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Abstract: Inhaled corticosteroids (ICS) are the most common asthma controller medication. An
important contribution of genetic factors in ICS response has been evidenced. Here, we aimed to
identify novel genetic markers involved in ICS response in asthma. A genome-wide association
study (GWAS) of the change in lung function after 6 weeks of ICS treatment was performed in
166 asthma patients from the SLOVENIA study. Patients with an improvement in lung function
≥8% were considered as ICS responders. Suggestively associated variants (p-value ≤ 5 × 10−6) were
evaluated in an independent study (n = 175). Validation of the association with asthma exacerbations
despite ICS use was attempted in European (n = 2681) and admixed (n = 1347) populations. Variants
previously associated with ICS response were also assessed for replication. As a result, the SNP
rs1166980 from the ROBO2 gene was suggestively associated with the change in lung function (OR
for G allele: 7.01, 95% CI: 3.29–14.93, p = 4.61 × 10−7), although this was not validated in CAMP.
ROBO2 showed gene-level evidence of replication with asthma exacerbations despite ICS use in
Europeans (minimum p-value = 1.44 × 10−5), but not in admixed individuals. The association of
PDE10A-T with ICS response described by a previous study was validated. This study suggests that
ROBO2 could be a potential novel locus for ICS response in Europeans.

Keywords: childhood asthma; exacerbations; forced expiratory volume in one second; genome-wide
association study; inhaled corticosteroids; single nucleotide polymorphism

1. Introduction

Asthma is the most common chronic disease in childhood and causes a high burden
on the quality of life of the patients and their families. In addition, asthma has an impact in
economic terms on the healthcare system, school, and/or work absenteeism [1,2]. This is a
complex respiratory disorder characterized by inflammation and reversible obstruction of
airways [3], and with diverse manifestations of symptoms, such as wheeze, breathlessness,
chest tightness, and cough [1].

Inhaled corticosteroids (ICS) are the most effective and widely prescribed asthma
preventive medication [1,2,4,5]. Patients with asthma benefit from ICS therapy through de-
creased airway inflammation, improved pulmonary capacity, and reduced asthma-related
symptoms and exacerbations [6]. Although ICS has demonstrated efficacy in improving
symptoms in most children with asthma, between 30% and 40% do not have a complete
response to ICS treatment. Furthermore, 10–15% of the children treated with ICS may
experience asthma exacerbations worsening or even suffer severe adverse effects [4,7].
Furthermore, not only interindividual differences in ICS response have been described,
but also differences among different populations and ethnic groups [4,8]. These differ-
ences have been evidenced to be the result of the interaction of several factors, including
comorbidities, environmental exposures, and the clinical characteristics of the disease,
among others [9]. For instance, the type of asthma (e.g., atopic or non-atopic) could partly
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contribute to the responsiveness to ICS therapy in some patients. Therefore, subjects with
atopic asthma and high levels of blood eosinophils could experience a greater benefit from
ICS in contrast to those with a neutrophilic pattern [10,11]. Nonetheless, the important
contribution of the individual’s genetic composition has also been suggested [12,13].

Different clinical markers that have been commonly used to evaluate ICS response
include the asthma control test [14], asthma symptoms scores [15,16], information about
exacerbations [17–19], and change in lung function after therapy [1,20]. Among these,
performing serial measurements of lung function after a short period of therapy is the most
commonly used marker for assessing treatment response [6,18]. The difference between
forced expiratory volume in one second (FEV1) values measured at the beginning of treat-
ment and a few weeks [21,22] or months [23] later provides substantial information about
ICS response [23]. Importantly, the change in FEV1 after 6 weeks of treatment with ICS has
been proposed to be a good predictor of long-term asthma control [21,22]. Although some
limitations have been attributed to the evaluation of the lung function (e.g., measurement
variability during the day, experience and potential errors driven by the operator, type and
calibration of the equipment, and the interpretative algorithm), this approach provides
a quantitative and objective measure of the response to asthma treatment [24,25]. Some
authors have suggested that variability in ICS response may be explained by the interaction
of several factors, including the individual’s genetic composition by means of heritability
estimates [9,26]. It has been suggested that approximately 60–80% of the total variation in
asthma treatment response might be explained by genetic factors [17,27,28].

