>><

>>>>:

ð19Þ

where D!¼ C
!
� X�
�!
ðtÞ � X!ðtÞ represents the distance between the optimal whale individual

and other individuals and p is the probability generated by Eqs (13) and (14).

2.3. Pseudo-code of the IWOA algorithm

In summary, an improved whale optimization algorithm (IWOA) executes pseudocodes as

shown in Algorithm 2.

Algorithm 2. Improved whale optimization algorithm (IWOA).
Input: N = Total populations, d, tmax
1: Initialize the whales population Xi(i = 1, 2, � � �, N) with Algorithm
1
2: Calculate the fitness of each search agent
3: X� = the best search agent
4: while (t<tmax)

Fig 4. Modified parameter a-value, A!-value and C!-value under 1000 iterations.

https://doi.org/10.1371/journal.pone.0267041.g004
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5: for each search agent
6: Update a (Eq 15), A, C (Eq 16), l
7: Calculate p (Eqs 13 and 14)
8: if1 (p<0.5)
9: if2 (|A|< 1)
10: Update the position of current search agent (Eq (17))
11: else if2 (|A| � 1)
12: Select a random search agent (Xrand)
13: Update the position of current search agent (Eq (1))
14: end if2
15: else if1 (p � 0.5)
16: Update the position of current search agent (Eq (19))
17: end if1
18: end for
19: Check the boundary and amend it
20: Calculate the fitness of each search agent
21: Update X� if there is a better solution
22: t = t+1
23: end while
Return: X�

2.4. Time complexity analysis of IWOA

1. The initialization of the population process needs OðN � dÞ time, where N is the popula-

tion size, and d defines the dimension of a given test problem.

2. Calculate the a and p needs OðtmaxÞ, where tmax is the maximum number of iterations.

3. Calculate the fitness of each search agent needs Oðtmax � N � d þ tmaxÞ time.

Hence, the total time complexity of IWOA algorithm is Oðtmax � N � d þ tmaxÞ.

3. IKNN based on M and weighted classification strategy

3.1. KNN

KNN [62] is a supervised classification algorithm proposed by COVER and HART. KNN is

widely used in various fields due to its simple and intuitive idea. The basic principles of KNN

classification are:

1. Express the test sample as a feature vector consistent with the training sample set.

2. Calculate the distance between the test sample and each training sample according to the

distance function, and select the K samples with the smallest distance from the test sample

as the KNN of the test sample.

3. According to the principle of "majority voting", the class with the most occurrences among

the KNN are selected as the test sample class.

k-value, distance function and "voting method" are important parameter criteria for KNN

algorithm classification. The k-value represents the number of reference samples selected,

which is determined by the actual problem requirements. The distance function corresponds

to a non-negative function, used to describe the Similarity between different samples. The dis-

tance function can be defined as:

Dð x!; y!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � yiÞ
Τ
Iðxi � yiÞ

q

ð20Þ
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Where Dð x!; y!Þ represents the distance between the training sample set x! and the test sam-

ple set y!, xi is the ith attribute of the training sample set x!, yi is the ith attribute of the test sam-

ple set y!, i = 1, � � �, m, m is the feature dimension, Ι 2 Rn is the distance measurement matrix

(identity matrix). Assuming that there are J classes in yi’s KNN, the majority voting is:

Votðyi;CjÞ ¼ max
XK

i¼1

Paðai;CjÞ

( )

ð21Þ

Where Vot(yi, Cj) indicates that the test sample yi is the number of class Cj, Pa(ai, Cj) indicates

whether the ai sample among the KNN of yi belongs to the class Cj, which is defined as:

Paðai;CjÞ ¼
1; ai 2 Cj

0; ai =2Cj

ð22Þ

(

Where j = 1, � � �, J.

3.2. IKNN

3.2.1. Sample similarity measurement criterion based on M-matrix. When classifying

complex datasets, the classic KNN algorithm used simple Euclidean distance as the measure of

similarity between samples and assigned the same weight to the sample distance through the

identity matrix I, leading to an exaggeration of weak attributes and weakening of strong attri-

butes easily, thus leading to inaccurate classification.

Based on the simulated annealing algorithm [63], the weight matrix M is constructed to

replace the identity matrix I, then the Eq (20) can be modified as:

Dð x!; y!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � yiÞ
Τ
Mðxi � yiÞ

q

ð23Þ

where the weight matrix M is based on the simulated annealing algorithm. For the datasets

under study, the value of the distance weight matrix M is adaptively generated with the itera-

tion of the algorithm. Therefore, the M is:

D�ð x!; y!Þ ¼ 0; li 2 Cj

D�ð x!; y!Þ � 1; li =2Cj

ð24Þ

(

Where li is the label of the test sample xi and Cj is the jth class. The objective function is set:

min ZðMÞ ¼
Xn

i¼1

Xn

j¼1

Dð x!; y!Þ � D�ð x!; y!Þ
� �2

ð25Þ

The simulated annealing algorithm is used to solve the weight matrix M, and the pseudo

code is executed as shown in Algorithm 3.

3.2.2. Weighted voting criteria. KNN adopted the "majority voting" to identify test sam-

ples. The selected sample was tested as the center of the circle, and in the range of the neigh-

borhood with the k-value, the label with the most occurrences was used as the test sample

label. Therefore, when the sample size is unbalanced, the classification results tend to be biased

towards large-volume samples (Fig 5).

In Fig 5, the red hexagon is the test sample, and the training sample contains two kinds of

labels: square and triangle. When k = 5, in the k neighborhood, the classification result is

biased toward large-capacity samples (triangles), resulting in the final labeling of the test sam-

ple as a triangle label (the test sample is closer to a square label).
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The original algorithm is improved based on the distance weight to balance the deviation of

the classification results caused by the sample size. Assuming that there are J classes in the

datasets, Eq (21) is modified as:

Class ¼ f ðmax 1 �
Sj
S

� �

aj

� �

Þ; j ¼ 1; � � � ; J ð26Þ

Where Class is the predicted test sample class, S is the total number of data, Sj is the number of

the j-th class of data, ai is the number of the selected KNN belonging to the j-th class, f indi-

cates that the class corresponding to the solution result can be returned. The test sample in Fig

4 is predicted using Eq (26) and result is a square.

Class ¼ f ðmax 1 �
S1

S

� �

a1; 1 �
S2

S

� �

a2

� �

Þ

¼ f ðmax 1 �
8

25

� �

� 2; 1 �
16

25

� �

� 3

� �

Þ

¼ f ðmax
34

25
;
27

25

� �

Þ ¼ f ð
34

25
Þ ¼⬛

ð27Þ

3.3. Time complexity analysis of IKNN

The traditional KNN algorithm does not require training and can be directly used for testing.

So, its time complexity is Oðk � l�m� nÞ, Among them, k is the number of nearest neigh-

bors, n is the number of samples, m is the sample feature dimension, and l is the number of

samples to be tested.

The improved KNN algorithm needs to be trained in the original data set to find the best

metric matrix M, and then tested. The training time complexity is Oðk � T �m2 � n2Þ, and

the testing time complexity is Oðk � l �m2 � nÞ, where k is the number of nearest neighbors,

T is the number of training times, n is the number of samples, m is the sample feature dimen-

sion, and l is the number of samples to be tested.

