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Abstract: The nonrigid point set registration is one of the bottlenecks and has the wide applications
in computer vision, pattern recognition, image fusion, video processing, and so on. In a nonrigid
point set registration problem, finding the point-to-point correspondences is challengeable because of
the various image degradations. In this paper, a robust method is proposed to accurately determine
the correspondences by fusing the two complementary structural features, including the spatial
location of a point and the local structure around it. The former is used to define the absolute distance
(AD), and the latter is exploited to define the relative distance (RD). The AD-correspondences and
the RD-correspondences can be established based on AD and RD, respectively. The neighboring
corresponding consistency is employed to assign the confidence for each RD-correspondence.
The proposed heuristic method combines the AD-correspondences and the RD-correspondences to
determine the corresponding relationship between two point sets, which can significantly improve the
corresponding accuracy. Subsequently, the thin plate spline (TPS) is employed as the transformation
function. At each step, the closed-form solutions of the affine and nonaffine parts of TPS can be
independently and robustly solved. It facilitates to analyze and control the registration process.
Experimental results demonstrate that our method can achieve better performance than several
existing state-of-the-art methods.

Keywords: nonrigid point set registration; structural feature; absolute distance; relative
distance; correspondence

1. Introduction

Nonrigid point set registration is broadly applied in computer vision fields, such as face recognition,
fingerprint matching, object tracking, remote sensing, medical image processing, and simultaneous
localization and mapping (SLAM) [1–6].

The feature points that are used in the point set registration methods are extracted from the
corresponding images, which may include edges [7], corners [8], SIFT [9], ORB [10], and so on. These
feature point sets can well preserve the crucial structural features of images. Let the model point
set and the scene point set be represented by XM×D = [xT

1 , xT
2 , . . . , xT

M]
T and YN×D = [yT

1 , yT
2 , . . . , yT

N]
T,

respectively, where M and N are the number of points in the point sets and D is the dimension of
the feature points. The aim of the point set registration methods is to find the interpolation function
f (X;θ) to recover the spatial transformation from X to Y, where θ represents the parameters of
the interpolation function. Once the correspondences are determined, a set of equations can be
established to solve the transformation functions. However, the correspondences are unknown in
practice. Point set registration can be divided into the two closely related subproblems: determine the
correspondences and estimate the transformation. Nonrigid transformation is flexible and irregular so
that the complicated interpolation functions with a large number of parameters have to be adopted.
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Thus, recovery of the nonrigid transformation function tends to be an ill-posed problem unless there
are a sufficient number of correct correspondences. However, the image degradations, including
large deformations, noise, outliers, occlusion, and rotation, make it hard to find adequate correct
correspondences. For instance, many objects are composed of several parts following a certain
distribution pattern, such as Chinese characters. The image degradation can lead to that several parts
of the object significantly deviate from their original positions. In this case, the Euclidean distance
between the model points from these parts and the scene points from the corresponding parts will
be large. If the methods merely rely on the Euclidean distance to determine the correspondence,
it will be difficult to establish the accurate correspondences among the points from deviating parts.
However, due to physical and geometric constraints in the real world, the local structures are stable
and reliable even though the point set is going through severe degradations. For example, whether
one is smiling or laughing, the points that represent the five sense organs on the face can well maintain
their own internal structural relations. The local descriptors, such as shape context (SC) [11], can be
adopted to generate the descriptions of the local structures around the points. We can retrieve the
pointwise correspondences by comparing the similarities of the local structural descriptions rather
than Euclidean distance between their spatial locations. It can help to preserve the relations of the
point pairs in which the spatial locations are far, but the local structures are similar. Therefore, the local
structural descriptions-based correspondences can be regarded as a good supplement.

In this paper, we propose a robust method for the nonrigid point set registration by fusing
different structural features to determine the correspondences between the point sets to be matched.
The structural features are classified into two types. The first type is the spatial location of a point.
Ideally, if the spatial transformation between two point sets is completely recovered, the feature points
should approximately overlap with their corresponding points. We can directly compare the spatial
locations of two points to measure their corresponding relations, and the distance between the spatial
locations of two points is defined as the absolute distance (AD). Many kinds of distance can be employed
to define the AD, such as Mahalanobis distance, Manhattan distance, and Euclidean distance. Because
Euclidean distance is simple, general, and convenient to calculate, we adopt Euclidean distance as the
AD. Gaussian kernel is employed to define the AD-correspondences based on the AD. It is convenient
to directly convert AD into AD-correspondence using Gaussian kernel. Further, Gaussian kernel can
assign strong and weak correspondences to the point pairs with small and large AD, respectively.
Moreover, through adjusting the variance of Gaussian kernel, we can control the search range of the
AD-correspondences. This can be utilized to determine the corresponding relations from coarse to
fine. The second type is the distributions of the remaining points around the selected point. We use
the local descriptors, such as SC, to measure the relative distance (RD) of the local structures between
the points and determine the RD-correspondences. SC can efficiently inform the context structural
information that relies purely on the points coordinates. It is translation-invariant and can maintain
stable performance under the degradations of the local deformations, noise, and many outliers [11,12].
Besides, it can also be invariant to rotation by adopting the tangent vector at each point as the positive
X-axis. By introducing the neighborhood corresponding consistency, the adverse effects derived
from mismatches of RD-correspondences can be suppressed. According to the proposed heuristic
method, AD-correspondences and RD-correspondences are combined to establish the collaborative
correspondences. Based on the obtained correspondences, recovery of the transformation function can
be treated as a least square problem. TPS is adopted as the transformation function. Its parameters
can be explicitly divided into affine and nonaffine parts, and thus TPS possesses the clear physical
meaning [13]. In our method, the affine and nonaffine parts are theoretically separated and can be
independently solved. It makes the registration process have the clear physical meaning, and provides
convenience to analyze and control the registration process. Experimental results demonstrate that our
method outperforms several existing state-of-the-art methods in most scenarios.