Pharmacogenetic studies of ICS have been recently carried out mostly using the
genome-wide association study (GWAS) approach [27]. To date, a total of twelve published
GWASs have explored the association with ICS response mostly in European popula-
tions [28–39]. These have identified the association of 28 genetic variants located within
or near 17 genes with different measurements of ICS response, being the most common
definition of the change in FEV1 after a short period of treatment with ICS. Nonetheless,
the validation of some of these associations has suggested that the assessment of the history
of recent asthma exacerbations despite ICS treatment can also be used as a proxy of asthma
treatment response in different populations [38,39]. Despite the effort of these studies, the
genes identified do not explain the response to ICS treatment. Thus, these have not yet
provided real improvements in the clinical strategies of asthma management [40], and
further genetic variants are expected to be involved in ICS responsiveness [12].

Here, we conducted a pilot study to identify novel genetic variants associated with the
response to ICS treatment by means of a GWAS of the change in FEV1 after initiating ICS
therapy in asthma patients of European descent. Association with asthma exacerbations
of the markers identified was attempted in children and youths treated with ICS from
different populations.

2. Results
2.1. Characteristics of the Study Populations

One hundred sixty-six children and young adult asthma patients from the SLOVENIA
study [38,39,41] with reported use of any ICS in the last 12 months were included in the
discovery phase (Table 1). Of these, 94 were ICS non-responders (cases) and 72 were
responders (controls), based on a threshold of 8% FEV1 improvement after 6 weeks of
ICS therapy. The individuals included were 10.9 ± 3.4 years old on average, showing a
similar mean age in both groups (cases: 10.7 ± 3.2 years, controls: 11.2 ± 3.5 years). ICS
responders showed a substantial improvement in pulmonary capacity after 6 weeks of
treatment with ICS (16.9% ± 8.7%).
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Table 1. Clinical and demographic characteristics of the asthma patients from the SLOVENIA study included in the GWAS
of change in FEV1 after ICS treatment.

Total ICS Non-
Responders a ICS Responders b p-Value

Sample size 166 94 72 -
Gender, n (% male) 98 (59.0) 59 (62.8) 39 (54.2) 0.264 e

Mean age ± SD (years) 10.9 ± 3.4 10.7 ± 3.2 11.2 ± 3.5 0.461 f

Lung function
Mean basal FEV1 ± SD (%) c 87.1 ± 14.8 91.3 ± 12.7 81.6 ± 15.5 <0.001 f

Mean post-treatment FEV1 ± SD (%) d 93.7 ± 14.4 90.1 ± 13.6 98.5 ± 14.2 <0.001 f

Mean ∆FEV1 ± SD (%) 6.7 ± 12.1 −1.2 ± 7.8 16.9 ± 8.7 <0.001 f

a Asthma patients with ∆FEV1 < 8% after 6 weeks of ICS treatment; b Asthma patients with ∆FEV1 ≥ 8% after 6 weeks of ICS treatment;
c FEV1 measured at the beginning of ICS treatment; d FEV1 measured after 6 weeks of ICS treatment; e Pearson χ2 test (df = 1; α = 0.05);
f Mann–Whitney U test. FEV1: forced expiratory volume in one second; ∆FEV1: change in FEV1 after 6 weeks of ICS treatment; SD:
standard deviation; NA: not available.

Patients from the European and non-European studies included in the replication of
results assessing the association with asthma exacerbations despite ICS treatment showed
a similar mean age to those in the SLOVENIA study. However, followMAGICS included
older participants (17.2 ± 3.0 years). Since asthma exacerbations were differentially de-
fined among studies, there was variation in the exacerbation rates, ranging from 11.0%
in PACMAN to 66.4% in GALA II. Further details about the clinical and demographic
characteristics of the populations included in the replication with asthma exacerbations
despite ICS use can be found in previous publications [38,39,42].

2.2. Association Results of the Change in FEV1 after ICS Treatment

A total of 7.5 million common single-nucleotide polymorphisms (SNPs) with minor
allele frequency (MAF) ≥ 1% with an imputation quality (Rsq) ≥ 0.3 were tested for as-
sociation with the binary outcome related to the change in FEV1 after ICS treatment in
asthma patients from the SLOVENIA study. No evidence of genomic inflation due to
population stratification effects was revealed by the value of λGC = 1.00 (Figure S1). No as-
sociations were found at genome-wide significance level (p-value ≤ 5 × 10−8), but the SNP
rs1166980 located in the ROBO2 gene was found to be suggestively (p-value ≤ 5 × 10−6)
associated with ICS responsiveness in asthma patients (odds ratio (OR) for G allele: 7.01,
95% confidence interval (CI): 3.29–14.93, p = 4.61 × 10−7) (Figures 1 and 2).
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with that SNP for European populations from 1KGP (GRCh37/hg19 build). 
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urement of the change in FEV1 in the same SLOVENIA participants, since the risk allele 
for non-response to ICS was also associated with lower lung function improvement (β for 
G allele: −6.54, 95% CI: −9.74–−3.34, p = 9.41 × 10−5). However, no evidence of association 