Algorithm 3. The solution of weight matrix M.
Input: T0:initial temperature, Te:Termination temperature
1: Tk = T0
2: M0 = I
3: while (Tk � Te)
4: for1 i = 2:n
5: for2 j = 1:i-1

6: Mði; jþ 1Þ ¼

�
�
�
Mði;jÞþRRΤ

Mði;jÞþRRΤ

�
�
�(R ¼ randðn; nÞ 2 Rn)

Fig 5. Majority voting criteria.

https://doi.org/10.1371/journal.pone.0267041.g005
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7: ΔE = Z(M) − Z(M0)
8: p1 ¼ minf1; eð� DE=TkÞg.
9: if (p1 > rand())
10: M0(i, j) = M(i, j +1)
11: end if
12: end for2
13: end for1
14: Tk+1 = ηTk (k  k + 1)
15: end while
Return:M = M0

4. Improved WOA and improved KNN for FS

4.1. Fitness function

Combining improved WOA and improved KNN algorithm for FS is a wrapper-based FS method.

The main purpose of IWOA for FS is to find the smallest feature subset. IKNN is based on feature

subsets to classify and get the best classification accuracy. Therefore, the FS method based on

IWOA and IKNN has two goals: (1) Finding the least feature subset as much as possible; (2) Mak-

ing the algorithm classification accuracy as high as possible in the found feature subset.

In order to solve these two conflicting goals, IWOA is regarded as a solution. The location

of each individual whale is the solution. When the number of features in the solution is less,

the classification accuracy is higher, and the solution is better [26]. In order to balance the two

conflicting goals (the smallest number of features and the largest classification accuracy), the

fitness function [64] is:

Fitness ¼ agRðDÞ þ b
jRj
jCj

ð28Þ

where γR(D) represents the IKNN classification error rate, |R| represents the length of the

selected feature subset, |C| represents the total number of features in the datasets, α 2 (0, 1)

represents the importance of classification quality, and β = (1-α) represents the importance of

the length of the subset [64].

In order to make the proposed algorithm suitable for FS, this paper maps the continuous

search space to the binary space. The main method is to take 1 when the algorithm fitness is

greater than 0.5, and take 0 when it is less than or equal to 0.5.

xbinary ¼
0; fitness � 0:5

1; fitness > 0:5
ð29Þ

(

4.2. Pseudo-code of the IWOAIKFS algorithm

In order to use IWOAIKFS for FS, a binary representation is used to represent the solution to

the FS problem. Assuming that the selected feature is 1, and the unselected feature is 0. There-

fore, the pseudo-code based on IWOAIKFS is shown in Algorithm 4.

4.3. Time complexity analysis of IWOAIKFS

Since IWOAIKFS is a feature selection method obtained by IWOA optimizing IKNN, its time

complexity can be divided into three parts, namely IWOA time complexity, IKNN complexity

and IWOA optimizing IKNN time complexity. So, the time complexity of IWOAIKFS can be

obtained as O k� tmax � N �m2 � n� l þm2 � n2ð Þ þ tmaxð Þ, where k is the number of
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nearest neighbors, N is the population size, tmax is the number of iterations, n is the number of

samples, m is the sample feature dimension, and l is the number of samples to be tested.

5. Experimental evaluation and discussion

In order to verify the effectiveness of the three methods proposed in this paper, three numeri-

cal experiments are designed as follows:

(1) In order to verify that IWOA has better optimization and convergence performance, this

paper selects 8 benchmark functions and conducts simulation experiments in different

dimensions (30 dimensional and 100 dimensional), and compare and analyze the optimiza-

tion results of 8 meta-heuristic algorithms. The details are shown in Section 5.3.

Algorithm 4. IWOAIKFS.
Input: Dataset, tmax, lb, ub
1: Dataset normalization and Initialize a feature population Xi with
Algorithm 1
2: Calculate the fitness of each feature vector (Eq (28))
3: X� = the best feature vector
4: while (t<tmax)
5: for each individual
6: Update a (Eq 15), A, C (Eq 16)
7: Calculate p (Eqs 13 and 14)
8: if1 (p<0.5)
9: if2 (|A|<1)
10: Update the position of current feature vector (Eq (17))
11: else if2 (|A|�1)
12: Select a random search feature (Xrand)
13: Update the position of current feature vector (Eq (1))
14: end if2
15: else if1 (p � 0.5)
16: Update the position of current feature vector (Eq (19))
17: end if1
18: end for
19: Check the boundary and amend it
20: Calculate the fitness of each feature vector
21: Update X� if there is a better feature vector
22: t = t+1
23: end while
24: Divide X� into training set and test set
25: Calculate the weight matrix M according to Algorithm 3
26: Calculate the distance between the test sample and the training
sample according
to Eq (23)
27: Sort each distance found
28: Select k points as the KNN of the test sample
29: Calculate and predict the test sample class (Eq (26))
30: Count the number of correct predictions and calculate Acc
Return: Accuracy (Acc)

(2) In order to verify that IKNN has better classification performance, this paper selects 8 data-

sets on UCI [65] for simulation experiments, and compare and analyze with the experimen-

tal results of 5 kinds of classifiers. The details are shown in Section 5.4.

(3) In order to verify that IWOAIKFS has good performance, this paper adds 7 datasets (15

datasets in total) to perform numerical experiments based on Section 5.4, and compares
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and analyzes the experimental results with 6 FS methods based on the meta-heuristic algo-

rithm. The details are shown in Section 5.5.

5.1. Experimental environment and datasets

5.1.1. Experimental environment. System: 64bit Windows 10

CPU: Intel(R) Core (TM) i7-5557U

Main frequency: 3.10GHz; RAM: 8G

Platform: Matlab2020b and Python 3.9

5.1.2. Benchmark functions and datasets. In order to evaluate the superior performance

of IWOA, IKNN and IWOAIKFS, 8 benchmark functions and 15 datasets were selected for

numerical experiments. The detailed description shown in Tables 1 and 2.

5.2. IWOA comparative experiment

5.2.1. Parameter setup for IWOA and other algorithms. In order to ensure the objective

fairness of IWOA numerical experiments, the maximum number of iterations of all algorithms

Table 1. Benchmark functions used and their details.

F Index Optimum lb ub

F1 Sphere 0 -100 100

F2 Schwefel 2.22 0 -10 10

F3 Schwefel 1.2 0 -100 100

F4 Step 0 -100 100

F5 Rastrigin 0 -5.12 5.12

F6 Ackley 0 -32 32

F7 Weierstrass 0 -0.5 0.5

F8 Penalized 0 -50 50

https://doi.org/10.1371/journal.pone.0267041.t001

Table 2. Datasets used and their details.