The remainder of this paper is organized as follows: Section 2 reviews the previous work,
Section 3 presents the proposed method, Section 4 gives convergence analysis, Section 5 discusses the
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computational complexity, Section 6 gives the experimental results, and finally, Section 7 concludes
this paper.

2. Previous Work

In recent decades, a number of good methods have been developed to deal with the nonrigid
point set registration problems. Here, we give a brief review.

The method of iterative closest points (ICP) [14,15] may be the most popular iterative point
registration method. This technique establishes a binary matrix to represent the corresponding
relationship based on the nearest neighborhood strategy. The ICP method requires that the two
point sets are close enough, otherwise, a number of false correspondences are generated to severely
affect the performance. In order to improve the robustness of ICP, many famous methods are
developed by relaxing the binary corresponding constraints. Chui et al. [16,17] proposed the famous
thin plate spline-robust point matching (TPS-RPM) method. In this work, the authors designed
a general framework to iteratively determine the fuzzy correspondences and estimate the spatial
transformation based on soft assignment and deterministic annealing. Another representative work is
coherent point drift (CPD) that models the point set registration as a probability density estimation
problem [18,19]. This method lets one point set be taken as the centroids of Gaussian mixture model
(GMM), and achieves the registration by making the GMM centroids to fit the other point set under the
expectation–maximization (EM) framework. Besides, in [20], the point sets are treated as two kernel
densities, and the point set registration is achieved by maximizing the kernel correlation (KC) between
them. An improved version of KC work, GMMREG, can be found in [21] by taking the L2 distance to
measure the similarity between two Gaussian mixtures. Later, Ma et al. [22] and Hasanbelliu et al. [23]
refined the measure of the similarity between Gaussian mixtures by L2E (namely, RPM-L2E) and
Cauchy–Schwarz divergence. By refining the models to capture the spatial distributions of point sets,
Tao et al. [24], Wang et al. [25], and Zhou et al. [26] accomplished the point set registration using
nonuniform Gaussian mixture models, asymmetric Gaussian mixture models, and Student’s t mixture
models, respectively. The above methods [14–26] mainly utilize the spatial locations of the feature
points. However, they neglect the local structures around the feature points that are very important to
help determine the corresponding relationship between different point sets.

Through introducing the local geometric characteristic, many good methods were
developed [27–37]. Zheng et al. [27] proposed a robust nonrigid matching method by preserving local
neighborhood structures (RPM-LNS). The local structures were interpreted as a simple graph, and
were preserved by maximizing the number of matched edges between two corresponding graphs.
Yang et al. [28] proposed GLMDTPS by designing a global and local mixture distance to determine the
corresponding relationship. Ma et al. [29] developed a robust point method by preserving the global
and local structures (PRGLS). In [30], the authors used k-connected neighbors to construct connectivity
matrix, and cast the local structures preservation to minimize the weighted least square error. In [31],
the authors proposed the mixture structure descriptor to define the pointwise distance, and designed
two energy functions to simultaneously preserve the global and local structures, respectively. In [32,33],
Ma proposed a novel method named “MR-RPM” by adopting the manifold regularization to catch
the underlying structure of the point sets and help to learn the transformation. In [34], the authors
achieved the nonrigid point registration by using two local descriptors of the connectivity matrix and
Laplacian coordinate to preserve the geometry structures. In [35,36], Song and Fan proposed a nonrigid
registration method via global–local topology preservation (GLTP). The local linear embedding (LLE)
was employed to preserve the local topological structures. By taking a local geometric constraint as
a regularizer, and designing a semisupervised EM framework, a feature-guided Gaussian mixture
model for point set registration was presented in [37]. Next, a brief analysis of these methods is
given in [27–37]. In conclusion, the first strategy of the methods is to estimate the correspondences
by fusing various structural features, and the second is to introduce spatially constraints to preserve
local structural topology. The above two strategies can be utilized together. These methods are very
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constructive and notable to improve utilization efficiency of the structural information. There are still
some details that need to be addressed. For the first strategy, the methods in [27,29–33,37] employ
multiplicative model to fuse the global and local structures. It mainly concentrates on the point pairs
that have both small Euclidean distance and similar local structures. It is efficient when the point
sets are compact and simple. However, this model might be not able to find enough correspondences
when the point sets have complicated structures, such as Chinese characters. Besides, most of them
take less account of efficient design to handle mismatches. The performance of these methods would
be sensitive to the large deformations and outliers. For instance, the mixture distance in [28] can
be used to search accurate correspondences without outliers. Nonetheless, the outliers can reduce
the discriminative ability of the mixture distance, which leads to generate mismatches to degrade
performance. For the second strategy, [27,30–37] adopt different spatially constraints, such as the
neighboring connectivity matrix and classical manifold regularization techniques, to maintain stability
of local structures in the registration process, which can be treated as a regularizer. This assumption is
very reasonable. But, once the accurate corresponding relationship is not established, this strategy does
not perform well. Besides, in our paper, we employ TPS as the spatial transformation. Its parameters
can be explicitly decomposed into the affine and nonaffine parts. Therefore, we can respectively
add regularization terms to the affine and nonaffine transformation. Experimental results show that
it can efficiently prevent arbitrary spatial transformation. Thus, we focus on establishing accurate
corresponding relationship in this paper.