Figure 1. Manhattan plot of association results of the change in FEV1 after ICS treatment in SLOVENIA. The logarithmic
transformation of the p-value (−log10 p-value) is represented on the y-axis, along with the chromosome position (x-axis).
The gray line indicates the suggestive significance threshold (p ≤ 5 × 10−6) considered for evidence of association with
ICS response.
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Figure 2. Regional plot of association results with the change in FEV1 after ICS treatment expressed as a binary variable
in SLOVENIA. Results are represented based on the significance of the association on the y-axis (−log10 p-value) and
chromosome position (x-axis) for each SNP as a dot. The SNP rs1166980 suggestively associated with ICS response is
represented by the purple diamond. The remaining SNPs are color-coded based on pairwise linkage disequilibrium
(r2 values) with that SNP for European populations from 1KGP (GRCh37/hg19 build).

The association of rs1166980 was also found when assessing the quantitative measure-
ment of the change in FEV1 in the same SLOVENIA participants, since the risk allele for
non-response to ICS was also associated with lower lung function improvement (β for G
allele: −6.54, 95% CI: −9.74–−3.34, p = 9.41 × 10−5). However, no evidence of associ-
ation was found for the SNP rs1166980 when the binary (OR for G allele: 1.23, 95% CI:
0.69–1.77, p = 0.453) or the quantitative variables (β for G allele: −0.03, 95% CI: −0.07–0.01,
p = 0.144) of the change in FEV1 after 2 months of ICS use were tested for association in the
independent study Childhood Asthma Management Program (CAMP) (Table S1).

2.3. Validation of the Association with Asthma Exacerbations despite ICS Use

The association of the SNP rs1166980 was not replicated in Europeans, Latinos/Hispanics,
and African Americans from ten independent studies participating in the Pharmacoge-
nomics in Childhood Asthma (PiCA) Consortium [43] when assessing asthma exacerbations
despite ICS use as an outcome. At genomic region level, a total of 5919 variants within
100 kilobases (kb) upstream and downstream from ROBO2 were assessed in Europeans.
From these, eleven SNPs were significantly associated with asthma exacerbations de-
spite ICS use after accounting for the 164 independent variants located within this region
(Bonferroni-like correction significance threshold of p ≤ 3.04 × 10−4). The SNP rs72891545
was the most significant association with ICS response using asthma exacerbations as the
outcome (OR for A allele: 4.79, 95% CI: 2.36–9.73, p = 1.44 × 10−5) (Table S2, Figure S2).
A total of 6453 variants within a +/−100 kb window from ROBO2 were evaluated in
admixed populations. However, no significant associations with asthma exacerbations
despite ICS were found after applying a Bonferroni-like correction (p ≤ 1.22 × 10−4 for
411 independent variants).
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2.4. Sensitivity Analyses Accounting for Asthma Severity

The association of the SNP rs1166980 with a binary variable of the change in FEV1
after ICS treatment remained statistically significant after also including basal FEV1 mea-
surements as a covariate in the regression models (OR for G allele: 7.21, 95% CI: 3.15–16.50,
p = 2.95 × 10−6). Similar results were found when a quantitative outcome of the change in
FEV1 was tested in association (β for G allele: −5.58, 95% CI: −8.72–−2.44, p = 6.42 × 10−4).

Further sensitivity analyses were performed in 2282 individuals from six of the eight
studies from PiCA from European descent populations with classification of asthma sever-
ity based on treatment steps [44]. Specifically, asthma severity was included as a covariate
in the regression models for the variant rs72891545. No major differences were found (OR
for A allele: 2.66, 95% CI: 1.58–4.45, p = 1.71 × 10−3) compared to the original association
models performed for the subset of patients with available information about treatment
steps (OR for A allele: 3.66, 95% CI: 2.08–6.43, p = 1.32 × 10−4).