Number Datasets Class Features Samples

1 Birds 6 10 413

2 Blood 2 5 748

3 Breast_cancer 2 30 569

4 Bupa 2 6 345

5 Car 4 6 1728

6 Chart 6 60 600

7 Digits 10 64 1797

8 Glass 6 9 214

9 Heart_disease 2 13 303

10 Indian 2 10 583

11 Ionosphere 2 34 351

12 Iris 3 4 150

13 Planning 2 12 182

14 Wine 3 13 178

15 Zoo 7 16 101

https://doi.org/10.1371/journal.pone.0267041.t002
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was set to 1000. The initial population size of the algorithm was 50. Each group of experiments

was performed 30 times, and the mean and standard deviation (STD) were calculated as the

algorithm Evaluation indicators. The detailed parameter settings of the algorithm are shown in

Table 3.

5.2.2. IWOA experimental results and analysis. Numerical experiments were carried

out on 8 test functions in 30 and 100 dimensions, respectively. The mean and standard devia-

tion of the optimization results of each algorithm on the test function was counted (Table 4).

Fig 5 is the log mean convergence curve of F1, F3, F5, and F7 under different algorithms. Fig 6

shows a histogram of the average running time of different algorithms on 8 benchmark

functions.

Table 4 shows that IWOA has a smaller mean and standard deviation on most test func-

tions and shows better optimization results. The experimental results of IWOA were analyzed

in 30 and 100 dimensions. Except for the F8 function inferior to the HHO algorithm, the

IWOA’s experimental results on the eight benchmark functions are several or even hundreds

of orders of magnitude higher than the other comparison algorithms. The experimental results

showed that IWOA had high convergence accuracy and stability. IWOA had high optimiza-

tion results on unimodal functions and most multimodal functions, verifying that IWOA had

better local mining and global exploration capabilities. Therefore, IWOA has better stability

and convergence than the other 8 meta-heuristic algorithms.

In order to better compare the convergence performance of the 9 algorithms, the log-mean

fitness values of the two unimodal functions (F1 and F3) and the two multimodal functions

(F5 and F7) were selected to draw the convergence curve (Fig 6). Fig 6(a)–6(d) are F1, F3, F5,

and F7 function images, respectively, and Fig 6(e)–6(h) and Fig 6(i)–6(l) correspond to F1, F3,

F5, and F7, respectively Function, the average convergence curve of the number in 30 dimen-

sions and 100 dimensions. Fig 6 shows that in the same dimension, the optimization of IWOA

for unimodal functions is higher than that of the other 9 comparison algorithms. When the

dimensions are different, IWOA has better convergence when optimizing high-dimensional

multimodal functions. As the dimensionality increases, IWOA shows better convergence

performance.

Fig 7(a) and 7(b) show the average running time of 9 algorithms in 30 and 100 dimensions,

respectively. Fig 7 shows that the average running time of the IWOA algorithm is only better

than that of the ASO algorithm due to the increased time of IWOA when initializing the popu-

lation and generating skew random probabilities. However, the comparison of Fig 7(a) and 7

(b) shows that the average running time increase of IWOA in high and low dimensions is

smaller than that of other comparison algorithms with better convergence accuracy.

Table 3. Parameter settings of IWOA and other selected algorithms.

Algorithms Parameters setting

IWOA b = 1; a decrease nonlinearly from 2 to 0

WOA [15] b = 1; a decrease linearly from 2 to 0

ASO [66] α = 5, β = 0.2

GWO [18] a decrease linearly from 2 to 0

HHO [67] E1 decreases linearly from 2 to 0

MFO [68] a decrease linearly from -1 to -2

MVO [69] WEP increases linearly from 0.2 to 1

TDR decreases nonlinearly from 0.7 to 0

SSA [70] c1 decreases nonlinearly from 2 to 0

TSA [71] xmin = 1, xmax = 4; A1 is a randomly generated number -1 to 1

https://doi.org/10.1371/journal.pone.0267041.t003
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Compared with the other 8 comparison algorithms, IWOA has better local convergence

and global optimization and shows better reliability and robustness than other comparison

algorithms when solving high-dimensional multimodal functions.

From Table 4, Figs 6 and 7 shows that when IWOA optimizes the 8 benchmark functions,

the smaller mean and standard deviation feedback that IWOA has better overall optimization

stability. The convergence curve shows that IWOA has better optimization results on high-

dimensional multimodal functions. The average running time of IWOA is higher than that of

the comparison algorithm. However, IWOA can achieve higher accuracy with the sacrifice of a

small increase in time. Therefore, IWOA has better optimization performance than the eight

comparison algorithms.

5.2.3. Wilcoxon’s test and Friedman test. Only the mean and standard deviation of the

results of 30 independent experiments cannot fully measure the superiority of the improved

algorithm. As one of the nonparametric statistical test methods for evaluating the performance

Table 4. The comparison of obtained solutions for 8 benchmark functions.

F Dim Index ASO GWO HHO MFO MVO SSA TSA WOA IWOA

F1 30 Mean 2.02E-23 3.62E-70 6.97E-193 2.33E+03 1.70E-01 8.55E-09 1.72E-51 4.20E-166 0.00E+00

STD 1.57E-23 1.04E-69 0.00E+00 5.04E+03 4.80E-02 1.83E-09 8.53E-51 0.00E+00 0.00E+00

100 Mean 7.09E-03 2.28E-34 8.52E-191 4.12E+03 2.32E+01 6.18E-03 1.78E-27 1.97E-170 0.00E+00

STD 3.86E-02 3.68E-34 0.00E+00 1.68E+04 3.38E+00 5.12E-03 6.97E-27 0.00E+00 0.00E+00

F2 30 Mean 4.89E-11 6.08E-41 1.61E-101 3.47E+01 2.89E-01 5.22E-01 1.29E-31 1.81E-107 4.90E-324

STD 4.71E-11 7.22E-41 7.34E-101 2.18E+01 7.59E-02 4.76E-01 1.16E-31 9.56E-107 0.00E+00

100 Mean 3.07E+00 6.53E-21 4.45E-100 1.02E+02 3.48E+15 1.17E+01 1.07E-17 1.60E-105 1.33E-321

STD 1.67E+00 2.90E-21 2.14E-99 5.60E+01 1.75E+16 3.66E+00 1.42E-17 5.48E-105 0.00E+00

F3 30 Mean 2.21E+02 5.90E-19 3.92E-156 1.79E+04 1.89E+01 4.32E+01 7.66E-16 9.93E+03 5.60E-320

STD 1.33E+02 2.17E-18 2.15E-155 1.21E+04 9.49E+00 4.22E+01 3.58E-15 5.85E+03 0.00E+00

100 Mean 3.14E+04 6.59E-01 6.49E-142 9.71E+04 3.14E+04 2.24E+04 1.04E+03 7.19E+05 6.40E-264

STD 5.96E+03 2.17E+00 2.91E-141 6.41E+04 4.76E+03 9.84E+03 1.45E+03 1.12E+05 0.00E+00

F4 30 Mean 0.00E+00 0.00E+00 0.00E+00 1.33E+03 5.70E+00 8.23E+00 3.78E+00 3.33E-02 0.00E+00

