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 of paravertebral muscles
in abdominal CT scan by U-Net
The application of data augmentation technique to increase the
Jaccard ratio of deep learning
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Abstract
Sarcopenia, characterized by a decline of skeletal muscle mass, has emerged as an important prognostic factor for cancer patients.
Trunk computed tomography (CT) is a commonly used modality for assessment of cancer disease extent and treatment outcome.
CT images can also be used to analyze the skeletal muscle mass filtered by the appropriate range of Hounsfield scale. However, a
manual depiction of skeletal muscle in CT scan images for assessing skeletal muscle mass is labor-intensive and unrealistic in clinical
practice. In this paper, we propose a novel U-Net based segmentation system for CT scan of paravertebral muscles in the third and
fourth lumbar spines. Since the number of training samples is limited (i.e., 1024 CT images only), it is well-known that the performance
of the deep learning approach is restricted due to overfitting. A data augmentation strategy to enlarge the diversity of the training set
to boost the performance further is employed. On the other hand, we also discuss how the number of features in our U-Net affects the
performance of the semantic segmentation. The efficacies of the proposed methodology based on w/ and w/o data augmentation
and different feature maps are compared in the experiments. We show that the Jaccard score is approximately 95.0% based on the
proposed data augmentation method with only 16 feature maps used in U-Net. The stability and efficiency of the proposed U-Net are
verified in the experiments in a cross-validation manner.

Abbreviations: AI = artificial intelligence, CT = computed tomography, CTDA = CT-aware data augmentation, CV = cross-
validation, HU = Hounsfield units, mIOU = mean intersection over union, ROI = regions of interest.
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1. Introduction

Reduced skeletal muscle mass (sarcopenia) is associated with loss
of physical function, disability,[1] risk of falls and fracture,[2] and
increased length of hospital stay.[3] Sarcopenia was also strongly
correlated with treatment outcomes in patients with cancer.[4]

Computed tomography (CT) is a widely-used examination tool in
the treatment of various cancer diseases. The majority of cancer
diseases mandate CT scanning of the abdomen, pelvis, or chest for
apre-treatmentassessment.Eachkindofhumanbodycomposition
has unique radiation attenuation, expressed as Hounsfield units
(HU), in CT scans so that CT images have very high precision and
specificity for different tissue in the human body.[5] The CT scan is
frequently used to review the change of skeletal muscle area and
density for monitoring the patient’s health status.[6] Manual
depiction of body compartments on the computer screen is based
solely on the judgement of physicians’ “surgical intuition” or
“eyeball test.” This practice is not only laborious but also
unrealistic in clinical practice and has long been criticized for its
low inter-rater and intra-rater consistencies. Therefore, the urgent
need for automatic segmentationof the bodycompartment assisted
by artificial intelligence (AI) is emerging.
Paravertebral skeletal muscle areas, that is, psoas muscle,

lumborum quadratus, and para-spinal muscle, at the third and
fourth lumbar spine levels derived from abdominal CT scan have
been shown to be associated with treatment outcomes in patients
with various cancer diseases. The patients with lower muscle area
and density usually will have worse treatment outcomes.[7–9]
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Figure 1. The input CT image size is 512�512�1. After being labeled by the doctor, the dataset is split into 2 paths: one with data augmentation and the other
without. After training and comparing the mIOU of the 2, the output result after training is a prediction mask of 512�512�1. CT = computed tomography, mIOU =
mean intersection over union.

Table 1

Information of patients and CT techniques.
Patient age 34–93 year old (mean 67.2±10.9)
Sex Male: 163, female: 101
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Recently, the clinical applications of deep learning-based
medical images interpretation including organ and body
compartment segmentation, disease detection, and assessment
of response to treatment have gained increasing interests.[10–13]