In order to handle large deformations, Du et al. [38] developed a novel method based on heuristic
tree. This method first built the heuristic tree using the shape similarities that are derived by affine
ICP. Then TPS and CPD can possessively accomplish the nonrigid point set registration along the
tree. This method requires a set of point sets to build the tree. In [39], the local structure preservation
theories were exploited to remove mismatches for improving the corresponding accuracy, which is
named “LPM.” This method requires preregistration to determine putative one-to-one correspondences.
Graph techniques were also exploited for point set registration problems [40–43]. In [40], the graph
centralities that are combined with the spatial information of point sets were regarded as priors to be
embed with CPD. In [41,42], the authors developed a graph-based point registration method (namely,
FGM). They factorized the large pairwise affinity matrix into smaller matrices that encode the local
structure of each graph and the pairwise affinity between edges. In [43], a new third-order graph
matching technique was developed to determine the correspondences. Graph-based methods provide
a novel and creative way to handle with the nonrigid point set registration problems. However,
graph-based methods should further improve their performance when there exist data degradations of
noise and outliers.

There are also many other excellent methods for nonrigid point registration and we just cite a few
here. More methods can be found in good reviews like [44,45].

3. Methods

In this section, we first defined the AD and AD-correspondences and the RD and
RD-correspondences. Then the AD-correspondences and RD-correspondences are combined by
the proposed heuristic method to determine the corresponding relationship between two point sets.
Once the correspondences are obtained, the transformation estimation can be modeled as a least square
problem. Fortunately, we can independently get the closed-form solutions of the affine and nonaffine
parts of TPS, when the correspondences are given. Subsequently, we introduced the deterministic
annealing scheme and analyzed the convergence properties. Finally, we gave the computational cost
of the proposed method.
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3.1. Absolute Distance and Correspondence

AD is defined as the Euclidean distance between the spatial locations of the points. Given a point
f (xm) from the model point set f (X) and a point yn from the scene point set Y as the reference points,
the AD between f (xm) and yn is denoted as

dAD( f (xm), yn) = ‖ f (xm) − yn‖
2. (1)

Based on AD, several available forms of correspondences can be established. The ICP approach is
broadly used in practice. It employs AD and the nearest strategy to define pointwise correspondences.
The correspondence between f (xm) and yn can be expressed as

cICP( f (xm), yn) =

{
1 dAD( f (xm), yn) ≤ min{dAD

min,κ}
0 others

, (2)

where dAD
min = min{dAD( f (xm), y1), . . . , dAD( f (xm), yN)} and κ is a threshold to reject the

correspondences with large AD. However, ICP only utilizes the structural information between
the reference point and its nearest point in the other point set. It is too rough to detect the complicated
relations between point sets. If the initial positions of the point sets are not overlapping enough, a
number of false correspondences are generated in the ICP approach. In addition, because the nonrigid
deformations vary greatly in different parts of the same object, it is difficult to set an appropriate
threshold to reject the putative correspondences.

In our paper, we use Gaussian kernel to define the AD-correspondence between f (xm) and yn,
which is written as

cAD( f (xm), yn) = exp (−dAD( f (xm), yn)/T), (3)

where T is the variance or temperature of the Gaussian kernel. According to Equation (3),
the corresponding relationship between f (xm) and scene point set Y can be represented by

cAD( f (xm), Y) =
N∑

n=1

cAD( f (xm), yn). (4)

At the beginning of the registration process, because the AD between the model point X and
the scene point Y is usually large, it is difficult to establish the accurate pointwise correspondences.
A robust way is to utilize a Gaussian kernel with high temperature T to preserve the sufficient
correspondences as the candidates. Notably, although the point pairs with small AD initially possess
a closer relationship than the point pairs with large AD, the point pair with the smallest AD is not
necessarily the correct correspondence. Different from ICP arbitrarily employing 0–1 correspondence,
our method not only retains the point pairs with the smallest AD to participate in the determination of
the correspondences but also leaves the chance for all the point pairs to improve their roles gradually.
When the temperature T decreases, Gaussian kernel pays more attention on the local structures, and
the AD-correspondences are increasingly refined. The correspondences of point pairs with small AD
play increasingly important roles. Specifically, when the temperature T is low enough, this approach
corresponds to the nearest strategy.

3.2. Relative Distance and Correspondence

As the concise representations of the images, the point sets preserve abundant local structures.
The local structures are stable and reliable, despite the point set going through severe degradations
because of the physical and geometric constraints in the real world. Given the reference points f (xm)

and yn, we can detect their correspondences by comparing the similarity of their surrounding local
structures, where the similarity is defined as RD.
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Herein, SC is employed as the local structural descriptors. SC adopts a group of well-designed
bins in log-polar space to catch the spatial distributions of the remaining points with respect to the
reference points. Suppose hX

m(s) and hY
n (s) are the number of points in s− th bin with respect to the

reference points f (xm) and yn, respectively. The RD between two points is defined by the χ2 test
statistic, which is denoted as

dRD( f (xm), yn) =
1
2

S∑
s=1

[hX
m(s) − hY

n (s)]
2

hX
m(s) + hY

n (s)
. (5)

Based on RD, the preliminary RD-correspondences can be recovered as one-to-one mapping
by bipartite graph matching techniques, such as the Hungarian method [46]. If f (xm) is matched
to yn, the RD-correspondence between two points is TRUE and c̃RD( f (xm), yn) = 1. Otherwise,
the RD-correspondence between two points is FALSE and c̃RD( f (xm), yn) = 0.