STD 0.00E+00 0.00E+00 0.00E+00 3.46E+03 2.81E+00 4.66E+00 7.23E-01 1.83E-01 0.00E+00

100 Mean 3.48E+01 0.00E+00 0.00E+00 3.23E+03 1.43E+02 2.52E+02 1.37E+01 0.00E+00 0.00E+00

STD 4.46E+01 0.00E+00 0.00E+00 1.64E+04 4.77E+01 6.09E+01 1.19E+00 0.00E+00 0.00E+00

F5 30 Mean 2.64E+01 6.87E-02 0.00E+00 1.42E+02 1.07E+02 4.54E+01 1.70E+02 0.00E+00 0.00E+00

STD 5.60E+00 3.76E-01 0.00E+00 4.54E+01 1.84E+01 1.54E+01 3.70E+01 0.00E+00 0.00E+00

100 Mean 1.29E+02 1.17E-13 0.00E+00 5.59E+02 6.16E+02 1.32E+02 9.30E+02 0.00E+00 0.00E+00

STD 1.84E+01 8.70E-14 0.00E+00 7.81E+01 8.31E+01 3.87E+01 1.18E+02 0.00E+00 0.00E+00

F6 30 Mean 3.28E-12 1.28E-14 8.88E-16 1.11E+01 8.99E-01 1.92E+00 2.04E+00 3.85E-15 8.88E-16

STD 1.83E-12 2.72E-15 0.00E+00 9.07E+00 8.71E-01 8.15E-01 1.48E+00 2.30E-15 0.00E+00

100 Mean 1.39E+00 6.95E-14 8.88E-16 1.86E+01 4.47E+00 5.52E+00 4.41E-14 3.26E-15 8.88E-16

STD 5.55E-01 6.13E-15 0.00E+00 3.84E-01 4.17E+00 1.14E+00 1.24E-14 2.53E-15 0.00E+00

F7 30 Mean 3.26E-03 0.00E+00 0.00E+00 4.96E+00 9.31E+00 1.11E+01 2.13E-15 0.00E+00 0.00E+00

STD 1.30E-02 0.00E+00 0.00E+00 2.93E+00 2.86E+00 2.51E+00 4.63E-15 0.00E+00 0.00E+00

100 Mean 1.32E+01 3.22E-14 0.00E+00 5.99E+01 8.10E+01 6.18E+01 1.94E-09 0.00E+00 0.00E+00

STD 3.77E+00 2.21E-14 0.00E+00 7.55E+00 6.98E+00 5.21E+00 1.07E-08 0.00E+00 0.00E+00

F8 30 Mean 8.86E-03 2.73E-02 1.17E-06 2.22E-01 1.20E+00 4.20E+00 7.93E+00 1.67E-03 4.69E-03

STD 2.79E-02 2.16E-02 1.67E-06 3.49E-01 1.11E+00 2.44E+00 3.68E+00 2.10E-03 1.75E-02

100 Mean 1.99E+00 1.86E-01 1.81E-07 4.61E+05 9.90E+00 1.13E+01 1.00E+01 5.73E-03 6.26E-03

STD 7.17E-01 5.15E-02 2.51E-07 1.45E+08 2.27E+00 2.82E+00 2.74E+00 2.50E-03 2.28E-03

https://doi.org/10.1371/journal.pone.0267041.t004

PLOS ONE Improved WOA and its application in feature selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0267041 May 19, 2022 17 / 33

https://doi.org/10.1371/journal.pone.0267041.t004
https://doi.org/10.1371/journal.pone.0267041


of algorithms, Wilcoxon’s rank sum test [72] is often used to verify the performance of meta-

heuristic algorithms Wilcoxon’s test was used to conduct experiments at the 5% significance

level to judge whether each result of IWOA was statistically significantly different from the

best results of other algorithms. Table 5 shows the p-values calculated in the IWOA of the

eight benchmark functions and the Wilcoxon’s test of the other algorithms. p<0.05 is consid-

ered as a strong verification to reject the null hypothesis.

Table 5 shows that the p-value of IWOA is less than 0.05 at 30 dimensions, indicating that

the optimization performance of IWOA is statistically significant and verifying that IWOA has

higher convergence accuracy than other comparison algorithms. The p-value of IWOA is sec-

ond only to the comparison with the F4 and F5 functions of WOA in 100 dimensions, showing

IWOA has a better performance compared with other algorithms.

Fig 6. Logarithmic mean convergence curves of different algorithms. (a)F1(Sphere function), b)F3(Schwefel 1.2

function), (c)F5(Rastrigin function), d)F7(Weierstrass function), (e)F1(30D), (f)F3(30D), (g)F5(30D), (h)F7(30D). (i)

F1(100D), (j)F3(100D), (k)F5(100D), (l)F7(100D).

https://doi.org/10.1371/journal.pone.0267041.g006

Fig 7. Average running time of different algorithms. (a) 30D Average running time(s), (b) 100D Average running

time(s).

https://doi.org/10.1371/journal.pone.0267041.g007
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In order to better evaluate the effectiveness of the method proposed in this paper and better

detect the significant differences between two or more observation data, the method Friedman

is used to perform statistical tests on the algorithm proposed in this paper. Friedman test is a

nonparametric two-way analysis of variance method [72], The test process is as follows:

(1) Collect observations for each algorithm or problem;

(2) Each question is ranked from the best result (1) to the worst result (k), the i-th question is

defined as; rjið1 � j � kÞ;

(3) Find the average ranking of each algorithm in all problems, and get the final ranking

Rj ¼
1

n

Xn

i¼1

rji.

Under the null hypothesis, the rank Rj of all algorithms is equal, and the Friedman statistic

value Ff is shown in formula (30), According to Table 4, the Friedman test was implemented

on Matlab 2020b for IWOA and the comparison algorithm, and the results are shown in

Table 6.

Ff ¼
12n

kðkþ 1Þ

X

j

R2

j � kðkþ 1Þ
2
=4

" #

ð30Þ

It can be seen from Table 6 that the asymptotically significant p-value obtained by the

Friedman test is far less than 0.01 on both the 30D and 100D benchmark functions, so it can

be seen that IWOA is comparable to the 30D and 100D benchmark functions. There are signif-

icant differences between the algorithms, Therefore, it can be seen that there are significant

differences between IWOA and the comparison algorithms in both 30D and 100D benchmark

Table 5. p-value of the Wilcoxon test for the optimization results of IWOA and other algorithms based 8 benchmark functions (p> = 0.5 are in bold).

