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Background: An unstable trochanteric femoral fracture is a serious injury, with a 1-year mortality rate of 5.4% to 24.9%,
for which there is currently no standard treatment method. The lag screw insertion site is one of the primary contact areas
between the cortical bone and an intramedullary nail. We hypothesized that a posterolateral fracture causes intramed-
ullary nail instability when the posterolateral fracture line interferes with lag screw insertion. The purpose of the present
study was to investigate the effect of posterolateral fracture line morphology on intramedullary nail stability by simulating
unstable trochanteric femoral fractures with a posterolateral fracture fragment.

Methods: Eighteen custom-made synthetic osteoporotic bone samples were used in the present study. Nine samples
had a posterolateral fracture line interfering with the lag screw insertion hole (Fracture A), and the other 9 had a fracture
line 10 mm away from the hole (Fracture B). Cyclic loading (750 N) was applied to the femoral head 1,500 times.
Movement of the end cap attached to the intramedullary nail was recorded. The amplitudes of motion in the coronal plane
(coronal swing motion), sagittal plane (sagittal swing motion), and axial plane (total swing motion) were evaluated. The
change in the neck-shaft angle was evaluated on photographs that were made before and after the test. Medial cortical
displacement was measured before and after the test.

Results: Two Fracture-A samples were excluded because the amplitude of sagittal swingmotion was too large. Themean
values for coronal, sagittal, and total swing motion were 1.13 ± 0.28 mm and 0.51 ± 0.09 mm (p < 0.001), 0.50 ±
0.12 mm and 0.46 ± 0.09 mm (p = 0.46), and 1.24 ± 0.24 mm and 0.69 ± 0.11 mm (p < 0.001) for Fractures A and B,
respectively. The mean neck-shaft angle change was 28.29� ± 2.69� and 23.56� ± 2.35� for Fractures A and B,
respectively (p = 0.002). The mean displacement of the medial cortex was 0.38 ± 1.12 mm and 0.12 ± 0.37 mm for
Fractures A and B, respectively (p = 0.57).

Conclusions: This study showed that an unstable trochanteric femoral fracture with a posterolateral fracture line that
interferes with the lag screw insertion holes is a risk factor for increased intramedullary nail instability.

A
n unstable trochanteric femoral fracture is a serious
injury, with a high mortality rate of 5.4% to 24.9%
within 1 year postoperatively1,2. Some poor postopera-

tive outcomes may be explained by the etiology of the injury,
including the presence of a lesser trochanteric fragment, severe

osteoporosis, a reverse oblique trochanteric femoral fracture
line, and a posterolateral fragment3-7. Recently, various options
have been developed for the treatment of unstable trochanteric
femoral fractures. We previously reported on the efficacy of
lesser trochanteric banding for the treatment of displaced lesser
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trochanteric fragments8. We also reported on the use of
hydroxyapatite augments to increase the screw insertion torque
for the treatment of trochanteric femoral fractures9. However,
the optimum treatment strategy for unstable trochanteric fe-
moral fractures has not yet been established.

Li et al. reported that 33% of trochanteric femoral fractures
present with a fracture line in the posterolateral aspect of the
greater trochanter of the femur10. Furthermore, recent studies
have shown that posterolateral fracture lines of trochanteric
femoral fractures cause posterolateral instability11-14. Kim et al.
and Suzuki et al. reported that the presence of a posterolateral
fracture increases the risk of postoperative fragment displace-
ment, resulting in a higher rate of implant failure and/or non-
union3,15. However, the etiology of instability associated with a
posterolateral fracture morphology remains unclear.

We hypothesized that a posterolateral fracture would
cause intramedullary nail instability when the posterolateral
fracture line interferes with lag screw insertion, because the site
of lag screw insertion is one of the primary contact areas
between the cortical bone and the implant. In the present
biomechanical study, we evaluated whether a posterolateral
fracture line interfering with lag screw insertion would lead to
intramedullary nail instability in synthetic bone samples with
trochanteric femoral fractures. When treating more unstable
fracture patterns in which the posterolateral wall fracture line
interferes with the lag screw insertion hole, the orthopaedic
surgeon should consider the possibility of intramedullary nail
fixation becoming unstable and should consider using a longer
and/or thicker intramedullary nail as one of the treatment
options.

