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Abstract: The data produced by sensors of IoT devices are becoming keystones for organizations to
conduct critical decision-making processes. However, delivering information to these processes in
real-time represents two challenges for the organizations: the first one is achieving a constant dataflow
from IoT to the cloud and the second one is enabling decision-making processes to retrieve data from
dataflows in real-time. This paper presents a cloud-based Web of Things method for creating digital
twins of IoT devices (named sentinels).The novelty of the proposed approach is that sentinels create
an abstract window for decision-making processes to: (a) find data (e.g., properties, events, and data
from sensors of IoT devices) or (b) invoke functions (e.g., actions and tasks) from physical devices (PD),
as well as from virtual devices (VD). In this approach, the applications and services of decision-making
processes deal with sentinels instead of managing complex details associated with the PDs, VDs,
and cloud computing infrastructures. A prototype based on the proposed method was implemented
to conduct a case study based on a blockchain system for verifying contract violation in sensors used
in product transportation logistics. The evaluation showed the effectiveness of sentinels enabling
organizations to attain data from IoT sensors and the dataflows used by decision-making processes
to convert these data into useful information.

Keywords: digital twins; IoT data; microservices; cloud computing; Web of Things; virtual containers

1. Introduction

IoT devices are becoming a key element in decision-making processes [1–3]. These
devices are quite common in multiple infrastructures, such as Industry 4.0 [4], healthcare
domain [5], and supply chains [6], to name a few. The data produced by these devices
follow a lifecycle from the sensors to the edge [7], to the fog [4], and to the cloud [8]. In this
lifecycle, data are acquired (mainly at the edge [9]), prepared and analyzed (typically at the
fog or the cloud [10]), and finally converted into information for human consumption to use
it in decision-making processes (mainly at the cloud [8] through end-user devices). In these
types of infrastructures (any combination of edge, fog, or cloud), the virtual containers (VC)
are key to deploy services on each infrastructure [11–13]. These services provide dataflows
from the IoT to the cloud that produce different types of data and information, which
proves to be key for organizations to conduct critical decision-making processes [14–16].

However, extracting data and information from these dataflows to deliver it to
decision-making processes in real-time represents a huge challenge in two directions:
the first one is verifying the accomplishment of a constant dataflow from IoT to the cloud;
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and the second one is enabling decision-making processes to retrieve, in real-time, data
and information from different points of dataflows. These data acquisition tasks through
dataflows are not straightforward because of the heterogeneity of the components par-
ticipating in a dataflow (applications, types of sensors, data formats, infrastructures [17],
to name a few). It is desirable a manner not just to acquire data and information from
dataflows, but also to invoke actions and tasks on the dataflow components. That could
facilitate tasks on decision-making analysis.

We propose to create digital twins of the IoT data acquirers (hardware, physical ma-
chine, or virtual container, application, or microservice) by using Web of Things cards (WoT)
(www.w3.org/WoT accessed on 5 August 2021) for decision-making process to retrieve,
in real time, data and information or invoke actions or tasks. A digital twin is an abstract
representation commonly used in Industry 4.0 for IoT device monitoring [18]; that is, a
virtual replica of objects or processes that simulate the behavior of their real counterparts.
WoT is an initiative for representing and managing definitions of IoT artifacts (devices,
components, applications, etc.), which suggests using a set of well-accepted protocols from
the Semantic Web for any IoT artifact from the physical world to be available into the World
Wide Web by creating a net of WoT definitions [19].

In this paper, we present the design, implementation, and evaluation of a cloud-based
WoT method for creating digital sentinel twins (DST) of IoT devices. A DST creates an
abstract window for decision-making processes to attain information and data, such as
properties, events, and data produced by sensors, and to invoke actions or tasks from
IoT devices. An IoT device is a physical device (PD) with sensors and tasks that can be
accessed directly or through a virtual device (VD). A VD is an application or microservice
encapsulated into a virtual container for acquiring, extracting, processing, monitoring, and
analyzing data from PDs. Figure 1 shows an example of the process used by a DST to create
a window for decision-making processes consumption (by either a human, application,
or VD). As it can be seen, in this approach, the applications or services used in decision-
making processes deal with DSTs instead of managing the complex details associated with
the PDs, VDs, or cloud computing infrastructures.
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User
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Sn: Sensor
vci: Virtual Container
PD: Physical Devices
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Figure 1. Conceptual view of a DST.

We implemented a prototype based on this method to perform case studies supported
by GPS, temperature, and speed sensors. Additionally, using a blockchain system, the
compliance of contracts to which these sensors are subject in the transportation logistics
of products is continuously verified. The evaluation revealed the effectiveness of the
DSTs for organizations to attain data and information about both IoT devices and the
whole processes converting IoT data into useful information required in decision-making
processes.

www.w3.org/WoT
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The contributions of this work are:

• The design, implementation, and evaluation of a cloud-based WoT method for creating
digital sentinel twins of IoT devices.

• The definition of the digital sentinel twin concept as a mean for accessing data and
information, and for invoking tasks from IoT devices.

The rest of the paper is organized as follows: Section 2 describes the state of the art
of works related to the topics of the proposed method; Section 3 describes the design and
construction of a method to create DSTs for interacting with IoT devices; Section 4 describes
the implementation of a prototype for the creation of DSTs; Section 5 presents the results
of the prototype in two phases of experiments; The discussion of the obtained results is
described in Section 6. Finally, Section 7 is presented with conclusions and future work.

2. Related Work

In the literature, there are some works about digital twins that are relevant to our
approach, and these are next described.