F IWOA vs. ASO IWOA vs. GWO IWOA vs. HHO IWOA vs. MFO IWOA vs. MVO IWOA vs. SSA IWOA vs. TSA IWOA vs. WOA

D = 30

F1 2.06E-184 5.21E-41 1.31E-25 3.94E-317 1.81E-310 2.60E-281 1.04E-84 1.15E-33

F2 4.85E-233 3.66E-40 2.64E-35 9.72E-320 8.75E-315 4.15E-308 3.64E-86 1.75E-30

F3 2.78E-64 8.08E-05 9.71E-19 1.86E-119 1.57E-72 7.67E-62 1.19E-10 3.47E-171

F4 8.62E-05 4.04E-24 2.07E-48 NA NA NA 9.82E-305 2.50E-149

F5 3.71E-305 1.64E-89 4.16E-03 1.99E-321 NA 1.23E-312 1.00E-323 2.07E-01

F6 3.70E-199 5.01E-68 1.65E-13 1.15E-320 5.31E-314 7.93E-310 1.27E-303 9.71E-84

F7 4.80E-293 1.98E-04 1.63E-17 NA NA NA 1.59E-185 7.24E-04

F8 5.59E-153 5.08E-173 5.85E-312 9.30E-287 2.37E-290 1.11E-291 4.03E-287 9.36E-119

w|t|l 8|0|0 8|0|0 8|0|0 6|2|0 5|3|0 6|2|0 8|0|0 8|0|0

D = 100

F1 4.06E-274 3.15E-79 3.66E-22 1.20E-322 2.25E-315 2.65E-297 1.31E-129 6.81E-30

F2 1.35E-306 1.74E-80 1.06E-34 6.29E-321 5.90E-323 1.28E-314 9.62E-134 7.85E-31

F3 3.43E-58 1.53E-28 4.24E-27 3.57E-80 3.74E-67 1.18E-57 8.70E-43 4.88E-223

F4 NA 1.36E-02 1.57E-43 NA NA NA 1.18E-310 0.16992

F5 5.63E-322 5.30E-148 9.53E-02 NA NA NA NA 0.07075

F6 4.18E-304 9.30E-87 6.37E-15 NA 6.30E-320 1.64E-316 4.27E-143 2.64E-83

F7 NA 4.01E-95 6.86E-17 NA NA NA 9.48E-226 4.75E-02

F8 8.75E-283 2.56E-268 1.22E-313 1.78E-321 9.90E-307 9.53E-296 1.44E-289 2.96E-31

w|t|l 6|2|0 8|0|0 8|0|0 4|4|0 5|3|0 5|3|0 7|1|0 6|0|2

https://doi.org/10.1371/journal.pone.0267041.t005
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functions; However, the rank mean of the IWOA algorithm is the smallest in both 30D (1.38)

and 100D (1.25), indicating that its optimization performance is the best. Combining the test

results of Wilcoxon’s test and Friedman test, it can be concluded that IWOA has better perfor-

mance than the comparison algorithm in general.

5.3. IKNN comparative experiment

5.3.1. Influence of 3 strategies on KNN algorithm. The KNN algorithm that is only

affected by the weight matrix M is MKNN. The KNN algorithm that is only affected by the

weighted classification criteria is WKNN. The KNN algorithm affected by the two strategies is

IKNN.

The simulated annealing temperature T0 = 100, the end temperature Te = 1, the number of

cycles per temperature is 100, and the learning rate η = 0.9, then the number of iterations

required to generate M is:

t ¼ 100�
ln Te � ln T0

ln Z
� 4370:869 � 4400 ð31Þ

8 datasets in Section 5.1 were taken, and the numerical experiments were performed in Python

3.9 environment. The experimental results under different strategies are shown in Table 5

(Breast: Breast_cancer, Heart: Heart_disease).

5.3.2. Comparison of classification accuracy between IKNN and other classifiers. In

order to further verify the effectiveness of IKNN, we uses KNN [62], Naive Bayes [73], C4.5

[74], SVM [75] and BP neural network [76] as comparison algorithms for numerical experi-

ments. Among them, the number of nearest neighbors of KNN and IKNN k = 10. SVM uses

Gaussian kernel function. BP neural network uses a stochastic gradient optimizer, sets 1 hid-

den layer. The number of hidden layer nodes is 13, and the activation function is a linear func-

tion. The experimental results of each algorithm on the datasets in the Python 3.9

environment are shown in Table 8.

5.3.3. IKNN results discussion. Table 7 shows the experimental results of the KNN algo-

rithm on 8 datasets under different strategies. Under the same parameter settings, the

Table 7. The comparison of classification accuracy of different strategies.

Datasets Accuracy

KNN MKNN WKNN IKNN

Birds 0.6946 0.7665 0.7186 0.7844

Breast 0.9735 0.9779 0.9779 0.9779

Digits 0.9817 0.9848 0.9772 0.9863

Glass 0.7089 0.7722 0.7215 0.7975

Heart 0.8148 0.8426 0.8148 0.8426

Iris 0.9286 0.9464 0.9286 0.9464

Ionosphere 0.8571 0.8947 0.8722 0.9173

Wine 0.9452 0.9589 0.9452 0.9589

https://doi.org/10.1371/journal.pone.0267041.t007

Table 6. Friedman test results of benchmark functions with different dimensions.

Dim p-value IWOA ASO GWO HHO MFO MVO SSA TSA WOA

30D 6.28E-08 1.38 5.38 3.88 1.88 8.25 6.88 7.38 6.38 3.63

100D 3.03E-08 1.25 5.88 4.00 2.00 8.25 7.63 7.00 5.50 3.50

https://doi.org/10.1371/journal.pone.0267041.t006
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classification accuracy of MKNN, WKNN and IKNN on the 8 datasets is greater than or equal

to that of the KNN algorithm. Among them, the IKNN algorithm that combines two strategies

has the best effect. In the KNN algorithm improved based on a single strategy, MKNN per-

forms better. Therefore, using the weight matrix M to measure the importance of samples has

better classification performance than the simple Euclidean distance to measure the sample

distance. When the amount of data is small, the classification accuracy of WKNN has no obvi-

ous change compared with the KNN algorithm, but for data sets with large amounts of data,

WKNN has a better classification effect. The three proposed strategies can effectively improve

the KNN algorithm and its classification performance.

Table 8 shows the classification experiment results of the IKNN algorithm and other 5 clas-

sifiers on 8 datasets. Table 8 show that in the same experimental environment, the classifica-

tion accuracy of the IKNN algorithm on most datasets is higher than other comparison

algorithms. Among them, the classification accuracy of the IKNN algorithm has been

improved most significantly on the Glass dataset, and the classification accuracy on the Wine

dataset and Bird dataset is inferior to Naive Bayes and SVM due to the universality of the algo-

rithm. Naive Bayes and SVM are more suitable for Wine and Bord datasets (the effect is not

obvious on other datasets). Therefore, IKNN has better classification performance than com-

parison algorithms.

5.4. IWOAIKFS comparative experiment

The programming tool MATLAB 2020b was applied to verify that IWOAIKFS has better clas-

sification performance. In the computing environment of Section 5.1, experiments were car-

ried out using 15 datasets (Table 2) in UCI. The focus of the experiment is to use the IKNN

classifier for IWOA (k = 5 [8, 16, 20, 23, 26, 41, 54, 64, 77]) and the latest 6 meta-heuristic algo-

rithms to use the KNN classifier (k = 5), performance comparison of 30 independent experi-

ments under 15 datasets.

The evaluation indicators of the experimental results are the mean classification accuracy of

the algorithm for 30 independent experiments. The standard deviation of the optimal accuracy

of the algorithm for 30 independent experiments, and the average number of features selected

by the algorithm in 30 independent experiments.