2.5. In Silico Evaluation of the Variants Associated with Different Definitions of ICS Response

According to publicly available functional evidence from the Encyclopedia of DNA
Elements (ENCODE) [45], the ROBO2 intronic variant, rs1166980, associated with the
change in FEV1 in SLOVENIA, could be involved in the regulation of the gene expres-
sion, since this nucleotide change is related to the modification of the binding site for
different transcription factors (e.g., CTCF, Sox, and p300) [45]. Moreover, rs72891545, the
most significant association signal with asthma exacerbations, has also been predicted
to involve the modification of several transcription factor binding sites (ELF1, Myc, Sp4,
YY1, Zfx). Although no previous evidence of significant expression quantitative trait
loci (eQTL) or methylation quantitative trait loci (meQTL) was found for any of these
variants [45], both have been significantly associated as protein quantitative trait loci
(pQTL) (p ≤ 0.01) [46,47]. Specifically, rs1166980 has been associated with the expression
of 38 different proteins in plasma (Table S3) [48–50], including some involved in the im-
mune response (e.g., PI3, COLEC11, and TNFRSF21), inflammatory processes (HPGD),
and drug metabolism (TBXAS1). Moreover, it has been evidenced to be associated with
protein expression levels of PMEPA1, a negative regulator of the activity of transforming
growth factor β (TGF-β), which has been widely proposed to play a key role in allergy
and asthma pathophysiology [51]. On the other hand, rs72891545 had been previously
associated with the expression levels of 19 proteins [49] implicated in different functions,
including some related to asthma pathophysiology, such as the maintenance of the innate
immunity (ERAP2, FCN1, and SIGLEC9), collagen deposition (COL8A1), and the TGF-β
signaling pathway (MSTN) (Table S4). Additionally, several proteins, whose expression
could be regulated by these variants, had been previously associated with asthma-related
traits and/or allergic diseases (e.g., OLFML3, PCSK3, ZNF180, GALNT16, and KLK14)
(Tables S3 and S4) [52].

2.6. Validation of Previous Associations with ICS Response

Among the 26 SNPs previously associated with ICS response through GWAS ap-
proaches in studies independent from the PiCA consortium (Table S5), two variants were
found to be nominally associated with the binary outcome related to the change in FEV1
after 6 weeks of ICS treatment in the SLOVENIA study: rs2395672 at CMTR1 (OR for
G allele: 1.78, 95% CI: 1.03–3.05, p = 0.037) and rs3827907 at EDDM3B (OR for C allele:
0.52, 95% CI: 0.32–0.84, p = 7.40 × 10−3) (Table S6). However, these did not remain sig-
nificant after adjusting for the total number of variants assessed (p ≤ 1.92 × 10−3). At
the genomic-region level, a total of 33,617 variants located within a 100 kb window from
genes previously associated with ICS response were assessed. This resulted in evidence of
suggestive replication for two variants located in the intergenic region of PDE10A and T
after Bonferroni-like correction of the significance threshold within each genomic region:
rs9365939 (OR for G allele: 0.41, 95% CI: 0.26–0.65, p = 1.92 × 10−4) and rs2118353 (OR for
T allele: 0.41, 95% CI: 0.26–0.65, p = 1.92 × 10−4) (Table S7). However, these associations
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would not be considered significant after correcting for the total number of independent
SNPs tested across all the genomic regions (p ≤ 2.89 × 10−5 for 1728 independent variants).

3. Discussion

This is a pilot study describing the results of one of the few GWASs of the response to
ICS in asthma carried out in ICS-naïve patients to date. A variant located in the ROBO2
gene was the most significantly associated with a binary variable of ICS responsiveness
based on FEV1 change after 6 weeks of ICS treatment. Consistent with this finding, the same
result was also found with the quantitative variable of this change, although no evidence
of replication with the same outcome was found in an independent study considering
a wider timeframe. The association of ROBO2 was validated at genomic-region level,
by analyzing asthma exacerbations despite ICS use in Europeans. However, no evidence of
replication was found in Latinos/Hispanics and African Americans. Moreover, the effects
of the variants at ROBO2 might be driven by the response to asthma treatment rather
than disease severity since significance remained after including covariates as proxies of
asthma severity.