However, it cannot be guaranteed that there is no mismatch among the preliminary
RD-correspondences. Herein, we exploit neighboring corresponding consistency to assign confidence
for each correspondence to restrain the adverse impacts of mismatches. The main motivation is that the
neighborhoods of points that are correctly matched should also be matched. Suppose the corresponding
point of the model point f (xm) is yn. First, we find K closest points of f (xm) in model point sets, and K
closest points of yn in scene point sets, when the RD-correspondences are TRUE. The closest points of
f (xm) and yn are, respectively, denoted as

{
f
(
xπ(m,k)

)}
and

{
yv(n,k)

}
, where k = 1, 2, . . . , K, π(m, k) and

v(n, k) represent the serial number of the k − th closest point to f (xm) and yn, respectively. Second,
based on the one-to-one correspondences determined by the SC, we can obtain the corresponding
points of

{
f
(
xπ(m,k)

)}
in the scene point sets, which are denoted as

{
yv(n,k)

}
, where k = 1, 2, . . . , K and

yv(n,k) is the corresponding point of f
(
xπ(m,k)

)
. Third, we use consistent distance dC to evaluate the

consistency between
{
yv(n,k)

}
and

{
yv(n,k)

}
dC( f (xm), yn) =

K∑
k=1

(
‖yv(n,k)‖ − ‖yv(n,k)‖

)2
. (6)

Subsequently, the confidence between f (xm) and yn is defined as follows

ηmn = exp[−dC( f (xm), yn)/T]. (7)

The final RD-correspondences are determined as follows

cRD( f (xm), yn) = ηmnc̃RD( f (xm), yn). (8)

As illustrated by Equations (6)–(8), if
{
yv(n,k)

}
and

{
yv(n,k)

}
are highly consistent, the consistent

distance is small, and the corresponding confidence between f
(
xπ(m,k)

)
and yn is high. Otherwise,

the confidence is low. Specially, if
{
yv(n,k)

}
and

{
yv(n,k)

}
are identical, the confidence ηmn equals 1.

Besides, the correspondences are also involved with the temperature T. We can maintain much
RD-correspondences by employing high temperature T. Through reducing T, the requirement of the
corresponding consistency becomes more and more rigorous. In the end, when T is low enough, only
the RD-correspondences with zero or approximately zero consistent distance are preserved.

3.3. Correspondence Collaboration

As illustrated in Sections 3.1 and 3.2, AD-correspondences and RD-correspondences are derived
from different structural features. The point sets contain multiple structural features in scales and
patterns. In order to efficiently utilize the structural features, the methods cannot merely rely on
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single type of structural feature. Here, we fuse various structural information by the collaborative
correspondences as follows

c( f (xm), yn) = Tρ · cRD( f (xm), yn) + cAD( f (xm), yn), (9)

where ρ is a parameter to control the effects of the RD-correspondence. In the registration process,
AD-correspondences and RD-correspondences are complementary and collaborative to handle various
cases. Given reference points f (xm) and yn, in one case when the AD is small, the AD-correspondence
is strong and plays a fundamental role in the collaborative correspondence. Moreover, if the
RD-correspondence between f (xm) and yn is TRUE with high confidence, the collaborative
correspondence is further strengthened by the RD-correspondence. Thus, this pair of points is assigned a
strong corresponding relationship and plays a dominant role in the following registration process. If the
RD-correspondence is FALSE or TRUE with low confidence, the collaborative correspondence can still
maintain strong relation because of the AD-correspondence. In another case, the nonrigid deformations
frequently make some local areas move away from their original positions, which leads to the AD being
large and the AD-correspondence being weak. However, by comparing the RD of the local structures,
RD-correspondences of the points in these local areas are likely to be established. The collaborative
correspondences of these points are mainly determined by RD-correspondences and play an auxiliary
role in the following registration process. Notably, these corresponding local areas are matched more
accurately step by step, which can lead to smaller ADs and stronger AD-correspondences. Thus,
an increasing number of point pairs that simultaneously have strong collaborative correspondences
can help us improve the registration accuracy.

3.4. Transformation Estimation

Based on the collaborative correspondences, the corresponding relationship and confidence
between f (xm) and yn can be defined as

pmn =
c( f (xm), yn)

ςN
M +

N∑
q=1

c( f (xm), yq)

, (10)

where ς is a parameter to suppress outliers, P = {pmn}M×N is the corresponding matrix, and

let
N∑

n=1
pmn = 1 by means of normalization. After the corresponding relationship is determined,

the transformation estimation can be treated as a least square problem. We adopt the TPS function
as the transformation function [13]. The greatest merit of TPS is that its parameters can be explicitly
decomposed into the affine and nonaffine parts. Let xm = [1, xm] and yn = [1, yn] be the homogeneous
coordinates of xm and yn, respectively. The new location of point xm after TPS transformation is
represented as follows

f (xm) = xmd +φmw, (11)

where d ∈ R(D+1)×D and w ∈ RN×D represent the affine and nonaffine parts, respectively, and φm

is the m− th row of kernel matrix Φ =
{∥∥∥xs − xl

∥∥∥2
ln

∥∥∥xs − xl
∥∥∥} ∈ RM×M. Let X = [xT

1 , xT
2 , . . . , xT

M]
T

and

take QR decomposition of X, the affine and nonaffine warping spaces are separated, which is written as