5.4.1. Parameter setup for IWOAIKFS and other optimizers. Table 9:

5.4.2. IWOAIKFS comparison of classification accuracy with other optimizers. In

order to test the effectiveness of IWOAIKFS, IWOAIKFS were compared with 6 FS methods

according to meta-heuristic algorithms (ASO, GWO, HHO, SCA, SSA, and WOA). Table 10

shows the average accuracy, standard deviation, and the average number of selected features of

Table 8. The comparison of classification accuracy of different classifiers.

Datasets Accuracy

KNN Naive bayes C4.5 SVM BP neural network IKNN

Birds 0.6946 0.4491 0.5868 0.8383 0.6647 0.7844

Breast 0.9735 0.9690 0.9336 0.6858 0.9779 0.9779

Digits 0.9817 0.7610 0.8234 0.8219 0.9619 0.9863

Glass 0.7089 0.4304 0.6076 0.5190 0.6709 0.7975

Heart 0.8148 0.8056 0.7407 0.5093 0.8056 0.8426

Iris 0.9286 0.9107 0.9286 0.7857 0.9107 0.9464

Ionosphere 0.8571 0.8722 0.9173 0.6391 0.8872 0.9173

Wine 0.9452 1.0000 0.9178 0.3836 0.9589 0.9589

https://doi.org/10.1371/journal.pone.0267041.t008
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each algorithm for 30 independent experiments under 15 datasets. Under 30 independent

experiments on 15 datasets, the comparison of IWOAIKFS between other optimizers is shown

in Table 10:

1. In terms of average classification accuracy index, IWOAIKFS has the highest classification

accuracy on 14 datasets, ranking first among 7 algorithms. The mean classification accuracy

of IWOAIKFS on the Breast_cancer, Chart, Iris, Wine, and Zoo datasets has reached 100%.

IWOAIKFS only ranks 2nd on the Heart_disease dataset, slightly inferior to the HHO algo-

rithm. However, the standard deviation of IWOAIKFS is 0, indicating stronger stability rel-

ative to HHO. Therefore, IWOAIKFS has better classification accuracy on 15 datasets than

other algorithms in terms of mean classification accuracy.

2. In the standard deviation indicator, the standard deviation of SCA on 15 datasets is all 0,

ranking first among 7 algorithms, indicating that the algorithm is more stable. IWOAIKFS

ranks 3rd among 7 algorithms, inferior to SCA and HHO algorithms, caused by the IKNN

calculation of the weight matrix M for different datasets and the randomness of the

algorithm.

3. In terms of selecting the number of features, IWOAIKFS chose the least features on the

Breast_cancer, Car, Glass, Heart_disease and Ionosphere datasets, ranking 2nd among 7

algorithms, second only to the ASO algorithm (the least number of features is selected on 6

datasets).

Fig 8 shows the total average accuracy of IWOAIKFS on all data sets. Fig 9 shows a visual-

ized bar graph of the average accuracy of IWOAIKFS and other algorithms in 15 datasets. Figs

8 and 9 identifies that in 15 datasets, IWOAIKFS has better performance in classification accu-

racy than other algorithms. The IWOAIKFS algorithm has the highest total mean accuracy in

Table 9. Parameter settings of IWOAIKFS and other selected algorithms.

Algorithms Parameters setting

IWOAIKFS Population Number (10); Maximum number of iterations (100); b = 1, k = 5

a decrease nonlinearly from 2 to 0; Dimension corresponds to the number of features

WOA [78] Population Number (10); Maximum number of iterations (100); b = 1, k = 5

a decrease linearly from 2 to 0

Dimension corresponds to the number of features

ASO [22] Population Number (10); Maximum number of iterations (100)

α = 5, β = 0.2, k = 5; Dimension corresponds to the number of features

GWO [79] Population Number (10); Maximum number of iterations (100); k = 5

a decrease linearly from 2 to 0

Dimension corresponds to the number of features

HHO [23] Population Number (10); Maximum number of iterations (100); k = 5

E1 decreases linearly from 2 to 0

Dimension corresponds to the number of features

SCA [80] Population Number (10); Maximum number of iterations (100); α = 2, k = 5; Dimension corresponds

to the number of features

SSA [81] Population Number (10); Maximum number of iterations (100); k = 5

c1 decreases nonlinearly from 2 to 0

Dimension corresponds to the number of features

https://doi.org/10.1371/journal.pone.0267041.t009
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Table 10. Comparison between IWOAIKFS with other competitor optimizers based on accuracy (k = 5 and best are in bold).

Datasets Index ASO GWO HHO SCA SSA WOA IWOAIKFS

Birds Accuracy 0.8642 0.8622 0.8659 0.8630 0.8565 0.8480 0.8823

STD 0.0042 0.0097 0.0000 0.0000 0.0105 0.0139 0.0139

Feature 4.0333 4.1667 4.2667 4.0667 4.8000 5.0333 4.5333

Blood Accuracy 0.8054 0.8054 0.8054 0.8054 0.8054 0.8040 0.8591

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0027 0.0041

Feature 2.0000 2.5333 2.5000 2.4667 2.4667 2.4667 2.5333

Breast_cancer Accuracy 0.9997 0.9988 1.0000 0.9976 0.9947 0.9935 1.0000

STD 0.0016 0.0031 0.0000 0.0000 0.0044 0.0040 0.0000

Feature 14.2333 16.5000 17.3667 14.2000 16.4000 17.2667 14.1000

Bupa Accuracy 0.7536 0.7536 0.7536 0.7536 0.7536 0.7444 0.7761

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0291 0.0000

Feature 2.0000 3.1667 2.9000 3.0667 2.8333 2.9000 2.7667

Car Accuracy 0.9240 0.9246 0.9246 0.9098 0.9162 0.9202 0.9807

STD 0.0037 0.0000 0.0000 0.0000 0.0198 0.0243 0.0070

Feature 5.9667 6.0000 6.0000 5.6667 5.7000 5.9667 5.5333

Chart Accuracy 0.9961 0.9939 0.9933 0.9925 0.9886 0.9858 1.0000

STD 0.0042 0.0043 0.0034 0.0000 0.0064 0.0050 0.0000

Feature 27.4000 27.5000 36.9333 21.7000 31.4667 38.1667 33.7333

Digits Accuracy 0.9864 0.9851 0.9868 0.9735 0.9786 0.9843 0.9909

STD 0.0034 0.0040 0.0018 0.0000 0.0036 0.0019 0.0030

Feature 36.2000 30.8667 46.5667 31.0667 36.0667 58.4667 37.4667

Glass Accuracy 0.8008 0.8024 0.8095 0.7960 0.7944 0.7802 0.8223

STD 0.0117 0.0111 0.0000 0.0000 0.0159 0.0223 0.0258

Feature 4.6000 5.0333 4.6000 4.8333 5.2667 5.7000 4.5000

Heart_disease Accuracy 0.8839 0.8833 0.8911 0.8783 0.8533 0.8317 0.8865

STD 0.0198 0.0284 0.0199 0.0000 0.0183 0.0323 0.0000

Feature 5.3000 5.0000 5.6333 4.6667 6.6667 5.2333 4.6333

Indian Accuracy 0.7773 0.7727 0.7807 0.7779 0.7644 0.7491 0.8098

STD 0.0056 0.0107 0.0049 0.0000 0.0136 0.0210 0.0316

Feature 3.0000 3.1667 3.1667 2.9000 3.8667 3.2333 4.0333

Ionosphere Accuracy 0.9214 0.9286 0.9157 0.9452 0.9090 0.9210 0.9496

STD 0.0082 0.0172 0.0115 0.0000 0.0109 0.0187 0.0111

Feature 10.5000 11.3000 14.1333 5.5333 15.0000 7.0667 5.3000

Iris Accuracy 0.9667 0.9667 0.9667 0.9667 0.9667 0.9667 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Feature 1.0000 2.6333 2.4333 2.6333 2.3000 2.3667 2.4333