In the context of digital twins, there are different works focused on its use for simula-
tion, monitoring, risk prevention, etc., for IoT devices. Some are [20–22]. In [20], Assad et
al. proposed a web-based digital twin (WDT) architecture, with the purpose of improving
the sustainability of industrial cyber-physical systems. In [21] Bevilacqua et al. proposed a
digital twin reference model for risk prediction and prevention. The difference between
our work and these two proposals is that we establish the use of virtual containers in a
middle layer to access, acquire, extract, transform, etc., the information of the IoT devices;
in this way, through a DST, we are able to represent both the physical (the IoT artifact)
and virtual (software applications accessing the IoT artifact) device. In [22] Gao et al.
proposed a method of simulation and modeling in real time for the production line of
digital twins. The effectiveness of the proposed method is verified by taking an assembly
line as an example.

In the context of digital twins using virtual containers for the acquisition of informa-
tion from IoT devices, the proposals [23–25] are interesting. In [23] Alaasam et al. proposed
a study on live stateful stream processing migration of digital twins. The authors em-
phasized the importance of two factors that influence the construction of stateful stream
processing in systems as complex as digital twin: Stateful virtualization infrastructure and
the stateful data. In [24], Tingyu et al. proposed a methodology of container virtualiza-
tion based on simulation as a service (CVSimaaS), the authors use virtual containers to
implement a digital twins system, obtaining a lower consumption of resources with high
efficiency. Like our proposal, these two works include the concept of virtual containers
together with digital twins for IoT devices. However, these two proposals do not add
a standardized representation to the digital twin. Moreover, in our proposal, we follow
the WoT guidelines for the creation of the DST as universal accessible entities. In [25]
Borodulin et al. proposed a model for simulation and prediction of industrial processes
using digital twins in digital twin-as-a-service (DTaaS), which is a way to implement an
orchestration of a set of independent services and provide scalability for simulation.

In the context of virtual container modeling, two proposals stand out [26,27]. In [26],
Paraiso et al. presented an approach to model-driven management of Docker containers,
which enables verification of the virtual container system architecture at design time. In [27],
Piraghaj et al. proposed a simulation architecture called ContainerCloudSim, which was used
to evaluate resource management techniques in virtual containers from cloud environments.
Unlike these proposals, whose focus is only on virtual containers modeling, our proposal
additionally models the environment of the IoT devices, adding WoT recommendations
for representing them, which produces a DST flexible for consumption of the virtual
containers and IoT devices data. In [28], Medel et al. proposed a performance model for
Kubernetes-based deployment using Docker containers. Such a model can be used as a
basis to support resource management and application design.



Sensors 2021, 21, 5531 4 of 20

In the context of the use of virtual containers for the monitoring, simulation, and
orchestration of IoT devices, there are two proposals [29,30]. In [29], Alam et al. proposed
a modular and scalable architecture for IoT based on lightweight virtualization. Thus, the
modularity provided, combined with the orchestration provided by Docker, simplifies
management and enables distributed deployments, creating a highly dynamic system.
In [30], Muralidharan et al. proposed a distributed monitoring system based on virtual
containers for IoT applications for the management of a smart city environment. They
achieved low latency, reliable and secure communication between large-scale deployment
of IoT devices, with a focus on horizontal interoperability between various IoT applications.
Both works do not use the digital twin concept, unlike our work (DST), which allows us to
create a reflection with the properties and characteristics of the IoT device.

Muralidharan et al., in [31], proposed a semantic digital twin model for interacting
with IoT devices. The authors used virtual containers to mimic IoT devices. This is the
most similar approach to our proposal. However, they only focus on modeling the physical
devices (PD) and not virtual devices (VD). Instead, through the DST, we can represent
both the physical and virtual devices.

3. On the Building of Digital Sentinel Twins for IoT Devices

A digital sentinel twin (DST) is a software object produced from a data structure
named WoTcard, which is created from data of physical devices (PD) or virtual devices (VD)
interacting with surrounding elements for accomplishing some task involving sensors.

The conceptualization of a DST is illustrated in Figure 2, which is composed of the
concepts next described.

DST
Digital Sentinel Twin

DfE
Dataflow Entity

PD
Physical Devices

VD
Virtual Devices

IoT
Internet of Things

VC
Virtual Container

VCS
Virtual Container System

S
Sensor

CApp
Containerized App

WoT card
Web of Things

card

Figure 2. Conceptualization of a DST.

A PD represents an IoT device interacting with sensors. A VD represents the software
components required for creating a dataflow from an IoT device to a decision-making
process. This means that a VD comprises components such as Virtual Containers (vc)
or a Virtual Container System (VCS). A vc is a mechanism for logical encapsulation of
software applications that creates environment independent applications required to create
a dataflow. A VCS represents a set of vci built as a single solution (service) to perform a
task into the dataflow. A containerized application (CApp) is in charge of interacting with
IoT devices, and it is encapsulated into either vc or VCS.