X = QR = [Q1Q2]R, (12)

where Q1 ∈ RM×(D+1) and Q2 ∈ RM×(M−D−1) are orthogonal. Because the boundary constraint of TPS

is given by X
T

w = 0, we must have
w = Q2w̃. (13)
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Let Φ = QT
2 ΦQ2 and Φ̃ = QT

1 ΦQ1, then there must be Φ = Q1Φ̃QT
1 + Q2ΦQT

2 . With the above
analysis and without changing transformation, Equation (11) can be rewritten into

f (xm) = xmd + q2,mΦw̃, (14)

where q2,m is the row m of Q2. In order to smooth the nonaffine parts of TPS, a regularization term
λ1wTΦw is added to the cost function. Here, λ1 is a free parameter to control the effects of the
regularization term. Based on the above analysis, the cost function can be written as

minJ(d, w̃) =
M∑

m=1

∥∥∥̃ym − xmd− q2,mΦw̃
∥∥∥2

+ λ1Ttr(w̃TQT
2 ΦQ2w̃) + λ2Ttr

[
(d− I)T(d− I)

]
, (15)

where ỹm =
N∑

n=1
pmnyn can be treated as the newly estimated positions, (d− I)T(d− I) is a term to

regularize the affine transformation, in which λ2 is a free parameter to control it. Notably, λ2 is much
smaller than λ1 in order to give affine transformation more freedom. If considering Equation (13),
the compact form of Equation (15) can be represented as follows

minJ(d, w̃) =
∥∥∥∥Ỹ−Q1Rd−Q2Φw̃

∥∥∥∥2
+ λ1Ttr(w̃T

Φw̃) + λ2Ttr[(d− I)T(d− I)], (16)

where Ỹ = [̃yT
1 , ỹT

2 , . . . , ỹT
N]

T
. Let ∂J

∂dT = 0 and ∂J
∂w̃T = 0, we have

RTQT
1 Q1Rd + RTQT

1 Q2Φw̃ + λ2T(d− I) = RTQT
1 Ỹ (17)

Φ
T

QT
2 Q1Rd + Φ

T
QT

2 Q2Φw̃ + λ1TΦw̃ = Φ
T

QT
2 Ỹ. (18)

According to the properties of QR decomposition, we have

QT
1 Q2 = 0 (19)

QT
1 Q1 = ID+1 (20)

QT
2 Q2 = IM−D−1 (21)

Insert the above expressions into Equations (17) and (18), then the final solution can be expressed as

d = (RTR + λ2T I)
−1
(RTQT

1 Ỹ + λ2T I) (22)

w̃ = (Φ
T

Φ + λ1TΦ)
−1

Φ
T

QT
2 Ỹ. (23)

By iteratively determining the correspondences and estimating the spatial transformation,
the nonrigid point set registration can be accomplished. It is worth noting that the affine part
d and the nonaffine part w̃ are independently calculated, which can avoid mutual inference between d
and w̃, and thus, convenient for controlling and analyzing the registration process.

The proposed method is summarized in Algorithm 1.
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Algorithm 1 The proposed method:

Input: Model point set X and scene point set Y.
Output: Transformed model point set.
Initialize: Parameters T, τ, ς, ρ, λinit

1 , λinit
2 , and K, and probabilities pmn = 1/(MN).

Begin: Construct kernel matrix, and perform the QR decomposition of model point set.
Repeat:

Compute the AD and AD-correspondences using Equations (3) and (4), respectively;
Compute the RD and RD-correspondences using Equation (5) and Hungarian method, and assign
confidence for RD-correspondences using Equations (6)–(8);
Compute the collaborative correspondences and corresponding matrix using Equations (9)
and (10), respectively;
Compute the transformation parameters of affine and nonaffine parts using Equations (22)
and (23), respectively;
Update T = τT, λ1 = λinit

1 T, and λ2 = λinit
2 T.

Until: Achieve the maximum number of iterations;
Output the transformed points using Equation (14).

4. Annealing Scheme and Convergence Analysis

In the optimization, we adopt the deterministic annealing scheme to control the iterative process.
As a heuristic and efficient strategy to escape the poor local minimum points, the deterministic
annealing has been broadly employed by many nonrigid point registration methods [16,17,25,29].
The deterministic annealing plays an important role in our method, which is carefully discussed
as follows:

(1) Temperature T controls the search range of AD-correspondences, as illustrated by Equations (3)
and (4). Temperature T is gradually reduced by a linear annealing schedule Tnew = τTold, where τ is
the positive annealing rate less than one. At the start, it is hard to determine the accurate one-to-one
correspondences so that high temperature T is employed to preserve the corresponding relations with
a wide-range. The search range is reduced through gradually reducing temperature T. When T is close
to zero, it equivalently uses the hard decisions to determine one-to-one correspondences.

(2) Temperature T is involved in the process of confidence assignment for each RD-correspondence
according to consistent distance, as illustrated by Equations (6)–(8). Under the deterministic annealing
strategy, we can gradually exclude RD-correspondences with low consistency, as discussed in Section 3.2.
We can also control the roles of RD-correspondences to adjust decay parameter ρ using the deterministic
annealing scheme.

(3) Regularization parameters λ1 and λ2 are also evolved by following deterministic annealing
schedule, λ1 = λinit

1 · T and λ2 = λinit
2 · T, where λinit

1 and λinit
2 are the two initial values. Through

reducing regularization parameters from large to small, the spatial transformation based on TPS is
recovered from rigid to nonrigid.