Materials and Methods
Sample Preparation

Custom-made synthetic osteoporotic bone samples that were
designed with use of previously created computed tomogra-

phy (CT) images of human hips (Tanac) were used in this study.
These samples had a neck-shaft angle of 135�, anteversion of
25.8�, cancellous bone density of 7.5 pounds per cubic foot (pcf)
(0.115 g/cm3), cortical bone density of 60 pcf (0.92 g/cm3), and a
canal flare index (CFI) of 2.29. Two types of fracture lines were
created. Fracture A consisted of a posterolateral wall comminution
model in which the posterolateral wall fracture line interfered with
the lag screw insertion hole. Fracture B was characterized by an
intact posterolateral wall model with the fracture line 10 mm away
from the lag screw insertion hole. Fractures A and B both consisted
of 4-part comminuted trochanteric fractures with the same design,
except for the posterolateral wall fracture line (Fig. 1). All fracture
lines were cut with use of dedicated external jigs. Eighteen samples
(9 samples each for Fractures A and B) were prepared for this
biomechanical study. Optical Locking Solution (OLS) I intramed-
ullary nails (diameter, 10 mm; neck angle, 125�; length, 170 mm)
and OLS I lag screws (diameter,10.8 mm; length, 100 mm) (Teijin
NakashimaMedical) were inserted without reaming in all samples;
the lag screw tip-apex distance was 20 mm16.

Test Protocol
All samples were fixed on a biomechanical testing machine
(ElectroPuls E3000; Instron), 10� laterally from the gravita-
tional line in the frontal plane and 12� posteriorly from the
gravitational line in the sagittal plane. Cyclic vertical loads were
applied to the femoral head, with a maximum load of 750 N

Fig. 1

Figs. 1-A through 1-D Overview of the specimens. Both fractures were 4-part comminuted trochanteric femoral fractures. Fracture A involved a lateral wall

fracture line that interfered with the lag screw insertion hole (Figs. 1-A and 1-B). Fracture B involved a lateral wall fracture line 10 mm from the lag screw

insertion hole (Figs. 1-C and 1-D). The structures indicated by the black arrows in Figures 1-A and 1-C were used to fix the depth gauges.
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and a minimum load of 75 N, at 3 Hz. The tests ended after
1,500 loading cycles (Fig. 2).

Data Assessments
The movement of the intramedullary nails was measured with
use of 2 digital depth gauges (DTH-A30; Kyowa Electronic
Instruments); 1 gauge was fixed parallel to the femoral neck,

and the other was fixed perpendicular to the femoral neck.
Intramedullary nail instability was evaluated by recording the
movement of the dedicated end cap with use of depth gauges
that were fixed to the proximal anterior cortex (Fig. 3). The
movement was termed the “swing motion” of the intramed-
ullary nails. The amount of coronal swing motion was defined
as the amplitude of the depth gauge in the coronal (mediolateral)

Fig. 2

Figs. 2-A and 2-B Photographs showing a specimen in the biomechanical testingmachine. The specimenwas placed on themachine 10� laterally from the

gravitational line in the frontal plane and 12� posteriorly from the gravitational line in the sagittal plane with use of a clamp.We calculated themovement of

the block attached to the top of the intramurally nail. The movement of the block was captured with digital depth gauges that were fixed perpendicularly to

each other.

Fig. 3

Illustrationshowing theaxisand theswingmotion; theaxiswassetperpendicularly in relation to the femoralneck.A=anterior,M=medial,P=posterior, L= lateral.
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plane, the amount of sagittal swingmotionwas defined as that in
the sagittal (anterolateral) plane, and the amount of total swing
motion was defined as the maximum amplitude in the axial
plane (Fig. 4). The coronal swing motion, sagittal swing motion,
and total swing motion were all analyzed during the last loading
cycle. The amount of subsidence of the femoral head was
measured with use of a biomechanical testing machine and was
calculated at the start and end of the tests. ImageJ2 software
(version 2.3.0) was used to calculate the change in the neck-shaft
angle from pictures acquired before and after the test (Figs. 5-A
and 5-B). Displacement of the medial cortex was measured with
use of a vernier caliper before and after each test. Displacement
was considered to be positive when the marked portion of the
proximal bone fragment was displaced anteriorly (Fig. 5-C).

Statistical Analysis
The values were shown as mean and the standard deviation
(SD). Continuous variables were compared between Fractures
A and B with use of the Welch t test. The level of significance
was set at p < 0.05. The R statistics package (version 3.5.1;
R Core Team, Foundation for Statistical Computing) was used
for all analyses.