ROBO2 encodes one of the members of the roundabout guidance receptor’s family,
which are immunoglobulins highly conserved across species. Four ROBO proteins have
been identified in humans [53]. These are transmembrane receptors binding Slit guidance
ligands (SLIT) [53–55] with functions initially linked to the development of the nervous
system, including the modulation of axon guidance and cell migration [53–55]. However,
they have also been demonstrated to be involved in different processes, including some that
are part of the asthma pathophysiology. Specifically, ROBO/SLIT has been related to cell
adhesion, migration, growth, and survival [56], in addition to the morphogenesis of normal
and aberrant pulmonary tissues [56]. There is also some evidence suggesting the implica-
tion of the ROBO signaling pathway in the regulation of innate immunity [57,58]. Previous
studies have related the increased production of chemoattractants with the inhibition of
the ROBO expression, promoting the migration of immune cells from the blood circulatory
system to the pulmonary tissue and airway remodeling processes, decreasing the number
of alveoli [59]. Specifically, ROBO2 is involved in the signal transduction of SLIT2 [55],
which has been shown to have an important function in pulmonary diseases [55,58,60].
SLIT2 is implicated in the regulation of chemotaxis and migration of several types of
immune cells into the lung (e.g., leukocytes, T lymphocytes, dendritic cells, macrophages,
and neutrophils), preventing inflammatory processes [57,61,62]. Nonetheless, members of
ROBO/SLIT have also been found to be involved in the eosinophil chemotaxis induced
by eotaxin, enhancing allergic airway inflammation [63]. Although little is known about
its role in allergic processes outside the respiratory system, these pieces of evidence sug-
gest its potential implication in different types of allergic responses. In addition, SLIT2
has been found to inhibit the migration of monocytes from the systemic circulation and
their differentiation into fibrocytes in the lung, proliferation of fibroblasts, and collagen
production through TGF-β activity [64]. SLIT2 and ROBO2 have been evidenced to prevent
fibrotic processes in several diseases, including pulmonary fibrosis [64]. Moreover, Lin et al.
detected decreased levels of ROBO2 and SLIT2 in chronic obstructive pulmonary disease
(COPD) patients [58], a disease with underlying mechanisms shared with asthma [65,66].

These findings suggest that SLIT ligands could be involved in anti-inflammatory and
antifibrotic processes. Thus, ROBO proteins could also be involved in processes occurring
later in life with important implications in pulmonary disorders [57,64]. Interestingly,
Ning et al. found that ROBO2/SLIT2 could be involved in the migration of rat airway
smooth muscle (ASM) cells within the airway wall [67], which has been proposed to
be a key feature of the structural changes taking place in asthma pathophysiology [68].
The migration of ASM induced by platelet-derived growth factor was detected to be
inhibited by the administration of SLIT2 [67]. Furthermore, ROBO2 has been evidenced
to be an important factor in triggering airways constriction in asthma and COPD [69].
The expression levels of ROBO2 and SLIT2 have been negatively correlated with COPD
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progression [58]. Specifically, it has been hypothesized that the downregulation of both
genes could activate Cdc42 and Rac2 GTPases, promoting the migration of neutrophils and
T lymphocytes into the lung, triggering inflammation [58], a mechanism that could also
take place in asthma.

Additionally, ROBO2 has been suggestively associated with post-bronchodilator spiro-
metric measures in African Americans. Specifically, three intronic ROBO2 variants were
associated with FEV1 and the ratio between FEV1 and the forced vital capacity (FVC) mea-
sured after the administration of short-acting β2 agonists (SABA) [70]. Furthermore, this
gene was identified to be a shared genetic factor for asthma susceptibility among European,
African American, and Latino/Hispanic populations [71]. Ding et al. also suggested that
ROBO2 may be part of biological networks related to inflammatory diseases and disorders
of the immune system [71]. Altogether, this evidence suggests that ROBO2 could play an
important role in asthma phenotypes, including the response to ICS in asthma.

The findings of this study suggest the potential implication of ROBO2 in the response
to asthma treatment with ICS specifically in European populations, with a lack of evidence
of replication in Latinos/Hispanics and African Americans. This could be explained by
the fact that Latinos/Hispanics and African Americans widely differ from homogenous
populations in terms of linkage disequilibrium patterns, allele frequency, gene–gene, and
gene–environment interactions as a result of the recent admixture processes as the origin
of these populations [72]. In fact, previous studies have suggested the potential existence
of ancestry-specific genetic variation in the response to this medication [38,39].