Overall, we adopt a coarse-to-fine and rigid-to-nonrigid strategies to optimize the proposed
method based on deterministic annealing techniques. As a dual update process, in each iteration,
we can obtain the closed-form solutions of TPS transformation after the correspondences are
determined. In next iteration, the newly estimated transformation can be used to help determine the
correspondences. Besides, as the temperature decreases, the search range of AD-correspondences is
reduced and RD-correspondences with high consistency are emphasized. Thus, we can determine the
correspondences more accurately. Next, the newly updated correspondences are utilized to recover
the spatial transformation. Given the lower temperature, the spatial transformation can have more
freedom on nonrigid terms to recover local nonrigid transformation more accurately. In the end,
the correspondences are approximately one-to-one, and the nonrigid transformation is recovered.
In summary, the correspondence determination and the spatial transformation estimation run iteratively
to gradually converge to a stable local minimum under the deterministic annealing scheme.
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5. Computational Complexity

In each iteration, the AD-correspondences between two point sets take complexity
O(MN). The complexity of preliminary RD-correspondences using Hungarian method is O(M3).
The corresponding confidence assignment needs to find K (K << M) closest points for each point pairs
for which the preliminary RD-correspondence is TRUE. By using sequential search, it costs O(KM)

complexity for one point and spends O(2KM2) for the two point sets. It totally needs O(M3 + 2KM2)

operations to compute the RD-correspondences. Solving the nonrigid transformation needs complexity
O(M3). Overall, the complexity of the proposed method takes O(M3).

6. Results

Our method is implemented in MATLAB, and the experimental environment is an Intel Core
i7-7700 CPU and 32GB RAM. We choose the methods which have publicly available codes that are
provided by the authors, and keep their default parameter settings, including TPS-RPM [17], CPD [19],
GLMDTPS [28], MR-RPM [33], and GLTP [36]. The root-mean-square error (RMSE) is used as the
registration error, which is denoted as follows

RMSE =

√√√
1
M

M∑
m=1

‖ f (xm) −
_
ym‖

2
, (24)

where
_
ym is the ground truth corresponding point of xm.

Parameter settings: The Tinit, T f inal, and annealing rate τ are used to control the deterministic
annealing process. As the initial temperature, Tinit is high. The stopping temperature T f inal is low.
However, they are not too high or too low, otherwise, they would spend much more computation to
accomplish the registration. We experimentally recommend to set Tinit ∈ [0.1, 0.5], T f inal ∈

[
10−3, 10−5

]
,

and τ ∈ [0.90, 0.98]. In our paper, we fix Tinit = 0.2, T f inal = Tinit/1500, and τ = 0.93. We keep these
settings in the following experiments. In each temperature, the method runs three iterations. In order
to save computation, we only calculate RD-correspondences once in each temperature.

Parameters that are related to RD-correspondences include parameters of SC, and parameters ρ and
K. We preserve the default settings of SC in [11]. Parameter ρ controls the roles of RD-correspondences
in collaborative correspondences. The proposed method can perform well for ρ = 0 in the outlier-free
scenarios. When there are outliers in data, we set ρ = N/(4M). Parameter K is the number of
neighboring points that are employed to evaluate the corresponding consistency of RD-correspondences.
Large K can underline the RD-correspondences with the high corresponding consistency, in order to
obtain more accurate RD-correspondences. However, if K is too large, it would be too strict to preserve
sufficient RD-correspondences. Simultaneously, computational cost will increase. In our paper, by
taking a balance of these factors, the number of neighboring points is set as K = 3 and K = 7 when
M = N and M , N, respectively.

Parameter ς is used to handle outliers. Regularization parameters λ1 and λ2 are employed to
trade off the flexibility and smoothness of the spatial transformation. As discussed in [17], the λinit

2 is
set as much smaller than λinit

1 for providing more freedom for the affine transformation. In our paper,
we fix ς = 0.5 and λinit

2 = 0.01λinit
1 . We set initial value λinit

1 as 0.5 and λinit
2 = 0.01λinit

1 = 0.005.

6.1. Results on Fish Dataset

We test our algorithm on fish data in [17,27]. Each fish model point set contains 98 points. There
are five kinds of degradations, including nonrigid deformation, noise, outlier, rotation, and occlusion.
For each degradation, there are five levels. For each level, there are 100 samples. We give the qualitative
and quantitative results. In quantitative results, the registration results of all the 100 samples for each
level are used to evaluate the performance of the nonrigid point set registration algorithms. Notably,
as demonstrated in [28], there are two cases of occlusion: missing points in one side and both sides.
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Our method can achieve good performance in first case. In the second case, our method enforces each
model point to search its corresponding point in the scene point set, while the corresponding point
might not exist. Thus, our method cannot handle the second case well. In the experiments of occlusion,
we present the performance of the methods with missing points in single side.

Figure 1 shows qualitative results on some examples of fish dataset. The model points are
represented by “+,” and the scene points are denoted by “o.” The results are arranged by every two
rows, the upper row shows the data and the lower gives the registration results. From top to bottom,
there are different degradations including deformation, noise, occlusion, outliers, and rotation. From
left to right, the degradation level gradually increases. The proposed method is accurate and robust in
the degradations of deformation, low noise, occlusion (single side), outliers, and rotation. When the
noise level is high, the structures are severely damaged. The proposed method can roughly recover the
spatial transformation.