Thus, a DST is a versatile object for interacting in an easy manner with the complex
and detailed structure of PD or VD. This is due to the flexibility of the WoTcard, which
fulfills the recommendations of the W3C (www.w3.org accessed on 5 August 2021).This
information comes from a dataflow entity (D f E), which captures information of each internal
component (any of CApp ∈ vc, vci ∈ VCS, or PD), as well as relationships of these
components with the PD. The D f E is basically a data structure including information
about the structure, behavior, and function of VD or PD. The structure, behavior, and
function are used to model the dataflow from the IoT device to the decision-making
processes (as it captures these features of all entities participating in such a dataflow). The
context of generation and usage of a DST is illustrated in Figure 3.

www.w3.org


Sensors 2021, 21, 5531 5 of 20

vc1

Host1

Host2

vc2

vci

VCS1

DfE

Modeling

get data

VCS1

vc1 vc2 vci

WoT
cards

Standarization

WoT Cards

get info

get info

Consumption

store
info

Database Gateway Web app

User

S1

S2

Sn

Devices

App

Sn:    Sensor
vci:   Virtual Container
VCS: Virtual Container 
          System
PD:    Physical Devices
VD:    Virtual Devices
DST:  Digital Sentinel
          Twin
DfE:   Dataflow Entity

PD
VD

DST

Property
Event
Action

Behavior
Structure
Function

DfE

Figure 3. Context of a DST.

We considered an additional layer for standardizing the representation of a D f E
by using WoT guidelines; this produces a WoTcard. That means, a WoTcard represents
the information of D f E through standardized concepts about virtual containers. These
concepts come from an ontology based on the ISO norm ISO/IEC JTC 1/SC 38 (www.
iso.org/committee/601355.html accessed on 5 August 2021). By following these WoT
standards, a WoTcard can represent, in a well-defined manner and unique identity, a VD
or PD, without any further adaption on D f E.

We propose a three-phase method to create a DST for a dataflow from IoT devices to
decision-making processes. Figure 3 also shows the conceptual view of the stages of the
methodology: modeling (phase 1), where the data of the VD is acquired and its elements
modeled; then, in the standardization (phase 2), these elements are depicted into WoT cards,
which are ready to be used in the consumption (phase 3). Next, each stage is described more
in detail.

3.1. Phase 1: On the Usage of Functional Modeling for Building DfE

A VD or PD can be modeled as a process to achieve a goal. The functional modeling [32,33]
is quite suitable for creating a representation of its structure, behavior, and function. This
modeling has been used, over the past years, for successfully representing processes in
multiple scenarios [34–36].

In the proposed method, all the dataflow participants are modeled as objects com-
posed of low-level parts; the object has an objective, and its components contribute to
achieve, together, such an objective by performing tasks, such as acquiring, manufacturing,
preparing, or analyzing data produced by IoT sensors. The functional modeling is quite
suitable for the IoT context where it is important not only to model the IoT devices but
also the dataflow participants to describe the properties, events, and actions performed
from the IoT devices to the decision-making processes (either at the fog or cloud). This
approach also allowed us to model all the participants in the production of these dataflows
(any of vci, VCS, or CApps), which, in fact, are having a behavior of chained processes.

www.iso.org/committee/601355.html
www.iso.org/committee/601355.html
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This model is captured into D f E, which describes the behavior (properties and events),
function (tasks), and structure (interconnections) of all participants in the dataflow.

As a preparation step of this method, we assume the existence of a vci (see VD in
Figure 3) executing a transformation of data (task); independently of the number of internal
vci in a dataflow, these are modeled as one DST. Let us consider the simpler case, where
one vci is decomposed into its function, structure, and behavior, and stored in a D f E. This
decomposition is represented by means of WoTcards, making the D f E as a DST ready
for consumption. For the case of a VCS, occurs the same process by each individual vci,
integrating individual functions as the overall function of the DST.

The objective of this phase is to obtain the three main modeling elements of a vc:

• structure, where the components of the vc and its relationships are specified;
• behavior, where the values of the attributes of components are specified, according to

the function of the vc;
• function, where the main goal of the vc and the tasks required to achieve it are specified.

This phase starts by receiving the configuration file of a vc, in YML or YAML format.
From this file all the data required to represent the vc are acquired.

Next, the main elements are described following a decomposition approach.

3.1.1. Function

The function is the goal description of the vc. If the input file is of a VCS, the function
is modeled as a composition of functions of the internal vci. The function makes reference
to the task executed (transformation) on the dataflow. There are six base function for a vc:

• source, the capability to act as an infinite reservoir of data;
• transport, the capability to transfer data from one point to another, including from one

medium to another;
• barrier, the capability to prevent the transfer data from one point to another, including

from one medium to another;
• storage, the capability to accumulate data;
• balance, the capability to provide a balance between the total rates of incoming and

outgoing dataflows;
• sink, the capability to act as an infinite drain of data.

Specialized functions can be derived from these base functions, such as produce-data,
acquire-data, integrate-data, consume, to mention a few. All the functions may be connected
to each other into flow paths or flow structures forming software structures.

Thus, each vci has at least one application (Appj) performing some transformation (trk);
defined as follows.

VC = {vc1, vc2, . . . , vci} (1)

App = {App1, App2, . . . , Appj} (2)

Tr = {tr1, tr2, . . . , trk} (3)

∀vci ∈ VC : vci ⊃ Appj (4)

∀Appj ∈ App : Appj ⊃ trk (5)

The trk is the key element for representing the function of a vci.
A containerized application (CApp) represents one or a set of applications Appl , l < j,

encapsulated into a vci.

CApp = {App1, App2, . . . , Appl} (6)

3.1.2. Structure

The internal structure of a vc is commonly organized as software structures (e.g.,
patterns, pipelines, parallel schema, dataflow, etc.). The model of the vc must reflect this
kind of organization. Thus, the structure of the vc is defined as a logical directed acyclic
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graph DAG, where nodes (N) represent the components (compi) that compose the vc, while
the interconnections between nodes (compq → compr) are established by edges (E), which
are defined as follows.

