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Abstract

Background: It has been widely realized that pathways rather than individual genes govern the course of
carcinogenesis. Therefore, discovering driver pathways is becoming an important step to understand the molecular
mechanisms underlying cancer and design efficient treatments for cancer patients. Previous studies have focused
mainly on observation of the alterations in cancer genomes at the individual gene or single pathway level. However, a
great deal of evidence has indicated that multiple pathways often function cooperatively in carcinogenesis and other
key biological processes.

Results: In this study, an exact mathematical programming method was proposed to de novo identify co-occurring
mutated driver pathways (CoMDP) in carcinogenesis without any prior information beyond mutation profiles. Two
possible properties of mutations that occurred in cooperative pathways were exploited to achieve this: (1) each
individual pathway has high coverage and high exclusivity; and (2) the mutations between the pair of pathways
showed statistically significant co-occurrence. The efficiency of CoMDP was validated first by testing on simulated
data and comparing it with a previous method. Then CoMDP was applied to several real biological data including
glioblastoma, lung adenocarcinoma, and ovarian carcinoma datasets. The discovered co-occurring driver pathways
were here found to be involved in several key biological processes, such as cell survival and protein synthesis.
Moreover, CoMDP was modified to (1) identify an extra pathway co-occurring with a known pathway and (2) detect
multiple significant co-occurring driver pathways for carcinogenesis.

Conclusions: The present method can be used to identify gene sets with more biological relevance than the ones
currently used for the discovery of single driver pathways.

Background
The pathogenesis of cancer in humans is still poorly
understood. To improve the diagnosis and treatment
of cancer patients, several large-scale cancer genomics
projects (e.g., the Cancer Genome Atlas (TCGA) [1], and
International Cancer Genome Consortium (ICGC) [2])
have been performed in recent years. Analyzing these
high-throughput data provides valuable opportunities to
understand the formation and progression of cancer [3,4].

Generally, a large number of mutations occur in can-
cer genomes (e.g., somatic mutations and copy number
alterations (CNAs)). One crucial step in cancer research
is to distinguish driver mutations and driver genes, which
contribute to the progression of cancer from normal to
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malignant states, from passenger mutations and passenger
genes, which accumulate in cells but do not contribute to
cancer development [5,6]. Most early efforts were devoted
to the detection of individual driver genes based on recur-
rent mutations of the genes in a large cohort of cancer
patients [7].

Because of the mutational heterogeneity of cancer
genomes, more attention has been paid to identify driver
pathways and modules rather than individual genes in
recent years [1,8,9]. It is noteworthy that most such meth-
ods involve the use of prior knowledge about pathways
and/or protein interaction networks. For example, known
pathways were analyzed for enrichment of somatic muta-
tions [1,8,9], or were examined to find which ones are
significantly disturbed across many patients [10,11]. On
the other hand, several studies indicated that driver path-
ways often cover a large number of samples. More impor-
tantly, mutations of the genes in one pathway usually
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exhibit mutual exclusivity, i.e., a single mutation is usually
enough to disturb one pathway [12,13]. These rules have
been frequently used to detect driver pathways and mod-
ules [14-16]. For example, Ciriello et al. proposed MEMo
(Mutual Exclusivity Modules) to detect oncogenic net-
work modules within a constructed network using gene
mutation information and a human reference network
(including protein interactions and signal transduction
pathways) [14].

However, it is believed that the human protein inter-
action network is incomplete. There are many unknown
protein interactions and a great deal of knowledge about
biological pathways remains unclear. Many reverse engi-
neering approaches were developed in recent years to
infer complex biological regulatory relationships. For
example, Acharya et al. proposed the Gene Set Gibbs
Sampling (GSGS) method to reconstruct signaling path-
way structures by sequentially inferring the information
flows from the overlapping information flow gene sets
[17]. It is necessary to develop new methods to discover
mutated driver pathways or core modules without relying
on prior information. Recently, Vandin et al. proposed an
approach, called Dendrix (de novo driver exclusivity), to
de novo discover mutated driver pathways using somatic
mutation data [18]. In this method, a novel weight func-
tion was introduced by combining the coverage and exclu-
sivity of the gene set. Maximization of the weight function
is defined as the maximum weight submatrix problem.
This was originally solved by the Markov chain Monte
Carlo (MCMC) method [18], and was then addressed
using an exact binary linear programming (BLP) model
[19]. However, these studies for the identification of driver
pathways or core modules have all focused on single path-
ways or modules [15,16,18,19]. How various cellular and
physiological processes are coordinately altered during
the initiation and progression of cancer, it is still a major
challenge.

It is well known that multiple pathways with muta-
tions are generally required for cancer [20]. In fact, it
has been recently recognized that pathways often func-
tion cooperatively in carcinogenesis [13,21-23]. Based on
mutation data from COSMIC [24] and six major cancer-
associated pathways from previous studies, Yeang et al.
demonstrated that there were significant combinatorial
patterns of mutations occurring in the same patients (i.e.,
co-occurring), for which the corresponding genes usu-
ally function in different pathways, whereas mutations in
genes functioning in the same pathway are rarely mutated
in the same sample (i.e., mutually exclusive) [13]. Cui et al.
identified 12 oncogene-signaling blocks from the inte-
grated human signaling network [21]. They found that
some of them (such as the RAS and TP53 blocks in cen-
tral nervous system, pancreas, skin, and blood tumors)
would collaboratively promote cancer signaling and foster

tumorigenesis. Using 18 pathways enriched with muta-
tions in lung adenocarcinoma [8], Gu et al. investigated
pathway cooperation in cancer cells in terms of superpath-
ways, which are clusters of co-disrupted pathways whose
significance is tested by the hypergeometric model [25].
More recently, Gu et al. devised a heuristic approach to
detect cooperative functional modules in the glioblastoma
multiforme (GBM) altered network which is obtained by
mapping mutated genes onto a protein interaction net-
work from the Pathway Commons database, and several
pairs of significantly co-altered modules were identified
which are involved in the main pathways known to be
perturbed in GBM [26].