The deep learning approach, or so-called AI, is a data-driven
learning technique. In other words, AI techniques take the
essential features themselves from data without any guidance.
Automatic segmentation of the boundaries of an organ or lesion
is a crucial AI application for reducing the burden of radiologists.
It also provides vital information on the functional performance
of tissues and organs, and disease extent.[14] An AI-driven model
to automatically interpret CT images may greatly facilitate
clinical practice and increase diagnostic consistency.
U-Net is a well-known semantic segmentation technique for

the medical image as well as is widely utilized in recognizing cells
or organs.[15] U-Net employs encoder-decoder network architec-
ture to tackle the multiresolution features aggregation issue. Since
the number of the parameters of a typical U-Net is relatively
small, the requirement of the number of training samples is fewer
compared to other state-of-the-art semantic segmentation net-
works, such as a fully convolutional network, DeepLabv3,Mask-
RCNN.[16,17] U-Net is composed of a convolution neural
network (feature extraction), downsampling (size reduction
and feature retainment), up-sampling (size recovery), and finally,
generation of the feature map. Since data labeling is a very time
consuming and tedious work, the collection of a sufficient and
relatively large-scale image dataset for AI training is challenging.
To effectively overcome this issue, U-Net is adopted as our
baseline, and a data augmentation is then proposed to effectively
increase the diversities of the collected and small-scale training
set. In this fashion, we can achieve a significant improvement in
terms of the Jaccard ratio (i.e., intersection over union). Even
though U-Net has been widely used on CT image segmentation,
for example, lung, kidney, kidney tumor, chest, etc, the
application of U-Net based segmentation system specifically
for CT scan of paravertebral muscles in the third and fourth
lumbar spines, to the best of our knowledge, remains regrettably
void. The challenges posed by this study of paravertebral muscles
include the number of CT images available, scanner type and
contrast phase (venous, portal venous, arterial).[10,15]
Slice thickness 5mm
Pixel resolution 512�512 pixel
Scanner type GE Bright Speed
Contrast phase Venous phase

CT = computed tomography.
2. Materials and methods

The initial input of the study is a grayscale image with a size of
512�512�1, and a mask of 512�512�1 contains 2 classes of
2

images, where the pixel value 0 indicates the background and 1
the muscle. There are 1024 intravenous contrast medium
enhanced CT images in total. The collected dataset is partitioned
into the training, validation, and testing sets to verify the
performance for finding the best model of the proposed U-Net.
We also verify the necessity of whether the data augmentation is
useful or not in improving the segmentation performance. For
efficiency and accuracy, the training process uses the same
verification set, and test set stated previously. The size of the
predicted map is the same as that of the ground truth (i.e., 512�
512�1). Mean intersection over union (mIOU) is adopted to
verify the performance of the proposed method (Fig. 1).

2.1. Dataset

The data were collected retrospectively for abdominal CT
examinations of 264 patients of gastric cancer receiving surgery
in E-Da and E-Da Cancer hospital between 2007 and 2017. The
first 2 cross-sectional images at the level of the third and fourth
lumbar vertebra from the cranial-caudal direction, that is, 4
images per subject, were acquired. Among these 1056 images, 32
slices (8 patients) were excluded due to poor image quality.
Therefore, we have a total of 1024 images to form our CT
dataset. Table 1 summarizes patient characteristics of the dataset
including image slice thickness, pixel resolution, patient age, sex,
as well as scanner type and contrast phase. The CT dataset was
further randomly partitioned into 3 disjoint groups on a per-
patient basis in the ratio of 6:2:2, in which the training set is
composed of 154 patents, that is, 616 images, the validation set
contains 51 patients, that is, 204 images, and the rest are formed
as the test set. This splitting scheme is performed on the per-
patient basis to make sure 4 images from the same subject will not
exist in both the training and testing/or validation and testing
sets. The proposed CT-aware data augmentation (CTDA) is then



Figure 2. System flow. The CT scans of gastric cancer patients serve as the data source. The regions of interest in CT scan images are labeled manually as the
ground truth. The dataset containing 1024 images was further randomly partitioned into 3 disjoint groups: training set with 616 images, validation with 204 images,
and the rest are used to form the testing set. Data augmentation of the training images is performed to obtain the augmented training set. Four models were
established based on 16 or 32 filters in the proposed U-Net with and without data augmentation. The best model was obtained by the accuracy and stability based
on the validation set. CT = computed tomography.
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performed on the training set to obtain the augmented training set
with 3080 (616�5) images. We create 4 models based on the
proposed U-Net and CTDA to seek the best model. Finally, the
standard cross-validation (CV) process is made based on the
validation set to assess the performance of these 4 models. Based
on the observed performance, the best model in terms of accuracy
and stability is then selected as the final model. The processing
flow is schematically depicted in Figure 2.