N = {comp1, comp2, comp3, compi} (7)

E = {comp1 → comp2, comp2 → comp3, compi−1 → compi} (8)

DAG = {N, E} (9)

The DAG is the key element for representing the structure of a vci.

3.1.3. Behavior

The behavior of the vc is established by assigning values to its properties, that is, by
associating the function of the vc with the infrastructure (H) defined in the configuration
file. The vci are deployed on H ∈ I, being I the whole infrastructure (e.g., a cloud). The
consumption of a set of resources (R) of the specified infrastructure (processor—CPU,
memory—MEM, file system—FS, and network—NET) is denoted as R ∈ H per each vci,
which are observed by a set of metrics (M).

R = {CPU, MEM, FS, NET} (10)

M = {total–usage, per–core–usage, ..., mn−1, mn} (11)

H, R, and M follow a hierarchy of elements defined as:

∀h ∈ H : h = {r, r ⊆ R} (12)

∀r ∈ R : r ⊃ value, value ∈ R, m(value) (13)

Equation (12) specifies that each physical computer h (where a vci runs) has a subset
of physical resources r. Likewise, Equation (13) specifies that each physical resource r
has a value denoting the performance of r for vci, and a metric m observes that value for
performance analysis.

Each resource r produces several values in the continuous numerical space. Thus,
a huge set of values is generated per resource r. These values are used for comput-
ing utilization factors (UF), which inform about the status performance of a resource
r. Although the resources produce a lot of values and data, we are interested in such
values of UF that could initiate a risk situation. Then, according to the ISO 31000 stan-
dard (www.iso.org/iso-31000-risk-management.html) accessed on 5 August 2021 for risk
management [37], the values of UF are discretized in scales: low ∈ [0, 0.33), medium ∈
[0.33, 0.66) and high ∈ [0.66, 1]. These thresholds indicate the level of performance (_lvl) of
each resource ri, as indicates Equation (14).

UF = {CPU_lvl, MEM_lvl, FS_lvl, NET_lvl} (14)

The UF of CPU in an instant of time t is defined by (15).

UCPU = 1−
[

TCPU − CCPU
TCPU

]
(15)

where, TCPU is the total processing capacity of the physical computer, given by the sum of
the capacity of each of the cores and CCPU is the CPU usage at the current time.

The UF of the file system in an instant of time t is calculated by (16).

UFS = 1−
[

f

∑
i=1

(
TFSi − CFSi

TFSi

)]
(16)

www.iso.org/iso-31000-risk-management.html
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where, f is the number of partitions available on the physical computer, TFSi is the total
capacity of the current partition on the physical computer, and CFSi is the consumption
of the current partition at a given moment. As shown, the multiple storage partitions
associated to a studied object are considered in Equation (16).

The UF of memory is calculated by (17).

UMEM = 1−
[

TMEM − CMEM
TMEM

]
(17)

where, TMEM is the total memory on the physical computer, and CMEM is the memory
consumption at time t.

The UF of network is calculated by (18).

UNET = 1−
[

TNET − (TXNET + RXNET)

TNET

]
(18)

where, TNET is the total capacity of the network in bytes, TXNET is the number of bytes
transmitted, and RXNET is the number of bytes received.

The set UF is the key element for representing the behavior.
As a result of this stage, a D f E is obtained, conformed by the three elements before

described (structure, behavior, and function). The second stage of the method operates on
this data structure.

D f E = {DAG, UF, Tr} (19)

3.2. Phase 2: Standardized Access to DST by Means of WoT

At this point, a D f E provides a representation of the necessary data of the vc. However,
we require a helpful representation to interact with the vc; such an interaction may be
machine to machine or human to machine. For achieving this flexibility, this representation
is based on the Web of Things (WoT) principles [38]. This standardized representation
of a vc is named WoT card. In addition to the information captured by D f E, metadata of
the vc are also added to the WoT card. These metadata are: IP addresses, volumes, ports,
namespaces, etc. A WoT card is defined as shows Equation (20).

WoTcard = {D f E, metadata} (20)

In the case of a VCS, such elements are defined recursively to capture data about
structures and transformations used and performed by the whole VCS and its compo-
nents, respectively.

According to the WoT recommendations, the generation of the WoT cards must be
based on ontologies. In this sense, we defined and created an ontology (named VC Docker
FU Ontology (available at github.com/adaptivez/VirtualContainerOntology accessed on 5
August 2021)), which can be adapted to the context of any WoT card in several scenarios.
The VC Docker FU Ontology is used as a reference in the whole generation of WoT cards
during the representation of vc. This ontology comes from two more ontologies, it extends
from the VC Docker Ontology (github.com/langens-jonathan/docker-vocab/blob/master/
docker.md#config accessed on 5 August 2021), which extends from the VC ISO Ontology.
The latter ontology was created from scratch according to the norm ISO/IEC JTC 1/SC
38 (www.iso.org/committee/601355.html accessed on 5 August 2021), it defines all the
concepts and constraints of the norm in an abstract manner. The VC Docker Ontology, in
its original version, already defines concepts and constraints of virtual containers into the
Docker environment, it was adapted in line with the VC ISO Ontology; some additional
concepts and restrictions were included to fulfill with the ISO norm. The VC Docker FU
Ontology adds concepts about the behavior related to infrastructure resources—CPU, MEM,
FS, and NET—(such as levels of utilization and properties of such values), and function of
virtual containers (such as base functions and tasks).