All these studies indicate that carcinogenesis is a com-
plex process and the malignant transformation from a
normal cell to a tumor is indeed a highly cooperative
procedure involving synergy between pathways. There-
fore, systematically exploring the complex collaboration
among different biological pathways and functional mod-
ules is a crucial step, which will shed new lights on
our understanding of the cellular mechanisms underlying
tumorigenesis. Current studies have mainly focused on
the utilization of prior knowledge to determine whether
two or more pathways or modules are simultaneously
perturbed in the same samples. Considering the incom-
pleteness of the knowledge about pathways and protein
interaction networks, de novo discovery of collabora-
tive pathways playing driver roles in cancer initiation
and development is of pressing need. Although itera-
tively performing Dendrix [18] or BLP [19] can obtain
multiple pathways by removing the gene sets found in
each previous iteration, however, such pathways are not
guaranteed to be significantly co-disrupted in the same
patients.

In this study, a mathematical programming approach to
discover co-occurring mutated driver pathways (CoMDP)
in cancer generation and progression was developed. The
co-occurring pathways detected here possess two prop-
erties: first, each pathway is a set of mutated genes with
high coverage and high exclusivity; second, the muta-
tions between pathway genes exhibit a statistically sig-
nificant co-occurrence in cancer samples. CoMDP is
an exact method where the optimal set of pathways
is obtained using an efficient algorithm. It does not
require any prior information besides mutation pro-
files. To evaluate this method, we first applied it onto
simulated data and compared it with the original BLP
method. Then we applied it onto four biological datasets
and several pathways which might play collaborative
roles in carcinogenesis were identified. For example,
for the glioblastoma tumor data and lung adenocarci-
noma data, several significant co-occurring gene path-
ways were detected. Each pair interacts and regulates the
cell survival and protein synthesis processes. In addition,
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a modified form (named mod_CoMDP) was proposed
in situations in which a certain pathway has been pre-
viously proven to play important roles in some can-
cers and one wants to know whether there are other
pathways with cooperative effects in tumorigenesis. Fur-
thermore, multiple co-occurring driver pathways can be
discovered by combining previously detected pairs of
gene sets and identifying others using mod_CoMDP.
When applied to the ovarian carcinoma dataset, CoMDP
and/or mod_CoMDP identified driver pathways related to
TP53 in the generation and progression of ovarian can-
cer. In summary, we developed a method for identifying
mutated co-occurring driver pathways which can enhance
the understanding of molecular mechanisms underlying
tumorigenesis.

Methods
Brief introduction of the maximum weight submatrix
problem
The Dendrix method was designed to de novo discover
a single mutated driver pathway from somatic muta-
tion data, where a weight function W was introduced
by combining the coverage and exclusivity of the gene
set [18]. Given a binary mutation matrix A with m rows
(samples) and n columns (genes), the maximization of
W was defined as the maximum weight submatrix prob-
lem [18], which means to find a submatrix M of size
m × k in the mutation matrix A by maximizing the weight
function W :

W (M) = |�(M)| − ω(M) = 2|�(M)| −
∑
g∈M

|�(g)|, (1)

where �(g) = {i : Aig = 1} denotes the set of patients
in which the gene g is mutated and �(M) = ∪g∈M�(g),
|�(M)| measures the coverage of M and ω(M) =∑

g∈M |�(g)| − |�(M)| measures the coverage overlap
of M.

In addition to the stochastic MCMC search procedure
[18], a BLP model has been introduced to solve this prob-
lem exactly [19]. Inspired by the BLP model, a binary lin-
ear programming model CoMDP to discover co-occurring
driver pathways was developed here (Figure 1). The focus
was placed on finding possible cooperative driver path-
ways in carcinogenesis. For example, in Figure 1, the gene
set D not C can be detected using MCMC or BLP for
k = 2. This is because gene set D has higher mutation
score W than that of gene set C. Mutations in the gene
set B and the gene set C occurred simultaneously among a
cohort of patients. CoMDP can successfully identify such
co-occurring gene sets which may have been missed by
previous approaches.

Mutation matrix
genes

pa
tie

nt
s

= mutated

= not mutated

These two gene sets, each with approximate exclusivity, co-occur 
among the same patients.

A gene set with 
perfect exclusivity

B C D

Figure 1 Schematic illustration of driver gene sets (pathways)
and their co-occurrence in the mutation matrix. Three gene sets,
B, C, and D, with high coverage and high exclusivity are shown. Gene
sets B and C occur simultaneously among the same patients.