Figure 2 reports the quantitative results of seven state-of-the-art methods and ours. In the test of
deformation, as illustrated in Figure 2a, when the deformation is not large, all the methods can obtain
good results in the registration accuracy. Notably, our method can still keep perfect performance as
the deformation becomes large. Figure 2b shows the results of the registration methods under the
degradation of noise. Our method can get the best results in low noise level. When the noise level is
high, the structures of the point sets are not well preserved so that the performance declines. Figure 2c
shows the registration results under the degradation of occlusion. The ratios of missing points are
from 0.08 to 0.40 with an interval of 0.08. We can see that the proposed method can keep better
performance than other methods when some points are missing. Figure 2d presents the results of the
registration methods under the degradation of outliers. CPD and GLMDTPS can perform well when
the number of outliers is small, but cannot handle large number of outliers well. We observe that our
method shows outstanding performance when dealing with outliers. Figure 2e shows the registration
results in rotation. We rotate the data from 30◦ to 180◦ with an interval of 30◦. As illustrated in [27],
by using the direction from a point to the mass center of a point set as the positive X-axis for the local
coordinate system, it can get rotation invariant shape context (RISC). We adopt RISC to correct the
rotation between two point sets at the start. This can make our method be invariant to the rotation.
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Figure 1. Registration results on fish dataset. From top to bottom: deformation, noise, occlusion,
outliers, and rotation in every two rows; the upper row shows the data and the lower row shows the
registration results. From left to right, the degradation level becomes larger. The model points and the
scene points are marked by “+” and “o,” respectively.
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Figure 2. Quantitative comparisons of TPS-RPM, CPD, GLMDTPS, MR-RPM, and GLTP, and the
proposed algorithm on fish dataset. (a–e) Registration results under degradations of deformation,
noise, occlusion, outliers, and rotation, respectively. The error bars indicate the mean and standard
deviation of registration errors over 100 trials.

6.2. Results on Chinese Character Dataset

Chinese characters are pictographic and have abundant and meaningful structures. The Chinese
character dataset can be obtained from https://github.com/xdregis/complicated_chinese_characters.
To evaluate the performance of the registration methods, we choose five Chinese characters with
complicated structures, namely, “cake,” “dim,” “math,” “micro,” and “tree,” with 148, 153, 177, 189,
and 149 points, respectively. The Chinese characters are handwritten, and the feature points are
manually annotated as the model point set. The nonrigid deformation versions of the model point set
are made by the techniques in [28] as scene point sets. There are five levels for nonrigid deformation.
For noise degradation, we add Gaussian white noise to the data with five levels. The mean of the noise
is zero, and the standard deviation is changed from 0.06 to 0.18 with an interval of 0.03. For occlusion
degradation, the ratios of missing points are from 0.08 to 0.40 with an interval of 0.08. For outlier
degradation, we add random distributed outliers to data. The ratios of outliers to data are from 0.2 to
1.0 with an interval of 0.2. For rotation degradation, we rotate the data from 30◦ to 180◦ with an interval
of 30◦. For each level, each character has 100 samples. Therefore, five characters have 500 examples.

Figure 3 shows the qualitative results of the proposed method on some examples of the five
Chinese characters on the degradations. We can see that the structures of Chinese characters are
complicated because they are formed by several relatively independent parts. The experimental results
illustrate that the proposed method can accurately align model point sets to scene point sets. Figure 4
shows the quantitative results on the Chinese characters of the seven state-of-the-art methods and
ours. As shown in Figure 4a, our method is most accurate in deformation. In Figure 4b, our method

https://github.com/xdregis/complicated_chinese_characters
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shows the best performance from levels 1–4 in noise. As illustrated by Figure 4c, in occlusion (single
side), GLMDTPS, MR-RPM, and our methods are accurate and robust in five levels. In Figure 4d,
our method achieves the outstanding performance in the degradation of outliers. Figure 4e shows the
registration results in rotation. Our method is invariant to the rotation.
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Figure 3. Registration results on Chinese character dataset. From top to bottom: “cake,” “dim,” “math,”
“micro,” and “tree” in every two rows; the upper row shows the data and the lower row shows the
registration results. From left to right: deformation, noise, occlusion, outliers, and rotation. The model
points and the scene points are marked by “+” and “o,” respectively.
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Figure 4. Quantitative comparisons of TPS-RPM, CPD, GLMDTPS, MR-RPM, and GLTP, and the
proposed algorithm on Chinese dataset. (a–e) Registration results under degradations of deformation,
noise, occlusion, outliers, and rotation, respectively. The error bars indicate the mean and standard
deviation of registration errors over 500 trials.

6.3. Results on IMM Face Dataset

IMM face dataset consists of 240 annotated monocular images of 40 different human faces.
Each face is annotated by 58 feature points. For each human, there are six views with different
expressions and angles. We take the first view as the model point set, and the others are used as the
scene point sets. Thus, five groups are defined as Group 1 to Group 5. Each group has 40 pairs of point
sets to be matched. The qualitative results on one of the persons are shown in Figure 5. The first row is
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the face of view 1. This face is employed as the model face. The second row is the faces from view 2 to
view 6. These faces are employed as the scene faces. We can see that the facial expressions and angles
are significantly changed from view 1 to view 3. The third row shows the point sets to be matched.
The fourth row shows the registration results. The proposed method can accurately align the point
sets even though the facial expressions and angles are very different. The quantitative results of five
groups are provided in Figure 6. We can see that the proposed method achieves the best performance.
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Figure 5. Registration results on some examples on the IMM face dataset. The first row is the original
image of view 1, and the annotated landmarks are employed as model point set. The second row is
the original images from view 2 to view 6, and the annotated landmarks are employed to the scene
point sets. The third and fourth rows are the point sets to be registered and the registration results,
respectively. The model points are marked by “+,” and the scene points are marked by “o.”
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Figure 6. Quantitative comparisons of TPS-RPM, CPD, GLMDTPS, MR-RPM, and GLTP and the
proposed method on IMM face dataset. From Group 1 to Group 5, they represent the registration results
between view 1 and view 2 to view 6, respectively. The error bars indicate the mean and standard
deviation of registration errors over 40 trials.
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6.4. Results on IMM Hand Dataset