As part of this study, we also assessed the replication of SNPs and genes that have
previously been implicated in ICS response, providing evidence of an association of the
intergenic region of the PDE10A and T genes with FEV1 change after ICS treatment.
However, this association was demonstrated for different SNPs from those described in the
study reporting the association of this genomic region with ICS response [28]. Interestingly,
evidence of replication had also been found for this locus with ICS response measured as
the occurrence or absence of asthma exacerbations in European populations [39]. These
findings suggest that PDE10A-T could play an important role in ICS response in asthma
patients, at least those of European descent. Furthermore, the association of this locus with
ICS response was first identified in children and adults, which has been now replicated in
children and young adults, suggesting the potential existence of some genetic factors shared
between childhood and adulthood asthma. However, further investigation is needed to be
able to better understand the genetic contribution to asthma treatment response in different
age groups.

The preliminary results of this study demonstrate the importance of omics approaches
to provide insights into asthma-related traits. Nonetheless, further investigation of the ge-
netic factors underlying ICS response in combination with the assessment of the molecular
modification of the individual’s genetic material in response to environmental exposures
is crucial to better understand the mechanisms underlying ICS responsiveness in asthma
patients [73,74].

This study has several limitations that need to be acknowledged. First, the sample size
of the discovery phase was limited, which could cause only one variant to be suggestively
associated with ICS responsiveness, with a lack of genome-wide significant associations.
Nonetheless, the fact that FEV1 was measured in ICS-naïve patients with asthma, an ap-
proach that is rare among studies, explains part of the difficulty in achieving a larger sample
size. Second, information related to spirometry recordings before and after a short period of
ICS treatment was available only in one independent study, and no evidence of replication
using the same measurement was found, which could be explained by the reduced number
of individuals included in the analyses and the different timeframe considered. However,
the association of ROBO2 with ICS response among asthma patients was also found when
evaluating the association with asthma exacerbations despite ICS treatment. Third, dif-
ferent definitions of asthma exacerbations were used based on retrospective information
from European and admixed asthmatic children treated with ICS, which could not be fully
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informative about the response to asthma treatment. Fourth, information about the specific
type of ICS used and the doses administered, or indices of treatment adherence were not
available for any of the studies evaluated. Fifth, covariates related to the type of asthma,
exposure to environmental triggers, or the presence of comorbidities were not included in
the analyses given the lack of such information.

In conclusion, this study suggests the association with a variant in ROBO2 and the
change in FEV1 after ICS treatment in European children and young adults with asthma.
This association was validated using asthma exacerbations despite ICS use as an alternative
outcome in independent European and admixed populations. Taken together with the bio-
logically plausible role of ROBO2 in pulmonary and immune functions, ROBO2 potentially
represents a novel locus determining the response to ICS in patients with asthma. Larger
studies coupled with functional evaluation are required to fully understand the role of
ROBO2 in responsiveness to ICS in patients with asthma.

4. Materials and Methods
4.1. Study Population Analyzed in the Discovery Phase

Patients with mild-to-moderate persistent asthma from the SLOVENIA study were
included in the GWAS of change in lung function after ICS treatment. Children and young
adults (5–18 years old) of Slovenian origin were included in this study. Co-existence of other
chronic inflammatory disorders, except for asthma and atopic diseases, was considered as
an exclusion criterion [38,41].

A subset of patients with reports of at least one use of any type of ICS and/or combina-
tion with long-acting β2 agonists (LABA) in the 12 months preceding the study enrolment
was analyzed. Availability of genome-wide genotypes, data on the change in FEV1 after
6 weeks of ICS therapy, and information regarding asthma exacerbations were consid-
ered as inclusion criteria in the GWAS analyses. FEV1, expressed as the percentage of
the predicted value based on sex, age, and height of the patients, was measured before
the beginning of ICS treatment (when the patients were ICS-naïve) and 6 weeks after the
start of the treatment using a Vitalograph 2150 spirometer (Compact, Buckingham, UK),
according to the standard guidelines [41,75]. On the basis of these measurements, the per-
cent change in FEV1 (∆FEV1) was calculated as (post-FEV1–pre-FEV1)/(pre-FEV1) × 100.
Based on a threshold of 8% FEV1 improvement, which has been shown to be a good pre-
dictor of asthma treatment response in children [38,76], participants were classified as ICS
responders (∆FEV1 ≥ 8%) or non-responders (∆FEV1 < 8%).