CoMDP: a binary linear programming model for the
identification of co-occurring driver pathways
For the mutation matrix A, let us consider two sub-
matrices M and N (which correspond to two gene sets
or pathways S and T). Given the coverage �(M) and
�(N) of the two gene sets (sometimes called individ-
ual coverage in this study), we define (1) the common
coverage c(M, N) = |�(M)

⋂
�(N)|; (2) the union cov-

erage b(M, N) = |�(M)
⋃

�(N)|. We further define the
non-shared coverage d(M, N) = b(M, N) − c(M, N),
which describes the extent of the mutation co-occurrence
between the two gene sets: the smaller the value d, the
larger the co-occurrence is. As suggested before, ω(M)

and ω(N) reflect the exclusivity of M and N respectively.
To identify co-occurring gene sets with large coverage

and high exclusivity, we introduce the following weight
function H :

H(M, N) = c(M, N) − d(M, N) − ω(M) − ω(N). (2)

To maximize this weight function, a binary linear pro-
gramming model is introduced as follows:

max G(x, y, z, u, v) = λ

m∑
i=1

zi + η

m∑
i=1

(xi + yi−2zi)+
m∑

i=1
xi

−
n∑

j=1

(
uj ·

m∑
i=1

aij

)
+

m∑
i=1

yi

−
n∑

j=1

(
vj ·

m∑
i=1

aij

)
,

(3)
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s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

n∑
j=1

aijuj ≤ xi ≤
n∑

j=1
aijuj, i = 1, . . . , m,

1
n

n∑
j=1

aijvj ≤ yi ≤
n∑

j=1
aijvj, i = 1, . . . , m,

xi + yi − 1 ≤ 2zi ≤ xi + yi, i = 1, . . . , m,
uj + vj ≤ 1, j = 1, . . . , n,

n∑
j=1

(uj + vj) = k,

xi, yi, zi, uj, vj ∈ {0, 1}, i=1, . . . , m, j = 1, . . . , n,

(4)

where uj and vj are indicators whether column j of A falls
into the submatrx M or N , so all the columns j’s with
uj = 1 and vj = 1 constitute M and N respectively; xi
and yi are indicators whether the entries of row i of M
and N are not all zeros, so

∑m
i=1 xi and

∑m
i=1 yi represent

the coverage of M and N (i.e., |�(M)| and |�(N)|) respec-
tively; zi is the indicator whether both xi and yi equal to
1, so

∑m
i=1 zi represents the overlap between the coverage

of M and N (i.e., the common coverage c(M, N)). k is the
total number of genes within S and T ; and finally, λ and
η are two parameters controlling the common coverage
c(M, N) and the non-shared coverage d(M, N) of the two
gene sets.

Note that
∑m

i=1 zi and
∑m

i=1(xi + yi − 2zi) in model (3)
are always nonnegative according to the constraints in (4).
One can properly set λ and η to be positive or negative to
obtain gene sets with specific characteristics. For example,
if λ < 0 and η > 0, the model tends to detect gene sets
with large non-shared coverage but small common cov-
erage under the maximization of G(x, y, z, u, v). Certainly,
λ > 0 and η < 0 must be set if one wants to identify
co-occurring driver pathways by maximizing the function
H in (2), which is the main focus of this study. More dis-
cussion on the behavior of the model with λ and η can be
referred to Simulation study below.

mod_CoMDP: Finding a pathway that co-occurs with a
known one
In some cases, some prior information is known for a
disease. For example, a certain pathway may have been
previously proven to play important roles in cancer. The
problem is determining whether another pathway with a
cooperative effect on tumorigenesis exists. CoDMP can
be modified to answer this question to some extent. For
a known pathway or a gene set C, a possible co-occurring
pathway D can be identified by the following modified
optimization problem:

max GC(y, z, v) = λ

m∑
i=1

zi + η

m∑
i=1

(yi − 2zi) +
m∑

i=1
yi

−
n∑

j=1

(
vj ·

m∑
i=1

aij

)
,

(5)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

n∑
j=1

aijvj ≤ yi ≤
n∑

j=1
aijvj, i = 1, . . . , m,

xi + yi − 1 ≤ 2zi ≤ xi + yi, i = 1, . . . , m,

uj + vj ≤ 1, j = 1, . . . , n,
n∑

j=1
vj = r,

yi, zi, vj ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n,
(6)

where xi and uj are indicators whether the entries of row i
in gene set C are not all zeros and whether the gene corre-
sponding to column j of A falls into C, respectively; yi, zi, vj
and the parameters λ and η have the same meaning as in
(3) and (4); r is the size of the desired gene set D.

Generally, a branch-and-bound algorithm or others can
be used to produce an optimal exact solution for CoMDP
(also for mod_CoMDP). In this study, an IBM ILOG
CPLEX Optimizer was used to test the effectiveness of
the model. The experiments were performed on a 2.50
GHz Core i5-2520M CPU PC. For each given k, CoMDP
can automatically identify two gene sets when the sum of
their sizes equals k. Although the problem was NP-hard,
it can still be solved efficiently due to the sparsity of the
mutation matrix.

Statistical significance
A permutation test was used to assess the significance
of the results. As in a previous study [18], the weight W
in (1) served as a statistic to test the significance of the
exclusivity and coverage of each identified gene set (called
individual significance). We employed the co-occurrence
ratio, which is defined as the ratio of the common cov-
erage to the union coverage, as the statistic to test the
significance of the co-occurrence of these two gene sets
(called co-occurrence significance).