github.com/adaptivez/VirtualContainerOntology
github.com/langens-jonathan/docker-vocab/blob/master/docker.md#config
github.com/langens-jonathan/docker-vocab/blob/master/docker.md#config
www.iso.org/committee/601355.html
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Technically a WoT card is based on an abstract class named Thing, which is the base
object for modeling in the WoT approach. It is based on the representation structure of
Thing Description (TD). Thing Description is the base model for describing any IoT Thing
in the W3C Web of Things approach, it describes the metadata and interfaces of Things
(www.w3.org/TR/wot-thing-description accessed on 5 August 2021). Thus, a WoT card
is composed of three elements: (i) metadata (of Thing), which contains interactions (how
Thing can be used); (ii) vocabulary, which contains concept definitions used into the Thing
Description structure, useful for interactions; and (iii) URIs, which are useful to identify
resources into Thing Description, these are Internet links denoting relationships between
Thing and other resources on the WoT.

The WoT card was designed so that an external user can interact with it by asking
about: properties, actions, and events. Properties contain information about the Thing, such
as behavior (UF), structure (nodes, and edges of the DAG), and metadata of the VC. Actions
refer to the functions of the Thing, including tasks (Trs) executed by its components.
Events refer to alerts on behavior changes, such as defined by the utilization levels (CPU_lvl,
MEM_lvl, FS_lvl, NET_lvl).

Then, a WoT card is represented as a file following the format and structure of JSON-
LD (JavaScript Object Notation for Linked Data, www.w3.org/TR/json-ld11 accessed on 5
August 2021). Listing 1 illustrates a portion of an example of WoT card.

Listing 1. Thing Description (TD) structure following the JSON-LD format.

{
" @context " : " h t tps ://www. w3 . org /2019/wot/td/v1 " ,
" id " : "996 ba6e . . . aec5f14 " ,
" @type " : " Thing " ,
" td : t i t l e " : { " @value " : " . . . " } ,
" td : d e s c r i p t i o n " : { " @value " : " . . . " } ,
" p r o p e r t i e s " : {

" c tv : metadata " : { data { } } ,
" c tv : s t r u c t u r e " : { data { } }

} ,
" a c t i o n s " : { " c tv : f u n c t i o n s " : { input { } , output { } } } ,
" events " : { " c tv : behavior " : { } }

}

3.3. Phase 3: Consumption

After the WoT card has been generated and its data stored, it is ready for consumption
by means of a DST. For the DST to be accessible and consumed, it must become an
intermediary between the modeled object (vc) and the consumer. This is possible by using
a RESTful system, which can process requests with the most common HTTP actions: GET,
POST, PUT, DELETE. In this way, any artifact making REST type requests can consume
the DST. The consumption can be on properties, actions, or events, which are defined
as follows.

ConsumProperty = {WoTcard, property} (21)

ConsumEvent = {WoTcard, event} (22)

ConsumAction = {WoTcard, action[input]} (23)

Each element of the WoT card is universally identified and accepted by other physical
or abstract entities (e.g., other vc, VCS, applications, devices, human-requests, etc.) by
means of a Universal Resource Identifier (URI) in a unique and universal manner.

For the consumption of DST properties (21), it is necessary to give the URI of the DST
and the specific property to access. Additionally, in the event consumption (22), the URI
of the DST and the event to be accessed must be given. For invoking actions (23), it is
necessary to give the URI of the DST, the action to be performed and the input required

www.w3.org/TR/wot-thing-description
www.w3.org/TR/json-ld11
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for that action as parameter. In the three types of consumption, a JSON object is obtained as
a response indicating a value if a property or event were requested, or a value or resultant
flag if an action was invoked. Next, an example of consumption of the property “platform”
and the function “sum” are given.

Request (property):

https://www.example.com/wotmodel/containers/123456789/platform

Response:

{ "platform" = "Docker" }

Request (function):

https://www.example.com/wotmodel/containers/123456789/sum/2/3

Response:

{ "result" = "5" }

4. DST Prototype

This section describes the implementation of a prototype for building DSTs based on
the proposed method. The components of this prototype and its interactions are depicted
in Figure 4. The components were implemented as microservices (encapsulated into virtual
containers), coded by using Python 3.0, except for the observation component, which was
implemented by using JavaScript and PHP because of the nature of observation tasks. Next,
each component is described.

VCS1
.json

vc1
.json

vc2
.json

vci
.json

Docker daemon

vc1

VCS1

vc2

vc3

vc4

get detail 
container

info

Representation

get
info

get 
infoMySQL

Database

store 
info

get 
realtime 

containers 
status

store 
info

Devices

App

Observation

Containers
Name State Util

vc1 running low

vc2 running low User

Supervisionget 
resource 

usage 
per container

cAdvisor

communication to carry out
external consumption

CPUMEMNET FS

config
file

VCS1
.cfg

Consumption

Login

Listener

get utilization
values and levels 
from containers 

CPU
Memory
Network

File System

Figure 4. Components of DST prototype.