4.2. Genotyping and Imputation of Genetic Variants in SLOVENIA

The SLOVENIA samples were genotyped using the Illumina Global Screening Array-
24 v1.0 BeadChip (Illumina Inc., San Diego, CA, USA). Quality control (QC) analyses were
carried out with PLINK 1.9 [77,78] and genetic variants across the whole genome were
imputed following the procedures described elsewhere [38,39].

4.3. Association Testing with the Change in FEV1 Defined as a Binary Variable

The association of genetic variants with the binary variable of ICS response was
tested using logistic regression models with the binary Wald test implemented in EPACTS
3.2.6 [79], including age and sex as covariates. Association analyses were also adjusted
by the first two principal components (PCs) of genetic ancestry estimated by means of
EIGENSOFT [80]. This model was selected since it showed the best fit with the expected
values in terms of significance, assuming no association as null hypothesis attending to
λGC values, estimated through the R package gap [81], and quantile–quantile plots.

Results were filtered to retain common SNPs (MAF ≥ 1%), and imputation quality
Rsq ≥ 0.3 and variants that reached a significance threshold of p-value ≤ 5 × 10−6 were
deemed suggestively associated and followed up for replication in additional studies. This
threshold was set arbitrarily, following what has been commonly adopted by previous
GWAS [38,39].
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4.4. Association with the Quantitative Change in FEV1 after ICS Treatment

SNPs suggestively associated with the binary outcome related to the change in FEV1
after 6 weeks of ICS treatment were assessed in the same group of asthma patients from
the SLOVENIA study, but evaluating the association with the quantitative form of this
outcome. Linear regression models were performed through linear Wald tests in EPACTS
3.2.6 [79], adjusted by the same aforementioned covariates.

Validation was also attempted with the change in FEV1 after a short period under ICS
therapy in an independent study of European ancestry. Asthma patients with reported
use of ICS in the previous 12 months from the CAMP study were included in the analyses
(Table S1). ICS responders and non-responders were classified based on the change in
FEV1 after 2 months of ICS use using the same criteria considered in the discovery phase.
Genetic variants were imputed using phase 3 of the 1000 Genomes Project (1KGP) [82]
through the Michigan Imputation Server [83]. Further information is described in the
Supplementary Material. Binary and quantitative variables of the ICS response, measured
as the change in FEV1, were tested in association through logistic and linear regressions
using PLINK 1.9 [77,78], respectively. Validation of the association was considered for
nominally significant variants (p-value ≤ 0.05) with the same direction of the association
effect as in the discovery phase.

4.5. Replication of Results Analyzing the Association with Asthma Exacerbations despite ICS Use
in Additional Studies

The genetic markers found to be associated with the change in FEV1 after ICS treat-
ment were attempted for validation with the absence or presence of asthma exacerbations
despite the use of ICS. This was done in ten independent studies included in the PiCA
consortium [43]. Association testing was undertaken in asthma patients (2–25 years old)
treated with ICS in the previous year, separately performed in two groups of studies on the
basis of their ancestry.

On one hand, eight independent European studies were analyzed: BREATHE; Effec-
tiveness and Safety of Treatment with Asthma Therapy in Children (ESTATe); the follow-up
stage of the Multicentre Asthma Genetics in Childhood Study (followMAGICS); Genetics of
the Scottish Health Research Register (GoSHARE); the Pharmacogenetics of Asthma medi-
cation in Children: Medication with Anti-Inflammatory effects (PACMAN); the Pediatric
Asthma Gene Environment Study (PAGES); the Pharmacogenetics of Adrenal Suppression
with Inhaled Steroids (PASS) study; SLOVENIA. Additionally, two recently admixed popu-
lations with African ancestry were also included in association analyses: Latinos/Hispanics
and African Americans from the Genes–Environment and Admixture in Latino Americans
(GALA II) study, and African Americans included in the Study of African Americans,
Asthma, Genes, and Environments (SAGE), respectively.

Severe asthma exacerbations were defined as the need for emergency care, hospitaliza-
tions, or systemically administered corticosteroids because of asthma in the previous 6 or
12 months depending on the study. Alternatively, moderated exacerbations evidenced by
unscheduled general practitioner or respiratory system specialist visits and school absences
were considered for BREATHE–PAGES, BREATHE, and followMAGICS given the lack of
information. ICS use was defined using the same criteria described for participants in the
SLOVENIA study. Further description of the characteristics of the study populations, geno-
typing, imputation, and association analyses are available in the Supplementary Material
and elsewhere [38,39,42].