Simulation data
Three datasets were constructed to illustrate the proper-
ties of the proposed method. The first set of simulated
data, Sim_data1, was generated as in a previous study [19].
First, an empty m (samples) × n (genes) matrix was given
(m = 500, n = 1, 000 were used). Then, gene sets Mi
(i = 1, · · · , I; and each set has 10 genes) with a mutation
probability pi were embedded in the matrix (pi = 1− i ·�,
� = 0.05, and I = 10 were used here). For each sample, a
gene uniformly chosen from Mi with pi was mutated, and
once one gene was mutated, the other genes in Mi had a
probability p0 to be mutated (here p0 = 0.04 was used).
Finally, the genes not in Mi were mutated in at most three
samples. The second dataset, Sim_data2, was generated
using the strategy described above for noisy probability p0
from 0.04 to 0.24 in steps of 0.02.
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The third dataset, Sim_data3, was generated as follows.
Starting with an empty r × s matrix (here r = 600, s =
1, 000 were used), we embedded J gene sets N1, N2, · · · , NJ
(J ≥ 1, here J = 9 was used) into it. Ni has size mi × n0
(in this study n0 = 5 and mi = [m/2] +2i−1 were used
where [ m/2] denotes the integer part of m/2). Ni was con-
structed according to the strategy like that for Mi stated
above. Similarly, we mutated the genes not in Ni at most
in three samples.

We note that the average mutation rate for genes in a
dataset in current simulation study is comparable to those
of real datasets. For example, for Sim_data2 with the noisy
probabilities of 0.04 and 0.24, each gene has an average
mutation rate 0.0142 and 0.0274 respectively. For the four
biological datasets (GBM1, GBM2, lung cancer and ovar-
ian cancer) introduced in the following subsection, each
dataset has an average mutation rate of 0.0658, 0.0416,
0.0206, and 0.0134 for each gene, respectively.

Biological data
To assess the proposed methods for practical applica-
tions, four biological datasets were collected due to their
popularity and abundant prior knowledge. Note that the
CoMDP can be easily applied to other cancer mutation
datasets.

The glioblastoma multiforme data 1 (GBM1) and the
lung adenocarcinoma dataset were obtained directly from
a previous study [18]. These sets contain mutations in 178
genes across 84 GBM patients (samples) and 356 genes
in 163 lung cancer patients, respectively. The GBM2 and
ovarian carcinoma datasets were obtained from another
previous study [16]. These sets contain CNAs for 1269
genes spanning 169 GBM patients, somatic mutations for
343 genes across 135 GBM patients, CNAs in 966 genes
across 559 ovarian patients, and somatic mutations in
8431 genes across 320 ovarian cancer patients. For the
last two datasets, somatic mutations and CNAs were first
integrated by merging the genes on the common patients.
Finally, a binary mutation matrix A was obtained for each
of the four datasets. The genes that are mutated in the
same samples were combined into a gene set which was
named as a metagene in this study. Note that the defini-
tion of a metagene differs from that defined based on the
matrix factorization method.

Results and discussion
Simulation study
CoMDP can get the optimal solution of the original
maximum weight submatrix problem. Like the BLP
model [19], CoMDP can detect all the embedded gene
sets in Sim_data1 with k = 10, η = 1 and λ < 0 (here
λ = −10 was used). In the current situation, CoMDP usu-
ally degenerates to find one gene set which corresponds to
the optimal solution of BLP. Sometimes it can produce two

gene sets with no common coverage. For example, with
Sim_data1 where ten gene sets were embedded in the 500
(samples) × 1000 (genes) matrix, we identified two sets
with two and eight genes respectively, which are mutated
in 74 and 340 samples respectively. But their common cov-
erage is 0. In fact, these two sets constitute one of the
embedded gene sets which can be found using the BLP
method, so they can be viewed as the same driver gene set
as obtained using BLP directly.

Note that as p0 increases, the exclusivity among the
genes in Mi decreases, so the detection of the embed-
ded gene sets Mi becomes more and more difficult. Let
k = 10. CoMDP (λ = −10, η = 1) and BLP were
applied on Sim_data2. Both were able to precisely iden-
tify all ten embedded gene sets when p0 ≤ 0.10. For
BLP, the average number of detected embedded gene sets
decreased sharply as p0 increased. However, by properly
choosing the parameter η, CoMDP can obtain more accu-
rate and robust results than BLP at high values of p0. For
example, CoMDP with λ = −10 and η = 2 has much
higher identification accuracy than BLP for p0 ≥ 0.20
(Figure 2A).

CoMDP can identify co-occurring gene sets efficiently.
We further applied CoMDP to Sim_data3 to demonstrate
its effectiveness, and assessed the effect of λ and η. We
found that the results are robust with the selection of these
two parameters. CoMDP can always get the embedded
gene sets with the largest co-occurrence ratio 0.8696 for
λ ranging from 6 to 24 in step of 2 and η ranging from
-10 to -1 in step of 1. The performance of CoMDP was
also demonstrated on different η with λ = 10 (Figure 2B).
For example, when η ≤ 3, the two detected 5-gene sets
mutated almost in the same samples (the individual cov-
erage of these two sets was 286 and 273 and common
coverage was 260). When η became larger the coverage
difference of the two sets increased, and the common cov-
erage became smaller. When η ≥ 12, CoMDP detected
one gene set with 10 genes, which had the coverage 437
and so the co-occurrence ratio was 0. Generally speak-
ing, we found that CoMDP has similar performance when
λ equals 2 or 10 (Figure 2C). A high co-occurrence ratio
(i.e., 0.8696) was obtained when η ≤ 0.5, and a ratio of
0 was obtained when η ≥ 3.5. The simulation study con-
firmed that λ > 0 and η < 0 are the proper selections for
identifying co-occurring gene sets. In the following bio-
logical applications, without loss of generality, λ = 10 and
η = −2 were used.