Results

Two Fracture A samples (Fractures A3 and A4) were ex-
cluded from the study because the amplitudes of sagittal

swing motionwere too large and the depth gauge deviated from
themeasurement range. The other samples did not break during
testing. All swing motions were detected in the posteromedial

Fig. 4

Bar graphs summarizing sagittal swing motion, coronal swing motion, and total swing motion in Fractures A and B. Fracture A had significantly greater

coronal swing motion and total swing motion. The error bars represent the standard deviation .

Fig. 5

Figs. 5-A, 5-B, and 5-C Varus deformities were calculatedwith use of ImageJ2 software.We calculated the varus angles indicated by the bold dashed lines.

The varus angle after loading (Fig. 5-B) was smaller than that before loading (Fig. 5-A), as shown for a representative fracture (A5). The measured

displacement between before and after loading was calculated as the displacement of the medial cortex (Fig. 5-C), as shown for a representative fracture

(A6). The arrow shows the displacement of the medial cortex.
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direction (Fig. 4). Videos 1 and 2 demonstrate the swing motion
from the front and posterolateral views, respectively. The mean
coronal swing motion was 1.13 ± 0.28 mm and 0.51 ± 0.09 mm
for Fractures A and B, respectively (p < 0.001). Themean sagittal
swing motion was 0.50 ± 0.12 mm and 0.46 ± 0.09 mm for
Fractures A and B, respectively (p = 0.46). The mean total swing
motionwas 1.24 ± 0.24 mm and 0.69 ± 0.11mm for Fractures A
and B, respectively (p < 0.001). The subsidence of the femoral
head reached a plateau after approximately 1,000 cycles in all
fractures. The amount of subsidence of the femoral head at the
end of the tests was 10.63 ± 1.97 mm and 8.76 ± 0.85 mm for
Fractures A and B, respectively (p = 0.048). Varus deformities
were observed in all samples after the test. The mean change in
the neck-shaft angle was28.29� ± 2.69� and23.56� ± 2.35� for
Fractures A and B, respectively (p = 0.002). The mean dis-
placement of the medial cortex was 0.38 ± 1.12 mm and 0.12 ±
0.37 mm for Fractures A and B, respectively (p = 0.57) (Table I).

Discussion

The present biomechanical study showed that the interfer-
ence of the posterolateral wall fracture line with the lag

screw insertion hole exacerbates the amount of subsidence of
the femoral head, coronal swing motion, total swing motion,
and varus deformity. Chang et al., in a clinical study, reported
that coronal instability leads to instability when the fracture line
includes a lag screw insertion hole7. Similarly, Kim et al. reported
that a posterolateral fracture is a risk factor for postoperative
nonunion3. In the present study, Fracture A showed increased
coronal swing motion and subsidence of the femoral head
compared with those shown by Fracture B. Furthermore, greater
varus deformity of the intramedullary nails was observed in
association with Fracture A compared with Fracture B.

In the present study, we found no significant difference
in sagittal swing motion between Fractures A and B; however,
the amount of sagittal swing motion in the cases of 2 frac-
tures (Fractures A3 and A4) was very large, and the difference
in sagittal swing motion may reach significance in further
studies. Overall, these findings suggest that posterolateral wall
comminution with a posterolateral fracture causes intramed-
ullary nail instability not only in the coronal plane but also in
the entire intramedullary nail. To our knowledge, this is the first

biomechanical study to demonstrate the importance of poster-
olateral wall fracture morphology. Thus, when treating a fracture
that has a posterolateral fracture line, additional treatment op-
tions, such as thicker nails, long nails, and multiple distal screw
insertions, may be useful to prevent the movement of intra-
medullary nails. Previously, most orthopaedic surgeons used only
radiographs for preoperative evaluation. As the incidence of
intertrochanteric fractures is high and is predicted to increase, the
use of CT scans for routine evaluation of intertrochanteric frac-
tures will increase the burden of health-care cost and radiation to
patients. Isida et al. reported that radiographic assessment un-
derestimated the complexity of posterior and posterolateral wall
fractures compared with CT images17. Therefore, orthopaedic
surgeons should accurately assess posterior and posterolateral
wall fractures with CT scans and should consider using longer
and/or thicker intramedullary nails in cases of unstable fractures.
Our results may encourage surgeons to further evaluate poster-
olateral wall fracture lines with use of CT. We choose 10-mm-
diameter and 170-mm-length nails for unstable intertrochanteric
fractures in this study because short femoral nails such as TFNA
(diameter, 10 mm; length, 170 mm) (DePuy Synthes) and In-
terTAN (diameter, 10 mm; length, 180 mm) (Smith & Nephew)
were used for experiments involving unstable fracture models18.
As our results showed a large amount of swing motion in group
A, surgeons should consider using a longer and/or thicker in-
tramedullary nail for fractures where the fracture line interferes
with the lag screw insertion hole.