2.2. Manual segmentation

Manual labeling of the circumferences of regions of interest
(ROI), including bilateral psoas muscle, lumborum quadratus,
and paraspinal muscle, in each image was performed on the
original image (Fig. 3A) by an experienced surgeon as accurately
as possible with the in-house software, as shown in Figure 3B.
After acquiring the ROI mask of manual segmentation, as shown
in Figure 3C, the ground truth is obtained by applying HU filter
with the value of skeletal muscle ranging from –29 HU to +150
HU[18] to the segmented maps (Fig. 3D).

2.3. Data augmentation

Many skills have been proposed for data augmentation in deep
learning techniques for generic images. However, unlike the generic
images, the content, and the contextual information in the CT scans
are significantly different, leading to a fact that the conventional data
augmentation might be inefficient and ineffective. Based on the
essential experiences of the experienced surgeons, the data
augmentation operation should be carefully designed to avoid
destroying the intrinsic features of the CT scans. In this study, the
affine transformations, including shift, horizontal flipping, and
rotation, were applied to increase the size of the dataset. The shift
ratio was set to 5% of the image size in either vertical or horizontal
direction. The rotation angle range is randomly selected from ±20°
for simulating the patients’ body position variations while the
3

abdominal CT scans were acquired.[19,20] The variables for each of
the aforementioned affine transformations were selected randomly
within each specified range.
2.4. U-Net

In this study, U-Net architecture is utilized to design our baseline
model. In general, U-Net contains an encoder and a decoder to
extract semantic features from CT scans and aggregate the
multiscale features into fine resolution ones. It is well-known that
the U-Net is an effective way to tackle the issues commonly
encountered in medical information processing. In our U-Net,
every convolutional layer in the convolution neural network is
composed of 2 3�3 filters sharing the same padding size. The
batch size and the initial channel number are 4 and 32,
respectively. The learning rate sets to 0.0001 with Adam
optimizer for the initial training hyper-parameters. The Leaky
Rectified Linear Unit is used as the activation function.[21] The
input image is digital imaging and communications in medicine-
formatted with one-channel size 512�512 pixels.
Let nbase denote the number of the filters in the first

convolutional layer in our U-Net model, as depicted in Figure 4,
the number of the filters of the ith convolutional layer is given by

nibase ¼ nbase � 2i�1; i ¼ 1; 2; . . .L:

where L is the number of total layers of our U-Net model. In this
study, nbase is set to 16 and 32, respectively. As the number of
the filters increases, the performance of the proposed method
should be improved accordingly, while the complexity would be
increased as well. In this study, we verify this by extensive
experiments by using CV to find the best setting for nbase. A 2�2
max-pooling operation with a strided size of 2 is performed at the
end of each convolutional layer to reduce the spatial resolution in
the encoder side, as well as a 2�2 transposed convolution is
applied on the decoder side to improve the spatial resolution

http://www.md-journal.com


Figure 4. The network architecture of the proposed U-Net.

Figure 3. (A) Original image of a CT scan. (B) Manual segmentation of regions of interest, including bilateral psoas muscle, lumborum quadratus, and paraspinal
muscle. (C) Mask of the image after manual segmentation. (D) Ground truth after the HU filtering. CT = computed tomography, HU = Hounsfield units.
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progressively.[22] Afterward, the output is connected with a 1�1
convolution operation to fuse the feature maps to be a class-wise
representation. Finally, the Softmax activation function is used to
normalize the response values of the class-wise feature maps. By
simply applying themaximum operation on the class-wise feature
maps along with channel-direction, the predicted segmentation
map can be obtained. The structure of the model is shown in
Figure 4. In the training phase, the early stop policy is used based
on mIOU metric. The number of epochs of the training process is
1000. Both the number of early stop strategy and the patience
value of the learning decay policy is 100 iterations. In general,
each training takes about 300 to 400 epochs to converge.