Applications to biological data
In this section, CoMDP was used on four biological
datasets (i.e., GBM1, lung cancer, GBM2, and ovarian
carcinoma datasets) to identify the co-occurring driver
pathways with k = 4 ∼ 10. We also demonstrated that
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Figure 2 Results of CoMDP applied to simulation data. (A) Comparison of CoMDP with BLP for the ability to identify the embedded gene sets.
Display of co-occurrence of the gene sets detected by CoMDP for different η when λ > 0: (B) λ = 10, and (C) λ = 2.

mod_CoMDP (model (5) and (6)) was applied onto the
ovarian carcinoma data to detect more driver pathways
co-occurred with TP53 in carcinogenesis and to find mul-
tiple significant co-occurring driver pathways. Each run
for GBM1 and GBM2 datasets takes less than two sec-
onds, and each run for the lung cancer dataset takes less
than four seconds.

GBM1 dataset
For k = 4, two gene sets were detected: {CDKN2A,
MG1} and {MTAP, CYP27B1} (MG1 is a metagene con-
sisting of CDK4, FAM119B, MARCH9, TSFM, CENTG1,
METTL1 and TSPAN31) with individual significance p1 =
0.0207, p2 = 0.0058, co-occurrence significance p1,2 <

0.0001, and co-occurrence ratio r1,2 = 0.9412 (Table 1).
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Table 1 Co-occurring gene sets identified by applying CoMDP to GBM1

k Gene set 1 Gene set 2 p1 p2 n1 n2 r1,2 p1,2

4 CDKN2A, MG1 MTAP, CYP27B1 0.0207 0.0058 50 49 0.9412 < 0.0001

CDKN2A, TP53,

5 MG1 CDKN2B, CYP27B1 0.0003 0.0018 68 57 0.7606 < 0.0001

CDKN2A, PTEN, CDKN2B, TP53,

6 CYP27B1 MG1 0.0002 0.0003 69 71 0.8182 < 0.0001

CDKN2A, PTEN, CDKN2B, RB1,

7 CYP27B1 TP53, MG1 0.0002 0.0001 69 74 0.8571 < 0.0001

CDKN2A, PTEN, CDKN2B, RB1,

8 NF1, CYP27B1 MG1, ERBB2 0.0015 < 0.0001 72 70 0.8933 < 0.0001

CDKN2A, PTEN, NF1, CDKN2B, RB1,

9 CYP27B1, KDR MG1, ERBB2 0.0006 < 0.0001 74 70 0.9200 < 0.0001

CDKN2A, PTEN, CYP27B1, CDKN2B, NF1, RB1,

10 KDR, MG2 MG1, ERBB2 < 0.0001 < 0.0001 72 73 0.9333 < 0.0001

Here p1 and p2 are the p-values of the individual significance of two identified gene sets, p1,2 represents the p-value of their co-occurrence significance, n1 and n2
denote their respective coverage, and r1,2 is the ratio of the common coverage to their union coverage (i.e., co-occurrence ratio). There are same meanings in the
following tables. MG1 is a metagene including seven genes: CDK4, FAM119B, MARCH9, TSFM, CENTG1, METTL1, TSPAN31. MG2 is a metagene including four genes: WT1,
SLC1A2, PAX6, ABCC4.

The two genes MTAP and CDKN2A were found to be
frequently co-deleted [27,28]. They are both located on
chromosome 9p21, a typical tumor suppressor region
whose deletion is related to many different types of can-
cers. CYP27B1 and the metagene MG1 were mutated in
the same patients with one exception: a single-nucleotide
mutation was recorded in one additional patient for
CYP27B1 (Figure 3A). Previous studies have suggested
that CDK4 is the target of a common CNA in the
corresponding patients [29]. Two protein products of
CDKN2A, INK4A (also known as p16) and ARF (also
known as p14), are involved in the p53 and RB tumor
suppressor pathways (Figure 3B). It has been shown that
any error disrupting these pathways causes tumor forma-
tion [30]. CDKN2A and CDK4 are considered part of the
RB pathway. Both MTAP and CYP27B1 encode impor-
tant enzymes. The enzymes encoded by MTAP play a
major role in polyamine metabolism and those encoded
by CYP27B1 play a role in calcium metabolism and tissue
differentiation.

For k = 5, two gene sets including {CDKN2A, TP53,
MG1} and {CDKN2B, CYP27B1} were detected with p1 =
0.0003, p2 = 0.0018, p1,2 < 0.0001 and r1,2 =
0.7606. CDKN2B encoding INK4B (also known as p15)
also locates in chromosome 9p21 homozygous deletion
region, and CDKN2B is usually co-deleted with CDKN2A.
This disrupts the p53 and RB pathways. For this rea-
son, combinatorial inactivation of CDKN2A and CDKN2B
is frequently observed in these tumors. The cross-talk
between the p53 and RB pathways (Figure 3B) suggests
that CDKN2A, TP53 and CDK4 are in the same pathway
(Figure 3C(a) or 3C(b)).