The prototype was deployed on the Docker platform, but DSTs may be created from
another platform, such as LXC (linuxcontainers.org/lxc accessed on 5 August 2021), Hyper-
V (docs.microsoft.com/en-us/virtualization/hyper-v-on-windows accessed on 5 August
2021), or rkt (https://www.openshift.com/learn/topics/rkt accessed on 5 August 2021),
where a vc can be represented by a YML or YAML file.

linuxcontainers.org/lxc
docs.microsoft.com/en-us/virtualization/hyper-v-on-windows
https://www.openshift.com/learn/topics/rkt
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4.1. Representation

In this service, the configuration file (YML) of the VD is parsed to build the D f E,
capturing structure, behavior, function, and metadata of the participants in a dataflow from
an IoT device to the decision-making process. After the creation of D f E, the WoT cards are
generated and its corresponding URIs defined. In this way, a decision-making process can
consume the WoT card information (properties, events, and actions). The URIs must follow
a defined namespace, as shows the Expression (24):

http : //www.example.com/wotmodel/containers/

container_id/{property, event, action} (24)

The WoT cards along with the D f E are stored in a MySQL database.

4.2. Listener

This service monitors the state (behavior) of a given VD (any of vc, VCS, or CApp). It
is in charge of storing and keeping updated, in real-time, all the captured information by
requesting status information from the Docker daemon and registering, in the database,
each event producing a change on the VD. It also keeps a communication with the
supervision service to reflect any change on VD utilization levels, which are also stored in
the database.

4.3. Supervision

This service supervises the VD and performs the acquisition of metrics through an
external agent, called cAdvisor. This is an API that provides information about the metrics
of the vc and the physical computers on which it runs. When acquiring the values of the
metrics, it calculates the behavior values of VD (utilization levels of resources used by VD).
It also responds to requests from the Listener, which is monitoring the VD and returns
values of utilization levels of resources (high, medium, low) about CPU, MEM, FS, or NET,
as well as the timestamp when values were captured.

4.4. Observation

This service offers options for observing the VD (structure, behavior, and function).
It is a web application with intuitive interface designed for human consumption. Three
tasks can be performed: (1) Discovering of VDs, for searching the vcs or a specific CApp by
using its properties (name, description, type, creator, owner, etc.); (2) Monitoring VDs, to
know easily the behavior of the resources used by a VD by means of warning color signs
(red for critical, yellow for intermediate, and green for normal) and its utilization level
values; (3) Observing risk levels, to know the risk of failure of the applications by means of
a graph denoting virtual containers in nodes and its relationships in edges.

4.5. Consumption

This service acts as a gateway, and is in charge of attending and processing requests
from external users (human users, software applications, virtual containers, etc.) trying to
consume or interact with the given VD. This is performed by using an API REST for GET,
POST, PUT, and DELETE requests. Three types of consumption are considered: properties,
events, and actions depending on the desired consumption/invocation. For properties and
events, this service queries the WoTcard of the VD, then gets the corresponding data from
the database to send it to the requester. For actions, the service queries the WoTcard of the
VD, then establishes a connection to the corresponding VD, which executes the action and
returns the result to the requester. All responses are into a JSON file. This is illustrated by
invoking the clustering task kmeans with the parameters k and a dataset named data.
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Preparation:

URI = https://www.example.com/wotmodel/containers/123456789/kmeans
input = {"k"=2,"data":[{"col1":1,"col2":0,"col3":2},
{"col1":2,"col2":1,"col3":1},{"col1":0,"col2":0,"col3":2}]}

Request:

request.post(URI,input)

Response:

{"result":
{"cluster1":[{"col1":1,"col2":0,"col3":2},{"col1":0,"col2":0,"col3":2}],
"cluster2":[{"col1":2,"col2":1,"col3":1}]}}

5. Results

The evaluation of the prototype for DST creation was conducted in two phases of
experiments. In the first phase, the prototype was evaluated in a controlled manner
to measure the response and service times in the construction of the DST and in its
consumption. In the second phase, a case study is presented based on the creation of DST
for a platform for continuous verification of contracts using a blockchain network.

Table 1 shows the infrastructure used by the VCS created for both cases of study.

Table 1. IT Infrastructure used in the experiments.

ID Cores Processor MEM HDD OS

Server1 4 Intel(R) Core i5 16 GB 256 GB macOS BigSur
Server2 12 Intel(R) Xeon(R) E7-4830 128 GB 1 TB CentOS 7

5.1. Metrics

The performance of the prototype was evaluated by capturing the following metrics.

• Service time (ST): The time required by a microservice (VD) to complete a given task.
• Response time (RT): The time observed by an end-user or a decision-making process

to complete a given task. This time considers the initial time to attain data, create
the representation, and store it in the database when an end-user builds a DST. This
metric also measures the initial time when an end-user sends a request to the prototype
and the time spent by DST to process it plus the time spent by it to deliver the results
to the end-user.

5.2. Controlled Evaluation

To conduct the evaluation of the prototype, a containerized application (CApp) was
deployed on the previously described infrastructure, one instance of the CApp running on
one virtual container vc. This CApp extracts data from real traces produced by ECG medi-
cal devices (IoT devices for acquiring electrocardiogram (ECG) signals) [11], and builds
workloads at a given rate time, following a synthetic distribution. An input parameter
defines the amount of data to be included in the workload.

By using the CApp, several experiments were carried out by varying the number of
vc and IoT data sources (ECG sensors), as well as the timing when the DST captures the
behavior of the CApp; this latter is called slot.

We captured the ST and RT metrics for each experiment, each one was performed
31 times (according to the Central Limit Theorem [39]) to capture the median value of both
ST and RT.

Different combinations of virtual containers (vc) and DSTs (dst) were tested, these
combinations were defined in the form vcW − dstZ, where W is the desired number of
virtual containers (vc) in the combination, and Z is the desired number of DSTs. That
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means 1 (of Z) DST watches W virtual containers. For example, Expression (25) means
1 DST watching 5 virtual containers, this results in a total vc = 5. Expression (26) means
5 DST watching 5 virtual containers, this results in a total vc = 25.

vc5− dst1 (25)

vc5− dst5 (26)

These combinations also was executed by varying the slot parameter from 1, 10, to
100 s. Each combination of these parameters produces a median value of ST and RT, which
are evaluated to show the behavior of the DST costs. The total time of ECGs extraction
was 10 min.