Regarding the osteoporotic condition of the custom-made
synthetic bone used in the present study, our samples had a CFI of
2.29, categorized as a stove pipe, which is commonly observed in
patients with severe osteoporosis19. A previous micro-CTanalysis
involving elderly patients showed that the trabecular and cortical
bone mineral densities of the femoral head were 0.064 g/cm3 and
0.69 g/cm3, respectively, at a mean age of 93 years and 0.22 g/cm3

and 0.96 g/cm3, respectively, at a mean age of 76 years20. The
custom-made synthetic bone used in the present study had a
density of 7.5 pcf for cancellous bone and 60 pcf for cortical bone,
corresponding to 0.115 g/cm3 and 0.92 g/cm3, respectively20.
Therefore, this synthetic bone was within the osteoporotic bone
range. The custom-made synthetic bone samples were designed
with use of previously created CT images of human hips. The

TABLE I Summary of Variables After Mechanical Testing

Variable* Fracture A (N = 7) Fracture B (N = 9) P Value

Subsidence of femoral head (mm) 10.63 ± 1.97 8.76 ± 0.85 0.048†

Coronal swing motion (mm) 1.13 ± 0.28 0.51 ± 0.09 <0.001‡

Sagittal swing motion (mm) 0.50 ± 0.12 0.46 ± 0.09 0.46

Total swing motion (mm) 1.24 ± 0.24 0.69 ± 0.11 <0.001‡

Change in neck-shaft angle (deg) 28.29 ± 2.69 23.56 ± 2.35 0.002‡

Displacement of medial cortex (mm) 0.38 ± 1.12 0.12 ± 0.37 0.57

*The values are given as the mean and the standard deviation. †P < 0.05. ‡P < 0.01.
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neck-shaft angle of 135� in our bone model was within the
normal range, but the anteversion of the femoral neck of 25.8�
(which was calculated between the femoral neck axis and the
posterior epicondyle axis) was greater than that in a normal femur
(10.4� ± 6.7�)21. In the present study, we used only the proximal
part of the femur. Thus, in our bone model, we measured both
the supra-trochanteric and infra-trochanteric torsion angles,
which were determined on the basis of the positions of the lesser
trochanter and the femoral neck axis, and found that the angle
between themwas 39.8�, whichwas within the range of 37�± 8.7�
in healthy people22. Thus, our bone samples appear to be equiv-
alent to the normal and average proximal femoral anatomy.

The test protocol was designed to mimic a normal gait
cycle. The International Organization for Standardization (ISO)
proposed that the angle during biomechanical testing should be
7� posterior and 10� lateral in the sagittal and coronal planes,
respectively. Previous studies have demonstrated that after total
hip arthroplasty (THA), the femoral head is loaded with up to
50% of the body weight in the posterior direction during the gait
cycle23,24. The samples in the present study were oriented 12�
posteriorly to yield a posterior vector force equal to 50% of the
loading force. In contrast, the force component has been re-
ported to be directed 13� to 21� laterally in the coronal plane23.
Therefore, our biomechanical testing protocol was consistent
with the ISO and normal gait cycles.

The present study had several limitations. First, all ex-
periments were solely performed on low-density synthetic bone
tissue. O’Neill et al. reported that synthetic bonewith a density of
0.08 g/cm3 did not represent cadaveric bone because osteopo-
rotic synthetic bone did not show similar force-displacement
curves or peak force during a pushout study25. To minimize this
disparity, we used a loading force of 750N, which corresponds to
the load in a normal gait, and found that the subsidence of the
femoral head was sufficiently small in all cases. Further studies
involving fresh-frozen cadaveric specimens are needed to sim-
ulate the human environment. Second, posterolateral fractures
may be displaced by the forces of the lateral rotator muscles, but
the present study did not simulate bone-muscle interactions.

In conclusion, our study showed that a posterolateral
fracture that interferes with lag screw insertion holes could be an
independent risk factor for increased instability of intramedul-
lary nails. Further surgical strategies aimed at minimizing the
coronal swing motion, total swing motion, and changes in the
neck-shaft angle are necessary to determine the best treatment
strategies for unstable femoral trochanteric fractures. n
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