For k = 10, two gene sets {CDKN2A, PTEN, CYP27B1,
KDR, MG2} and {CDKN2B, NF1, RB1, MG1, ERBB2} with
p1, p2 and p1,2 less than 0.0001 and r1,2 = 0.9333 were
identified (Table 1 and Figure 4A). The first gene set was
found to be involved in the p53 and PI3K/Akt signaling
pathways and the second in the RB and RTK/RAS/ERK
signaling pathways. The RTK/RAS/PI3K signaling path-
way can also be induced by the mutations in these
two gene sets (Figure 4B). These pathways are impli-
cated in biological processes associated with cell survival,
cell cycle, protein synthesis, and cell proliferation. p53,
RB, and RTK/RAS/PI3K have been previously reported
to contribute to GBM pathogenesis in original TCGA
GBM studies [1]. Five well-known tumor suppressors
(CDKN2A, CDKN2B, PTEN, NF1, and RB1) are involved
in these two gene sets. Besides the co-occurrence of
CDKN2A and CDKN2B, NF1 and RB1 in the second
gene set have exclusive mutations, which are co-occurrent
with mutations of PTEN in the first set (Figure 4A).
Recently, several studies have shown the cooperativity of
tumor suppressors in carcinogenesis [33-35]. For example,
Rahrmann et al. demonstrated that co-occurring muta-
tions in PTEN and NF1 cooperate in the development of
grade 3 PNSTs (peripheral nerve sheath tumors) in mice,
suggesting that they may cooperate in human MPNST
(malignant PNST) progression [33]. Another study by
Chow et al. [34] showed that cooperativity among PTEN,
TP53, and RB1 can cause high-grade astrocytoma in
mouse adult brain, in which the majority of glioblastomas
arise. For another two almost simultaneously mutated
oncogenes CYP27B1 and CDK4 (Figure 4A), Beckner et al.
have demonstrated their cooperative amplification and



Zhang et al. BMC Bioinformatics 2014, 15:271 Page 8 of 14
http://www.biomedcentral.com/1471-2105/15/271

exclusive mutation
co-occurring mutation
no mutation

Gene set 1 Gene set 2

INK4A

CDK4/6

RB

MDM2

WAF1, BAX

p53

ARF

E2F

CDKN2A

TP53

CDK4

A B

C

Oncogenic 
signals

CDKN2A

CDK4

TP53

(a) (b)

P
at

ie
nt

s

Senescence 
and apoptosis

Figure 3 The results of CoMDP on the GBM1 dataset with k = 4 and k = 5, and the related p53 and RB pathways. (A) The co-occurrence
between the two gene sets {CDKN2A, MG1} and {MTAP, CYP27B1} identified by CoMDP with k = 4 in the GBM1 dataset. (B) The TP53 and RB tumor
suppressor pathways. ARF and INK4A are two alternatively spliced transcripts of CDKN2A. This figure was adapted/extracted according to [31,32]. (C)
The alterative gene regulatory pathway ((a) or (b)) involving CDKN2A, CDK4 and TP53.

co-expression for potential modulation of vitamin D in
glioblastomas [36].

On the other hand, WT1 encodes a transcription fac-
tor that plays an essential role in cellular development and
cell survival [37]. It regulates the expression of numer-
ous target genes, including the famous tumor suppressor
TP53 and the Wnt signaling pathway [38]. KDR encodes
a VEGF (vascular endothelial growth factor) receptor.
VEGF plays a crucial role in angiogenesis and progression
of malignant brain tumors. ERBB2 encoding the protein
HER2 (human epidermal growth factor receptor 2) is a

member of the epidermal growth factor receptor (EGFR)
family, and it has been shown to play an important role
in the pathogenesis and progression of many different
types of cancer. WT1, KDR and ERBB2 may drive the car-
cinogenesis of GBM, indicating that CoMDP can identify
low-frequency candidate driver genes that play important
roles in cancer initiation and development.

Lung cancer
In this case, the significant results were obtained with
k = 4, 5, 10 (Table 2). For k = 4 the co-occurring gene sets
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are {ATM, TP53} and {EGFR, KRAS}, and for k = 5 they
are {ATM, TP53} and {EGFR, KRAS, STK11}. As stated
in a previous study [18], ATM and TP53 interact directly
and are involved in the cell cycle checkpoint control [39].
EGFR, KRAS and STK11 are all involved in the regula-
tion of the mTOR signaling pathway, whose dysregulation
has been reported to be important to lung adenocarci-
noma [8]. However, the gene set {ATM, TP53} can only
be obtained by removing the mutations of {EGFR, KRAS,
STK11} from the dataset in the previous study by Vandin
[18]. Here, these two gene sets were identified simultane-
ously and found to show significant co-occurrence. ATM,
TP53 are involved in the regulation of cell apoptosis and
EGFR, KRAS, STK11 are related to protein synthesis, indi-
cating that the cooperativity of these two processes for the
generation and progression of lung cancer.

For k = 10, {STK11, ATM, TP53, PAK4} and {KRAS,
NTRK3, EGFR, GNAS, EPHA3, NRAS} were identified. All
four genes STK11, ATM, TP53, PAK4 have been demon-
strated to be closely related to the p53 signaling pathway

in lung cancer [40,41]. Two members of the RAS sub-
family, KRAS and NRAS function as binary molecular
switches controlling the intracellular signaling networks
that regulate several key cancer-related processes, such
as proliferation, differentiation, cell adhesion, apoptosis,
and cell migration. GNAS is a guanine nucleotide-binding
protein (G protein). It acts as a modulator or trans-
ducer in various transmembrane signaling systems. GNAS
may interact with MDM2, which may lead to MDM2-
mediated degradation of TP53. Solomon et al. found that
many kinds of TP53 mutations can regulate RAS in dif-
ferent ways, inducing a cancer-related gene signature [42].
Kosaka et al. demonstrated that TP53, EGFR and KRAS
may cooperatively determine the prognosis of the patients
in lung adenocarcinoma [43].