2.5. Cross-validation

In this study, the holdout CV is adopted. Holdout CV randomly
partitioned the dataset into 3 disjoint parts: training (60%),
validation (20%), and testing (20%) datasets. In order to obtain a
stable result, the holdout CV is repeated 3 independent
rounds.[23] Each round will train our model based on the
training set and verify the performance (i.e., Jaccard score) on the
testing set. Noted that the training/validation/testing datasets in
each round are randomly sampled from the original dataset,
leading a fact that the training sets of different rounds are
different from each other. The final Jaccard score is measured by
unweighted averaging on the 3 individual measures.

3. Results

A personal computer equipped with Nvidia Tesla V100, Intel(R)
Xeon(R) CPUE5-2650 v4@ 2.20GHz, and 192GB systemRAM
Figure 5. U-Net prediction result. The cases with a higher Jaccard score. (A) Input
The white region corresponds to true-positive, green one false-negative, and red

5

is used to evaluate the performance of the proposed method. The
experiments are designed deliberately from 2 perspectives: non-
augmented vs augmented dataset and the number of features. In
order to understand the benefits of data augmentation, we verify
the effectiveness of the proposed U-Net based on the training set
with and without data augmentation for 16 and 32 feature maps.
As shown in Table 1 and Figures 5 and 6, it is surprising that

the best model is based on 16 filters as the initial number of filters.
Since the number of the training set is extremely limited,
compared to the generic images, it is reasonable that the
parameters of the deep neural network should be smaller to avoid
the issues caused by overfitting. As a result, it is recommended
that the nbase=16 is the suggested setting for muscle segmentation
of CT scans. In contrast, the proposed CTDA shows the
performance improvement for both 16 and 32 filters for the initial
convolutional layer in our U-Net. The ground truth is obtained
by applying HU filter with the value of skeletal muscle ranging
from –29 HU to +150 HU[18] to the segmented maps (Fig. 3D).
The U-Net does not recognize the muscle area according to the
HU but is trained by the HU filtered image of manually
segmented ROI. As depicted in Table 1, our U-Net can achieve
95.0% in terms of averaged mIOU in the model of 16 features
with data augmentation. We also demonstrate cases with higher
and lower Jaccard scores, including the original, labeled, and
prediction CT images with false-positive and false-negative
regions highlighted, are shown in Figures 5 and 6, respectively.
Although some false-positive or false-negative regions are shown
in Figures 5 and 6, it is remarkable that the integrity of true-
positive regions remains intact, implying that the information is
sufficient for assisting diagnosis.
: the original CT scan. (B) Ground truth: labeled images. (C) Prediction result. (D)
one false-positive. CT = computed tomography.

http://www.md-journal.com


Figure 6. U-Net prediction result. The challenging cases with lower Jaccard score. (A) Input: the original CT scan. (B) Ground truth: labeled images. (C) Prediction
result. (D) The white region corresponds to true-positive, the green one false-negative, and the red one false-positive. CT = computed tomography.

Figure 7. The performance evaluation of the proposed method selection strategy via cross-validation.

Tsai et al. Medicine (2021) 100:44 Medicine
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Table 2.

Table 2.1 Training set: Performance comparison of the proposed U-Net between different data augmentation strategies terms of Jaccard scores.

#Features Policy CV-1 CV-2 CV-3 Averaged

16 w/o DA 98.8%±0.03 98.9%±0.03 98.8%±0.03 98.8%
16 DA 98.3%±0.02 97.5%±0.02 98.5%±0.02 98.1%
32 w/o DA 98.9%±0.03 99.0%±0.02 99.1%±0.02 99.0%
32 DA 98.4%±0.02 98.7%±0.02 98.5%±0.02 98.5%

Table 2.2 Test set: Performance comparison of the proposed U-Net between different data augmentation strategies terms of Jaccard scores.

#Features Policy CV-1 CV-2 CV-3 Averaged

16 DA 95.0%±0.05 95.0%±0.04 95.1%±0.04 95.0%
32 w/o DA 94.5%±0.05 94.6%±0.04 94.6%±0.05 94.6%
32 DA 95.5%±0.03 95.4%±0.04 95.2%±0.04 95.4%

CV= cross-validation, DA=data augmentation, w/o=without.
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Finally, the distributions of the Jaccard score for the test
dataset in different rounds of CV are illustrated in Figure 7.