Planning Accuracy 0.8093 0.8046 0.8241 0.7991 0.7907 0.7769 0.8366

STD 0.0189 0.0212 0.0133 0.0000 0.0250 0.0171 0.0243

Feature 5.8000 6.1333 6.5667 5.0000 5.9667 4.5667 5.6667

Wine Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000 0.9971 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0087 0.0000

Feature 3.8667 6.7000 7.6667 6.5333 6.6000 8.2333 5.9333

Zoo Accuracy 0.9983 0.9917 1.0000 0.9867 0.9850 0.9517 1.0000

STD 0.0091 0.0190 0.0000 0.0000 0.0233 0.0404 0.0000

Feature 7.3000 9.2333 9.8000 8.0000 9.4333 10.4000 9.9333

https://doi.org/10.1371/journal.pone.0267041.t010
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15 datasets, reaching 91.96%, 2.05%, 2.14%, 1.84%, 2.32%, 2.91%, 2.60% higher than 6 algo-

rithms, respectively.

Fig 10 shows that each algorithm performs 30 independent experiments on 15 datasets and

the ratio of the average number of features selected by each algorithm. IWOAIKFS is inferior

to one or more of the algorithms on most data sets. However, from an overall point of view,

most of the feature ratios selected by IWOAIKFS are below the average. Therefore, it can be

considered to have better FS performance.

In summary, considering the three indicators (accuracy, standard deviation and number of

FSs), IWOAIKFS has better classification accuracy on 15 datasets than other optimizers. It also

exerts better effects on the standard deviation index and the average number of selected fea-

tures than most algorithms. Therefore, IWOAIKFS can be considered to have better superior

performance.

Fig 8. Total mean accuracy of IWOAIKFS compared to other algorithms under all datasets.

https://doi.org/10.1371/journal.pone.0267041.g008

Fig 9. The accuracy of IWOAIKFS compared to other optimizers.

https://doi.org/10.1371/journal.pone.0267041.g009
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5.4.3. IWOAIKFS convergence comparison with other optimizers. Fig 11 shows the

mean fitness convergence curve of IWOAIKFS and the other 6 optimizers under 15 datasets.

These algorithms are all tested and evaluated under the same population size and number of

iterations.

Fig 11(a)–11(o) represents the mean fitness convergence curve of different datasets under 7

algorithms. Except for the poor convergence performance on the Breast_cancer and Wine

datasets (Fig 11(c)–11(n)), IWOAIKFS shows better convergence performance in the remain-

ing datasets. The convergence speed of the algorithm determines the final classification accu-

racy. IWOAIKFS shows the best fitness value on the Heart_disease dataset, but its

classification accuracy does not perform well on the Heart_disease dataset. This is because

under 100 iterations of IWOAIKFS, the Breast_cancer and Wine datasets have reached the

optimal value, so their mean accuracy values have reached the optimal value. For the Heart_di-

sease data set, when the convergence of IWOAIKFS reaches the best and IKNN evaluates the

best subset, The constructed weight matrix M has random effects. Therefore, from the perspec-

tive of the convergence curve, IWOAIKFS shows better convergence performance overall.

5.4.4. IWOAIKFS Wilcoxon’s test and Friedman test. Table 11 is the p-value of Wilcox-

on’s test based on the mean classification accuracy of 30 independent experiments. Compared

with other optimizers, IWOAIKFS has better statistical significance on all datasets because its

test p-value is less than 0.05. In addition, since its standard deviation is 0, ASO, GWO, HHO,

SCA and SSA show the same statistical performance on the Blood, Bupa and Wine datasets;

ASO, GWO, HHO, SCA, SSA and WOA show the same performance for Iris.

Table 12 is the p-value of Friedman test results. It can be seen from Table 12 that the asymp-

totically significant p-value obtained by the Friedman test is far less than 0.01 (3.66E-12), so it

can be seen that there are significant differences between IWOAIKFS and the comparison

algorithms on the 15 UCI benchmark data sets; but the rank of IWOAIKFS The mean is the

smallest (1.53) among all contrasting algorithms, indicating that it has better optimization per-

formance than contrasting algorithms.

Fig 12 shows a boxplot of classification accuracy obtained by all optimizers performing 30

independent experiments on 15 datasets. In Fig 12, the lower quartile (Qj) represents lower val-

ues, the upper quartile (Q3) represents higher values, and the red line in the box represents the

median value. It can be seen from Fig 12 that IWOAIKFS ranks first in performance among all

algorithms, and has the best performance in 15 datasets.

5.4.5. IWOAIKFS results discussion. Through the experimental results and analysis in

Section 5.5, when the meta-heuristic algorithm is applied to the FS, IWOAIKFS has better

Fig 10. The selection ratio of IWOAIKFS compared to other optimizers.

https://doi.org/10.1371/journal.pone.0267041.g010
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overall optimization performance than other meta-heuristic algorithms. First of all, consider-

ing only the mean classification accuracy of 30 experiments, IWOAIKFS has the best search

performance, achieving a total mean classification accuracy of 91.96% for all datasets, at least

1.8% higher than other meta-heuristic algorithms, indicating that the proposed algorithm has

higher classification performance. Secondly, considering only the accuracy standard deviation

of 30 experiments, the standard deviation of SCA on all datasets is 0, indicating that SCA has

better stability than other algorithms. Only from the analysis of the number of FS, ASO

Fig 11. Convergence curve of IWOAIKFS versus other algorithms over all datasets (k = 5). (a) Birds, (b) Blood, (c)

Breast_cancer, (d) Bupa, (e) Car, (f) Chart, (g) Digits, (h) Glass, (i) Heart_disease, (j) Indian, (k) Ionosphere, (l) Iris,

(m) Planning, (n) Wine, (o) Zoo.

https://doi.org/10.1371/journal.pone.0267041.g011
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realized the selection of the least number of features on 6 datasets, and IWOAIKFS realized

the selection of the least number of features on 5 datasets. The proposed method is slightly

inferior to the ASO algorithm, but the difference between the two is not much. Therefore, it

can be considered that the IWOAIKFS and ASO algorithm have the same advantages in the

selection of the minimum number of features. However, if it is analyzed as a whole, the pro-

posed method has better superior performance than the rest of the algorithms in this paper.