GBM2 dataset
We observed that some new co-occurring gene sets were
identified for GBM2 compared to GBM1 (Table 3). For
k = 9, we identified {CDKN2A, TP53, MG3, PIK3R1,

Table 2 Co-occurring gene sets identified by applying CoMDP to the lung cancer data

k Gene set 1 Gene set 2 p1 p2 n1 n2 r1,2 p1,2

4 ATM, TP53 KRAS, EGFR 0.0121 < 0.0001 76 90 0.3833 0.0129

5 ATM, TP53 STK11, KRAS, EGFR 0.0125 < 0.0001 76 110 0.4091 0.0220

STK11, ATM, KRAS, NTRK3, EGFR,

10 TP53, PAK4 GNAS, EPHA3, NRAS 0.0379 < 0.0001 98 108 0.5489 0.0001
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Table 3 Co-occurring gene sets identified by applying CoMDP to GBM2 with somatic mutations and CNAs

k Gene set 1 Gene set 2 p1 p2 n1 n2 r1,2 p1,2

4 CDKN2A, MG3 CDKN2B, CYP27B1 0.0045 0.0056 60 63 0.9219 < 0.0001

CDKN2A,

5 CYP27B1, COL1A2 CDKN2B, MG3 0.0072 0.0018 62 63 0.9531 < 0.0001

CDKN2A, CDKN2B,

6 CYP27B1, COL1A2 MG3, ERBB2 0.0073 0.0003 62 65 0.9538 < 0.0001

CDKN2A, TP53, CDKN2B, RB1,

7 MG3 , TAF1 CYP27B1 0.0001 0.0001 77 70 0.8375 < 0.0001

CDKN2A, TP53, CDKN2B, RB1,

8 MG3 , TAF1 CYP27B1, PRNP 0.0002 < 0.0001 77 71 0.8500 < 0.0001

CDKN2A, TP53, TAF1, CDKN2B, RB1,

9 MG3 , PIK3R1 CYP27B1, SYNE1 0.0002 < 0.0001 79 72 0.8642 < 0.0001

CDKN2A, TP53, TAF1, CDKN2B, RB1, SYNE1,

10 MG3 , PIK3R1 CYP27B1, MG4 0.0001 < 0.0001 79 73 0.8765 < 0.0001

MG3 is a metagene including three genes: CDK4, MARCH9, TSPAN31. MG4 is a metagene including 168 genes.

TAF1} and {CDKN2B, CYP27B1, RB1, SYNE1} (MG3 is
a metagene including CDK4, MARCH9 and TSPAN31)
with p1 = 0.0002, p2 < 0.0001, p1,2 < 0.0001 and
r1,2 = 0.8642 (Figure 5A and Table 3). In addition to
the cooperative effects between CDKN2A and CDKN2B,
TP53 and RB1 have been reported to have frequently co-
occurring mutations related to several cancers, including
the central nervous system tumor [13]. Recently, the col-
laboration of TP53 and CDKN2B was also studied with

respect to cell apoptosis and aneurysm formation [44].
On the other hand, for the two detected low-frequency
mutated genes TAF1 (2/170) and SYNE1 (3/170), TAF1
encoding a transcription initiation factor phosphorylates
TP53 during G1 cell-cycle progression, so TAF1 may be a
member of the p53 signaling pathway; SYNE1 was found
to be associated with the GBM patients’ lifetime, and
was therefore considered to be an important biomarker
of glioblastoma survival [45]. Our studies indicated that

Figure 5 The results of CoMDP on the GBM2 dataset with k = 9. (A) The significant co-occurrence mutations between the two gene sets
{CDKN2A, TP53, MG3 , PIK3R1, TAF1} and {CDKN2B, CYP27B1, RB1, SYNE1}. (B) The relevant pathways of the two gene sets.
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the p53, RB, and the PI3K-related signaling pathways may
collaboratively contribute to carcinogenesis in GBM via
combined genetic alterations (Figure 4B and Figure 5B).

Ovarian cancer
The mutation distribution among genes in the ovarian
carcinoma data is quite nonuniform. Among all the 314
samples, TP53 is mutated in 251 of them and all the
other genes are mutated in less than 26% of samples. This
indicates that TP53 plays a crucial role in the carcinogen-
esis of ovarian cancer (TTN was removed in the present
analysis because of the possible artifacts of its mutations
[46]). Determining whether there are other driver genes
or pathways collaborating with TP53 will be helpful for
understanding the pathogenesis of this cancer.

We applied CoMDP to the ovarian cancer data with
k = 4 ∼ 10 (Table 4). The first three rows in Table 4
showed significantly co-occurring gene sets with TP53.
For k = 5 we identified {MYC, CCNE1, NINJ2, MG5}
(MG5 is a metagene including CHKB and KLHDC7B).
MYC and CCNE1 are two important proto-oncogenes
involved in cell cycle progression. The functional corre-
lation of MYC and TP53 in the carcinogenic progression
of ovarian carcinoma and other cancers have been eval-
uated in several studies [47-49]. Recently, Kuhn et al.
discovered that molecular genetic aberrations of CCNE1
together with those of the p53 and PI3K pathways are
major mechanisms in the development of uterine serous
carcinoma [50]. Both CHKB and KLHDC7B are located
on chromosome 22q13.33, where KLHDC7B is involved
in breast cancer and lymph node metastasis in cervical

cancer and CHKB encodes choline kinase (ChoK) beta. de
Molina et al. demonstrated that ChoK acts as a link con-
necting phospholipid metabolism and cell cycle regulation
[51]. It is here supposed that TP53 and CHKB may regu-
late CDK4/6 collaboratively to suppress the progression of
ovarian cancer.