Analysis of Results

Figure 5 shows, in vertical axis, the ST and RT by two key operations related to the
building of a DST (GetData and StoreData tasks) produced by the different number of
virtual containers, evaluated in these experiments. This experiment only shows the ST
and RT observed by either end-users or a decision-making application. As it can be seen,
the prototype can build in just seconds DSTs for multiple VCS (17.5 s for creating DSTs
for 100 applications, each connected to an IoT data source). This time is only spent by the
prototype once, which means that this is affordable for many environments. Moreover, the
GetData task (parsing YML files and creating the D f E), as it was expected, was the more
significant task in the building of a DST, whereas StoreData task (indexing the D f E in a
database) results were not significant for the DST building RT.

Figure 6 shows, in vertical axis, the ST (for the Representation task) spent by the
building of the DSTs according to the sequences of DSTs and virtual containers evaluated
in these experiments (horizontal axis). As expected, the more the number of DSTs, the
more the ST spent by the prototype to create the representation of these DSTs.

Figure 7 shows, in vertical axis, the RT spent by the DSTs to retrieve information
about VDs and PDs to the end-user (in this case a DST client application) per different
sequences of DST and virtual containers (horizontal axis) for different time slot. It can be
observed that increasing the number of vcs per DST also increases the number of requests
performed by the DSTs per slot, increasing RT. The RT obtained is acceptable as soft real
time [40].
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Figure 5. Service and response times produced by the tasks GetData and StoreData.
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5.3. A Case Study: Blockchain Network for Continuous Contract Verification

The previous evaluation showed the costs in time associated to create DSTs for
decision-making process to attain IoT data (by using simple REST API) without deal-
ing with technology elements from IoT and cloud, just invoking tasks on DSTs.

We also conducted a case study to show the flexibility of DSTs into a dataflow com-
posed by an end-user (human, device, or application), DSTs, virtual containers (VDs),
and IoT devices with sensors attached (PDs). This dataflow was emulated from a real
trace of a logistic transportation of a supply chain of food, which is used by a VCS imple-
menting a blockchain service for the verification of contract violations by monitoring GPS,
temperature, and speed sensors of a set of transportation trucks [41].

Figure 8 shows the conceptual representation of this case study. As it can be seen, two
DSTs were created for two VCS (including three virtual containers). The DSTs deliver to
end-users or applications (decision-making processes) information about VDs (the system)
and PDs (physical devices).
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Figure 8. Conceptual representation of the scenario for the case study.

Figure 9 shows, in the horizontal axis, a timeline of the tasks performed by participants
on the dataflow (vertical axis) of verifying contract violations: Build (tsk1), data acquisition
of temperature (tsk2), data acquisition of speed (tsk3), data acquisiton of GPS (tsk4), send request
(tsk5), get data (tsk6), and deliver request (tsk7). The timeline for this case study was 10 min.
In tsk1 the prototype builds two DSTs. Then, the data acquisition was carried out from IoT
sensors (tsk2, tsk3, and tsk4) by the virtual containers, which were stored on the blockchain
network. Additionally during the timeline, every 10 s, the virtual containers verified,
registered, and reported contract violations on the blockchain network: first the consumer
requests to DST (tsk5), then the blockchain is queried by the corresponding virtual container
(tsk6), and finally the DST responses to the consumer (tsk7). As it can be seen, the impact of
the DST creation (tsk1) and communications (tsk5 and tsk7) is not significant in comparison
with the time spent by get data from the blockchain network (tsk6) and the data transfer
from sensors to the blockchain network (tsk2, tsk3, and tsk4). Figure 9 also shows that DST
can capture the data produced by both, VDs (tsk6), and PDs (tsk2, tsk3, and tsk4).

00:00 01:00 02:00 03:00 07:0006:0004:00 05:00 08:00 10:0009:0000:00 01:00 02:00 03:00 07:0006:0004:00 05:00 08:00 10:0009:0000:00 01:00 02:00 03:00 07:0006:0004:00 05:00 08:00 10:0009:00

Figure 9. Time of tasks in the case study.
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We observed that DSTs were able to inform to end-users, on demand and in real
time, about contract violations. From the total number of requests (47) to the DSTs, just in
3 requests the DSTs informed contract violations.

The DSTs can also deliver, on demand and in real time, the data rate produced and
received by PDs to the end-user. Therefore, the behavior of the PDs can be known by
end-users in decision-making time by analyzing these data. In this case study, the prototype
showed a regular data production from sensors, with a reduction and increment of the
data rate. This could imply to a potential bottleneck in the reception of data or a possible
inconsistent data production from sensors at IoT devices. Figure 10 shows the received
data amount of 47 user requests to the DSTs.

Requests to DST

K
ilo

bi
ts

 re
ce

iv
ed

Requests to DSTRequests to DST

Figure 10. Kilobits received in the requests.

The averages of consumed resources r (processor—CPU, memory—MEM, file system—
FS, and network—NET) by the prototype in the case study are shown in Table 2. To obtain
them, first the consumption of such resources were measured before and during the case
study, this was carried out 32 times (w = 32). Then the differences between initial (rkini

)
and final (rk f in

) values were computed and added. Finally the average of the differences
were obtained, as shows Equation (27).

rkavg =
∑w

i=1

(
rk f ini

− rkinii

)
w

(27)

Table 2. Average values of resource consumption.