4. Discussion

CT is a common examination tool for assessing extent of cancer
diseases before starting local or systemic therapy. The informa-
tion of skeletal muscle obtained concurrently from the CT scan
images is of great importance to assist clinicians to draw up the
treatment plan. Segmentation and quantification of the ROI of
the CT scan images provide the accurate data of the patients’
body composition, not just judged by physicians’ “surgical
intuition” or “eyeball test”.[24]

Ground truth images are fundamental basis of AI training.
Manual depicting of ROI on the CT images for creating ground
truth images is a laborious and time-consuming work. Deep
convolutional neural networks are heavily reliant on big data to
avoid overfitting.[25] Overfitting, occurring when the model
performs well on training data but generalizes poorly to unseen
data, is one of the primary concerns in machine learning. CV,
more training data, feature removal, early stopping, regulari-
zation and ensembling are strategies for preventing overfitting.
In this study, we employ data augmentation (�5), holdout cross
validation (repeated 3 independent rounds) and feature
removal (16 features) to prevent the occurrence of overfitting.
Overfitting is mild in our study. Data augmentation might be a
data-space solution to the problem of limited data commonly
encountering in the deep learning of medical images. However,
optimal data augmentation should be used prudently. If
incremented excessively, overfitting may occur, resulting in a
decrease in the training effect. This study focuses on a single
original dataset, and expands it into 2 datasets, one with data
augmentation operation and the otherwithout.We compare the
prediction results to determine whether a larger dataset size can
improve the training outcomes. Table 2 summarizes the
efficacies of the proposed methodology based on w/ and w/o
data augmentation and different feature maps are compared in
the experiments. The Jaccard score is approximately 95.0%
based on the proposed data augmentation method with only
16 feature maps used in U-Net. The stability and efficiency of
the proposed U-Net are verified in the experiments in a CV
manner.
The errors in prediction might be attributed to the fuzzy

boundary of muscles, which might pose as a problem both for
accurate manual labeling in producing the ground truth and AI
7

automatic segmentation. With a high degree of accuracy, the
proposed U-Net achieves the state-of-the-art performance and
might be potentially applied in clinical practice.
5. Conclusions

In the present study, we have developed an improved and
simplified U-Net model for CT image segmentation. A data
augmentation for paravertebral skeletal muscle CT images has
been proposed to improve the data diversity further, leading to
auspicious results in terms of the Jaccard score. The efficacies of
applying 2 different training sets, one with the original CT
scans (616 images) and the other with data augmentation
(616�5 images) and filter sizes (16 vs 32), are compared. The
highest Jaccard score obtained, 95.0%, corresponds to U-Net
of a filter size 16 trainedwith the augmented dataset. Themodel
efficiency, effectiveness, and stability have also been verified in
the experiments by CV. As a result, the number of the feature
maps of the proposed U-Net can be reduced to 16, as well as 3
CVs still show the superior performance on the separate
training sets. In summary, our model shows the high accuracy
with a low-complexity requirement, enabling the area and
density of the region of the muscle can be easily segmented and
derived for semi-automatic diagnosis purposes. Even though
several studies about development of delineation methods of
the muscle area using AI method including data augmentation
and validation are already published,[11,14] further incorpo-
ration of information pertinent to patients’ quality of the
muscle by HU value changes or consideration of body frame,
bodymass index, etc shall facilitate the diagnosis of sarcopenia.
The strength and originality of our study hinge on the high
accuracy (Jaccard score 95.0%) with a low-complexity
requirement (16 U-Net feature maps) highly suitable for the
clinical application of segmenting the area and density of the
muscle region.
This study used the intravenous contrast medium enhanced CT

scan. Intravenous contrast medium does have effect on HU of
skeletal muscle. However, applying contrast could make the
demarcation between muscle and surrounding tissue clear and
could be beneficial for initial AI training. Once the AI model, as
reported in this paper, is established, AI training of non-contrast
medium CT scan images and incorporation of pertinent
information (patients’ quality of the muscle by HU value
changes, body frame, body mass index, etc) would be the focus
of our next phase research.

http://www.md-journal.com
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