IMM hands dataset consists of 40 annotated monocular images with resolution pixels 800× 600
from four different human hands, and each person provides 10 images with different hand gestures.
In each group, each gesture is employed as the model data in turn. The other nine gestures are
employed as the scene data. Thus, there are 90 different combinations for each group. The qualitative
results of gestures from one person are shown in Figure 7. We take the first gesture as the model point
set, and the other nine gestures are used as the scene point sets. Although the hand gestures have
significant changes, the proposed method can accurately recover the spatial transformation. Figure 8
presents the quantitative results. As illustrated by Figure 8, the proposed method can get the highest
accuracy from Group 1 to Group 4. In the Group 4, our method is still most accurate, but the accuracy
is lower than previous groups, and the standard deviation is large. Although our method can obtain
good registration results in most cases, several examples in Group 4 are hard to be well matched by
ours. We give a failure case in Figure 9. As shown in the first and second subfigures in Figure 9,
we can see that the adjacent fingers of the model gestures are very close, and the feature points that
represent these fingers approximatively line up on the boarders. Although these points belong to
different fingers, their structural features are similar so that they are difficult to be correctly separated
when they are employed as the model points. Besides, the spatial transformation between two gestures
is large. This further increases the difficulty to accurately match the point sets. Our method is not very
well to handle these cases. In Group 4, the hand gestures are more than others, and thus, this results in
performance degradation.
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Figure 7. Registration results on some examples on the IMM hands dataset of person 2. The first
row is the original image of gesture 1, and the annotated landmarks are employed as model point set.
The second row and fifth row are the original images from gesture 2 to gesture 5 and gesture 6 to 10,
respectively. Their annotated landmarks are employed to the scene point sets. The third and sixth
rows are the point sets to be registered and the fourth and seventh rows are the registration results.
The model points are marked by “+,” and the scene points are marked by “o.”
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registration errors over 90 trials.
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Figure 9. A failure case in Group 4 of IMM hands dataset. From left to right: the model image, the scene
image, the original point sets, and the registration results. The model point sets are marked by “+,”
and the scene point sets are marked by “o.”

Finally, in Table 1, we give the comparisons of runtime of point set registration methods on fish
(98 points), cake (138 points), dim (153 points), math (177 points), micro (189 points), tree (149 points),
IMM face (58 points), and IMM hands (58 points). CPD, GLMDTPS, and GLTP are implemented by C
and MATLAB. Although the computation complexity is in same level, they run much faster than the
methods that are only implemented by MATLAB, including TPS-RPM, MR-RPM, and ours. TPS-RPM
is the most relevant method to ours. Both TPS-RPM and our methods employ TPS as the transform
function and adopt the deterministic annealing as the optimization strategy. TPS-RPM only needs
to calculate AD-correspondences. In order to get more accurate correspondences, our method has
to consume more time to calculate RD-correspondences besides AD-correspondences. In summary,
our method can efficiently improve the registration accuracy, but the computation cost increases.
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Table 1. Runtime(s) of point set registration methods on different datasets.

Fish Cake Dim Math Micro Tree IMM
Face

IMM
Hands

Mean
Runtime

TPS-RPM 0.841 1.537 1.836 2.331 2.262 1.737 0.380 0.366 1.411
CPD 0.049 0.095 0.115 0.130 0.162 0.101 0.020 0.022 0.087

GLMDTPS 0.092 0.122 0.126 0.143 0.155 0.123 0.065 0.063 0.111
MR-RPM 2.082 1.669 1.595 2.105 2.406 1.930 0.176 0.196 1.520

GLTP 0.075 0.133 0.177 0.216 0.248 0.162 0.023 0.023 0.132
Ours 1.703 3.959 3.690 5.037 5.679 3.534 0.699 0.695 3.158

7. Conclusions

In this paper, we have presented a robust and accurate method and its applications for
nonrigid point set registration. The main idea of our method is to find an efficient way to combine
AD-correspondences and RD-correspondences to determine the corresponding relationship between
the point sets to be matched. AD-correspondences and RD-correspondences are derived from the
structures with different attributes. They are complementary and are able to improve the utilization
efficiency of the abundant structural information within the point sets. Moreover, TPS is adopted as the
transformation function. At each iteration step, the closed-form solutions of the affine and nonaffine
parts have been used, which makes it be convenient to analyze and control the registration process.
Experiments illustrate that the proposed method can achieve good performance on both synthetic and
real data.

Although the proposed method can achieve good performance in most scenarios of nonrigid
point set registration, the proposed method cannot handle the degradations well when the miss points
are on both sides. Our method has relatively heavy computation when there are a large number of
points, such as the 3D point clouds that are obtained by RGB-D cameras, laser scanners, and lidar,
which usually contain thousands of points. In the future, we will focus on finding efficient way to
reduce the computational complexity.
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