CPU (%) MEM (Megabytes) FS (Megabytes) NET (Megabits/s)

2.306 33.884 (0.02%) 20.109 9.556

It is important to note that the blockchain network is not of exclusive use of this
prototype, it can be consumed by external applications. This VCS (blockchain network)
can be replaced by other VCS (e.g., a data analytics system), in such a case that the DST
must deliver the data produced by this new VCS without performing deep changes, but
rebuilding the D f E of the DST.

6. Discussion

In this paper, we demonstrated the viability of the proposed method by applying
the implemented prototype in two scenarios. The first one is regarding a controlled
evaluation for extracting data from traces produced by ECG medical devices. This scenario
showed the response and service time performance during the building and consumption
of DSTs. The second scenario demonstrated the flexibility of DSTs to attain information
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(verification of contract violations on a blockchain network) in real-time from a dataflow of
transportation logistics.

The obtained prototype was tested on distinct scenarios for intermediate and partial
experiments before obtaining the results reported in this paper. In all these experiments, the
prototype showed good performance in several tasks, such as discovering vcs, monitoring
VCS, supervising CApps through created DSTs. Several interactions were performed on
these DSTs, accessed by other CApps, human requests, and software applications.

According to the results of the controlled evaluation (Section 5.2), we can see that
augmenting the number of vcs per DST increases exponentially the response time for both
the building and consumption of DSTs. The building of 1 DST with 5 vc (vc5-dst1) takes
an average response time of 0.90 s (see Figure 5). The consumption of the DST with the
same configuration (vc5-dst1) takes an average response time of 0.52 s (see Figure 7).

The case study (Section 5.3) supports the results achieved in the controlled evaluation.
In this case, the average response time during the building of the DSTs (sequence vc3-s2)
was 1.2 s (see Figure 9). For the consumption of the DSTs the average response time was
13 s (see Figure 9). However, it is important to note that from these 13 s, 10 s correspond to
the communication to and from the blockchain networks for obtaining data. Thus, we can
conclude that 3 s is the real response time for the consumption.

In all the experiments of the prototype, the interaction with the created DSTs was easy
because complex requests were not necessary. The benefits of using the created DSTs are
as follows:

• Standardized interaction. Since a WoT card is based on W3C guidelines, a DST can be
consumed by distinct users (humans, devices, or applications);

• Easy consumption. Through a DST, users can: (a) access to data, properties, and
events; and (b) invoke tasks and functions, both directly on target devices (VDs
or PDs);

• Flexible access. A DST can be exploited by external users by means of RESTful
requests from distinct locations to the one of the DST environment;

• Decision-making aid. DSTs can be used as a mean in decision-making tasks (discover-
ing, classification, monitoring, supervising, migration, to mention a few);

• Generation of DST. The building of DSTs is quite simple and transparent if a well-
structured file configuration (YML or YAML) is given;

• Minimal required resources. The execution of DSTs requires minimal infrastructure
resources (CPU, MEM, FS, and NET).

7. Conclusions

This paper presented a cloud-based WoT method for creating digital twins of IoT
devices, named (digital sentinel twins—DST). A DST is an object that abstracts physical or
virtual devices to operate over them by consuming its properties, events, or invoking its
functions. This object has the advantage that by investing minimal time and resources,
an external user (human, software application, or virtual devices) can access to all the
data and functions of those devices. That is useful for interacting with IoT devices in
several scenarios.

The method comprises three phases: (a) Modeling, where the data of the VD or PD
are acquired, with these elements that device is modeled, generating a dataflow entity (DfE);
(b) Standardization, where the elements of the model are represented into a standardized
representation named WoT card; this representation follows the guidelines of the Web of
Things to make its elements universally accessible by means of URIs; and (c) Consumption,
the advance of the WoT card generated is that it can be consumed in external scenarios by
distinct users (human, software applications, or virtual devices) in different ways.

Based on the proposed method, a functional prototype was implemented. This pro-
totype was tested by creating DSTs in several experiments considering distinct scenarios
of use (discovering and monitoring of VCs and applications, supervising CApps, etc.). By
means of the created DSTs, it was possible to consume data and invoke functions of virtual
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and physical devices. In this paper, two experiments were reported to demonstrate the
viability of the proposed method, creating flexible and useful DSTs. The first experiment
was to show the spent time for creating and consuming DSTs. The second one was to
demonstrate the use of DSTs into a scenario of a blockchain network for verifying contract
violation on sensors used in product transportation logistics.

A DST creates an abstract window for decision-making processes to attain information
and data from virtual and physical devices. It acts as a useful mechanism to interact
with those devices in several scenarios. Its creation is not expensive in terms of time and
computational resources, and it produces a access to data and functions of the target devices.
These characteristics may be obtained without managing complex details associated to
virtual and physical devices and cloud computing infrastructures.

Nevertheless the benefits obtained by the proposed method, it is important to mention
some limitations of the proposed work:

• The creation of DSTs only can be achieved if a well-structured configuration file is
given, in YML or YAML format;

• A DST has no other way to consume it that RESTful requests;
• When target devices (VDs or PDs) and DSTs reside in the same infrastructure, the

response time of performed tasks increases exponentially.

As further work, the inclusion of security aspects into the DSTs is considered; this
will enable its manageability and control while maintaining its flexibility of use.
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