Association with the presence/absence of asthma exacerbations despite ICS use
was assessed in each study using the same methodology described in previous publi-
cations [38,39,42]. The association of the SNPs identified in the discovery phase was
separately evaluated in each ancestry group of studies. Replication was carried out at the
SNP level, but also genomic regions were considered, including variants located within a
100 kb window upstream and downstream from the limits of the genes where the variants
were located. Only common SNPs with MAF ≥ 1% and Rsq ≥ 0.3 shared among the
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populations included in each group were included. Replication results were considered
significant for those SNPs that reached the Bonferroni-corrected significance threshold, esti-
mated as α = 0.05/number of independent signals within each genomic region, an approach
considered to provide the closest approximation to permutation-based methods [84]. For
this, independent variants were separately estimated for Europeans and non-Europeans
through empirical autocorrelations based on the –log10 p-value of each SNP analyzed using
the R package coda [77,78,85].

4.6. Sensitivity Analyses of Asthma Treatment Response

Sensitivity analyses were carried out for the variants identified to ascertain whether
the association effect detected was driven by disease severity rather than a response to
asthma medications. First, regression analyses evaluating the association with the binary
variable of the change in FEV1 after ICS therapy were also adjusted by the FEV1 measured
at the beginning of ICS therapy. On the other hand, a modified classification into treatment
steps [44] as a proxy of asthma severity was included as a covariate. Nonetheless, this
could not be carried out in SLOVENIA, since this study had incomplete information
about the different medications included in the definition of treatment steps. Therefore,
sensitivity analyses accounting for treatment step classification assessing the association
with asthma exacerbations despite ICS use. The same methodology previously described
was applied [39,42].

4.7. In Silico Functional Evaluation of Variants Associated with ICS Response

The potential functional implications of the variants suggestively associated with the
change in FEV1 after 6 weeks of ICS treatment in SLOVENIA and those with evidence of
replication with asthma exacerbations in ICS users were assessed using several publicly
available databases. The potential role as eQTL, DNase hypersensitivity sites, and histone
marks was assessed using HaploReg v4.1 [86], based on the functional evidence from
ENCODE [45]. Significant evidence as pQTL or meQTL previously reported by publicly
available studies was also explored using the PhenoScanner v2 tool [46,47].

4.8. Validation of Previous Associations with ICS Response

Previous GWASs, apart from those carried out as part of the PiCA consortium, had
identified a total of 26 SNPs near or within 15 genes associated with ICS response in
several populations (Table S5). Validation of these associations was attempted at SNP
level using the results of the GWAS of the binary variable of the change in FEV1 after ICS
treatment performed in the SLOVENIA study. Evidence of replication was considered
for significant variants at the nominal level (p ≤ 0.05) with the same direction of the
association effect as in the discovery phase. Replication was also evaluated at the genomic-
region level, including a 100 kb window from the limits of the genes of ICS response
previously identified. A Bonferroni-like correction was applied accounting for the number
of independent variants analyzed within each genomic region. To avoid being too stringent
and conservative, evidence of replication was considered for those association signals
reaching the Bonferroni-corrected significance threshold estimated as α = 0.05/number
of independent variants [38,39] instead of considering all the variants within the region,
which could be correlated by LD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jpm11080733/s1, Supplementary methods, Figure S1: Quantile-quantile plot of association
results of ICS response measured as the binary outcome related to the change in FEV1 after ICS
treatment, Figure S2: Regional plot of association results with asthma exacerbations despite ICS
use in European children and young adults, Table S1: Clinical and demographic characteristics
of the asthma patients treated with ICS from CAMP included in the evaluation of the association
with the change in FEV1 after ICS therapy, Table S2: Genomic-region replication of ROBO2 with
asthma exacerbations despite ICS use in European populations. Evidence for significant variants
after Bonferroni-like correction, Table S3: Proteins with expression levels in plasma associated with
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rs1166980, Table S4: Proteins with expression levels affected by the SNP rs72891545, Table S5: Genes
associated with ICS response by genome-wide association studies published to date, Table S6: Results
of SNP-level replication of previous associations of ICS response in the results of the GWAS of the
change in FEV1 after ICS treatment performed in the SLOVENIA study, Table S7: Genomic-region
replication of previous associations of ICS response. Evidence of association with the change in FEV1
after ICS treatment in asthma patients.
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