To identify other driver gene sets coupled to TP53, we
applied mod_CoMDP with r = 1 ∼ 10 to the ovar-
ian cancer data and significant results were obtained for
r = 3 ∼ 10 (Additional file 1: Table S1). For example,
for r = 10 we identified {MYC, CCNE1, NINJ2, MG5,
USH2A, NF1, HMCN1, ZNF596, USP35, MG6} (MG6 is
a metagene including four genes: STMN3, SLC2A4RG,
ZGPAT, RTEL1) with ra = 0.6563 (the co-occurrence
ratio with TP53). Frequent somatic mutations in NF1
have been previously shown to co-occur with TP53 muta-
tions in ovarian carcinomas [52,53]. STMN3 and NF1
have been demonstrated to be involved in the MAPK sig-
naling pathway [19]. Furthermore, to discover possible
collaborations of multiple driver pathways with TP53, we
combined TP53 and the aforementioned 10-gene set into
one nominal gene, which was considered mutated in a
sample if both sets were mutated in that sample. Then we
applied mod_CoMDP to identify gene sets significantly
co-occurring with the nominal gene. For r = 1 ∼ 10
we identified PPP2R2A, which is generally implicated in
the negative control of cell growth and division. Kalev
et al. revealed that PPP2R2A plays a critical role in DNA
double-strand break repair through modulation of ATM
phosphorylation [54]. Youn and Simon recently stud-
ied mutator alterations relevant to ovarian cancer [55].

Table 4 Co-occurring gene sets identified by applying CoMDP to the ovarian carcinoma dadaset

k Gene set 1 Gene set 2 p1 p2 n1 n2 r1,2 p1,2

4 TP53 MYC, CCNE1, NINJ2 1.0000 < 0.0001 251 155 0.4397 0.0410

MYC, CCNE1,

5 TP53 NINJ2, MG5 1.0000 0.0100 251 169 0.4894 0.0250

MYC, CCNE1,

6 TP53 NINJ2, ZNF596, USH2A 1.0000 < 0.0001 251 183 0.5228 0.0120

MYC, CCNE1,

7 TP53, LYRM5 NINJ2, ZNF596, USH2A 0.0270 0.0030 264 183 0.5629 < 0.0001

MYC, CCNE1, NINJ2,

8 TP53, LYRM5 BRD4, ZNF596, USH2A 0.0230 0.0210 264 197 0.6007 0.001

MYC, CCNE1, NINJ2,

9 TP53, LYRM5 BRD4, ZNF596, 0.0340 0.0160 264 206 0.6263 < 0.0001

USH2A, HMCN1

MYC, CCNE1, NINJ2,

10 TP53, LYRM5 NF1, ZNF596, 0.0390 0.001 264 211 0.6493 < 0.0001

USH2A, HMCN1, TPD52L2

MG5 is a metagene including two genes: CHKB, KLHDC7B. For k = 4 ∼ 6 because of only one gene contained in the gene set 1, the corresponding p-value equals 1.0000.
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Besides the well-known mutator gene TP53, they identi-
fied PPP2R2A and the chromosomal region 22q13.33 as
the new mutator candidates. We find that these so called
mutator genes, which increase genomic instability when
altered, may be collaboratively involved in the processes
of DNA synthesis and repair, chromosome segregation,
damage surveillance, cell cycle checkpoints, and apopto-
sis. The discovered driver patterns here may provide new
information to enhance our understanding of the ovarian
carcinoma pathogenesis, and further explorative analysis
is needed to verify their biological relevance.

Conclusions
In this study, we proposed a method CoMDP for the
de novo identification of co-occurring driver pathways in
cancer. It considers two types of optimization simultane-
ously: First, it makes the maximization of the weight W
for each individual pathway, i.e., high coverage and high
exclusivity. Second, it ensures that the maximization of the
inter-overlap between the pathway pair. Simulation study
indicated that for a range of values of the parameters λ

and η, CoMDP can always get the exact solution. It was
here demonstrated that CoMDP has the following char-
acteristics: (1) It can identify individual driver gene sets
as BLP [19] or Dendrix [18]. (2) It obtains more accurate
and robust results when the noise increases. (3) It uses
no prior information such as the incomplete knowledge
about the pathways and protein interaction networks. (4)
CoMDP is an exact method and the procedure is quite
fast.

When the project approximated to the end, we noticed
that Leiserson et al. proposed a method for the simulta-
neous identification of multiple driver pathways [56]. The
present study is related to Leiserson’s but in many ways
quite different. First, the so-called DendrixILP in [56] is the
same as the BLP method [19]. Second, the weight function
used by their Multi-Dendrix algorithm does not explicitly
incorporate co-occurrence of mutations between genes
in different pathways [56]. The Multi-Dentrix of the two
gene sets was found to be a special form of the present
model with λ = 2 and η = 1. Our simulation study
demonstrated that, in this case, the coverage of the two
sets detected was 286 and 331 respectively. Although the
union coverage got larger (i.e., 437), a lower co-occurrence
ratio 0.4119 was obtained because of the smaller common
coverage. This also indicates that the multiple driver path-
ways (gene sets) identified by Multi-Dendrix cannot be
guaranteed to be co-occurring.

We note that the heterogeneity among tumors can affect
the findings of the current method. Investigating combi-
natorial patterns of driver pathways in different subtypes
will be helpful for understanding the molecular mech-
anisms of carcinogenesis and designing efficient treat-
ments for cancer patients. It will be interesting to explore

the effect of heterogeneity among tumors in the future
studies.

In summary, we have developed a method to iden-
tify co-occurring driver pathways, which may reveal the
functional cooperation of different driver pathways dur-
ing carcinogenesis. The results of this study show that
the present method will be a powerful tool to explore the
collaborative effects among mutated driver pathways and
enhance our understanding of the molecular mechanisms.

Additional file

Additional file 1: The results by applying mod_CoMDP to the ovarian
carcinoma dadaset.
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