In summary, analyzing from a single indicator, despite the effective results in some aspects,

IWOAIKFS does not show the best search performance in all indicators, and the algorithm

runs longer in experiments, causing certain limitations. Therefore, for IWOAIKFS and other

meta-heuristic FS methods, the search and evaluation of the optimal feature subset should be

changed according to the data set and actual needs to find the optimal feature subset in a spe-

cific scenario.

Conclusions

In this work, we start from two directions of exploring WOA optimization performance and

applying intelligent optimization algorithm to solve the FS, and form the following conclusions

through numerical simulation experiments and theoretical analysis.

1. We propose an improved whale optimization algorithm (IWOA). Aiming at the shortcom-

ings of slow optimization speed and low convergence accuracy of WOA, this method first

uses chaotic reverse elite individuals to improve the diversity of the initial population of the

algorithm. Then, We improve the traditional whale optimization algorithm by simulating

the individual preference of whales to hunt prey and the nonlinear weight update

Table 11. p-value of the Wilcoxon test for the classification accuracy results of IWOAIKFS and other optimizers (k = 5 and p> = 0.5 are in bold).

IWOAIKFS vs. ASO GWO HHO SCA SSA WOA ASO

Bird 3.64E-12 5.72E-12 1.07E-12 5.72E-12 1.82E-11 2.17E-11 3.64E-12

Blood 1.13E-12 1.13E-12 1.13E-12 1.13E-12 1.13E-12 5.96E-12 1.13E-12

Breast_cancer 2.71E-14 8.64E-14 1.69E-14 2.43E-13 4.17E-13 2.43E-13 2.71E-14

Bupa 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 6.14E-14 1.69E-14

Car 8.80E-13 6.08E-13 6.08E-13 5.20E-12 3.53E-12 8.80E-13 8.80E-13

Chart 4.64E-13 3.50E-13 1.55E-13 5.59E-13 6.58E-13 5.05E-13 4.64E-13

Digits 2.43E-11 2.60E-11 9.07E-12 2.71E-11 2.55E-11 9.05E-12 2.43E-11

Glass 8.73E-12 7.07E-12 7.89E-13 1.20E-11 1.26E-11 1.64E-11 8.73E-12

Heart_disease 8.71E-13 1.04E-12 8.78E-13 9.86E-13 8.34E-13 1.09E-12 8.71E-13

Indian 1.63E-11 7.79E-12 1.38E-11 1.86E-11 2.16E-11 2.64E-11 1.63E-11

Ionosphere 9.88E-12 1.68E-11 1.34E-11 1.53E-11 1.22E-11 1.71E-11 9.88E-12

Iris 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14

Planning 1.56E-11 1.84E-11 9.88E-12 1.56E-11 1.96E-11 8.04E-12 1.56E-11

Wine 1.69E-14 1.69E-14 1.69E-14 1.69E-14 1.69E-14 6.12E-14 1.69E-14

Zoo 2.71E-14 1.18E-13 1.69E-14 2.43E-13 2.90E-13 7.29E-13 2.71E-14

w|t|l 15|0|0 15|0|0 15|0|0 15|0|0 15|0|0 15|0|0 15|0|0

https://doi.org/10.1371/journal.pone.0267041.t011

Table 12. Friedman test results for datasets.

p-Value IWOAFS ASO GWO HHO SCA SSA WOA

3.66E-12 1.53 2.87 3.47 2.73 4.80 6.00 6.60

https://doi.org/10.1371/journal.pone.0267041.t012
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mechanism of whale group position movement. Finally, the experimental results of 8

benchmark functions and 8 meta-heuristic algorithms in different dimensions show that:

compared with the comparison algorithm, IWOA has smaller mean, standard deviation

and average fitness in the overall function optimization, and shows better statistically signif-

icant performance in Wilcoxon’s test and Friedman test, which verifies that IWOA has

higher convergence performance and local extremum escape ability.

2. We propose an improved K-Nearest Neighbor algorithm (IKNN). Aiming at the problem

that KNN cannot distinguish the similarity between samples by using simple Euclidean

Fig 12. Boxplot of IWOAIKFS versus other algorithms over all datasets (k = 5). (a) Birds, (b) Blood, (c)

Breast_cancer, (d) Bupa, (e) Car, (f) Chart, (g) Digits, (h) Glass, (i) Heart_disease, (j) Indian, (k) Ionosphere, (l) Iris,

(m) Planning, (n) Wine, (o) Zoo.

https://doi.org/10.1371/journal.pone.0267041.g012
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distance as the measure of similarity between samples, this method constructs the similarity

measure matrix M between samples through simulated annealing algorithm, and improves

KNN by combining with the new weighted classification. The experimental results with 5

classifiers under 8 benchmark UCI datasets show that the higher classification accuracy

indicates that IKNN has better classification performance than the comparison algorithm.

3. We propose a feature selection method based on IWOA and IKNN. Aiming at the problem

that the traditional feature selection method selects a large number of features and low clas-

sification accuracy when screening the optimal feature subset, this method uses the power-

ful optimization ability of IWOA to search for feature subsets, and uses the powerful

classification performance of IKNN to evaluate feature subsets, at the same time, IKNN is

optimized synchronously through IWOA, so as to obtain an improved feature selection

method. We conduct simulation experiments and analysis on 15 UCI benchmark datasets

with IWOAIKFS and 6 optimizers. The experimental results show that on the whole,

IWOAIKFS can filter out fewer feature subsets and has higher classification accuracy, show-

ing better search and convergence performance. In addition, the test results of Wilcoxon’s

test and Friedman test also show that IWOAIKFS has better statistical significance, which

further verifies the validity of IWOAIKFS.

Although the three improved methods proposed in this paper have better performance

than the original algorithm, they still have some shortcomings. For example, IWOA has poor

convergence performance when dealing with high-dimensional multimodal functions, and the

time complexity of IKNN and IWOAIKFS is too high. Therefore, we will conduct further

research on these issues in the future, as follows.

1. In the future, we plan to build a theoretical analysis system and evaluation system for meta-

heuristic algorithms, as well as a community communication module. Due to the problem

of over-using "metaphor" in the meta-heuristic algorithm, In order to better distinguish the

new meta-heuristic algorithm Whether (or improving the algorithm) can promote the

research in the field of optimization. the follow-up research in this paper will try to establish

a theoretical analysis system and evaluation system and a community communication mod-

ule for the corresponding meta-heuristic algorithm.

2. In the future, we plan to try to reduce the time complexity of IWOAIKFS. Since IWOAIKFS

is the fusion of IWOA and IKNN algorithm, and influenced by IKNN algorithm, its time

complexity is much higher than that of common feature selection methods. Therefore, fol-

low-up research will try to integrate the training and testing processes in IKNN to reduce

the time complexity of the IKNN algorithm, thereby reducing the time complexity of

IWOAIKFS.

3. In the future, we plan to build a large data set preprocessing system based on IWOAIKFS.

After we have built the evaluation framework of the meta-heuristic algorithm and reduced

the time complexity of IWOAIKFS, we can try to build a large data set preprocessing system

based on IWOAIKFS, which is used to quickly process complex data sets for faster entry

into machine learning.
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