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Beáta Flachner1, Zsolt Lörincz1, Angelo Carotti2, Orazio Nicolotti2, Praveena Kuchipudi3, Nikita Remez3,
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Abstract

A novel chemocentric approach to identifying cancer-relevant targets is introduced. Starting with a large chemical
collection, the strategy uses the list of small molecule hits arising from a differential cytotoxicity screening on tumor HCT116
and normal MRC-5 cell lines to identify proteins associated with cancer emerging from a differential virtual target profiling
of the most selective compounds detected in both cell lines. It is shown that this smart combination of differential in vitro
and in silico screenings (DIVISS) is capable of detecting a list of proteins that are already well accepted cancer drug targets,
while complementing it with additional proteins that, targeted selectively or in combination with others, could lead to
synergistic benefits for cancer therapeutics. The complete list of 115 proteins identified as being hit uniquely by compounds
showing selective antiproliferative effects for tumor cell lines is provided.
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Introduction

Cancer is a disease of the cell [1]. This rather simple statement

implies an enormous complexity when attempting to identify

efficacious anticancer agents. One of the major issues associated

with anticancer research is that traditional target-directed

strategies are confronted with the essentiality of the function of

the target in healthy cells. Inevitably, targeting proteins that have

essential functions are likely to lead to chemical entities with

narrow therapeutic windows and significant toxic effects [2]. An

additional challenge is the unstable epigenetic and genetic status of

cancer cells, undergoing multiple mutations, gene copy alterations,

and chromosomal abnormalities that have a direct impact on the

efficacy of anticancer agents at different stages of the disease [3].

All these aspects make cancer drug discovery extremely difficult

and have led to poor clinical approval success rates compared to

other therapeutic areas [2].

The advent of high-throughput cell-based cytotoxicity assays

opened new perspectives for anticancer discovery [4]. The

implementation of differential cytotoxicity screens marked the

departure from small molecule screens on preconceived individual

protein targets and allowed the identification of small molecules

potentially acting through a richness of mechanisms of action [5],

while showing at the same time selective antiproliferative effects in

cancer cells compared to healthy cells [6]. However, as recently

pointed out [1], for those cell-based strategies to have a true

impact in cancer drug discovery, means to uncover the target

profile of bioactive small molecules in antiproliferative or toxicity

assays are absolutely necessary. In this respect, extensive

proteomic profiling is often applied subsequently to identify

differentially expressed proteins in cancer cell lines that may

explain the biological effect of small molecule hits [7,8]. However,

profiling the cellular activities of molecular libraries is both

technically and logistically a laborious task [9] and thus,

alternative approaches for fast and efficient profiling of hundreds

of compounds on thousands of proteins are required.

In recent years, the availability of an increasing amount of

protein-ligand interaction data in the public domain has promoted

the development of ligand-based computational methods aiming

at predicting the affinity profile of small molecules across multiple

targets [10]. An early application of these initiatives was the

prediction of the biological activity spectrum of all small molecules

contained in the National Cancer Institute database [11]. Lately,

virtual target profiling was successfully used to identify new targets

for known drugs [12], to predict the mechanism of action of

antimalarials discovered in a high-throughput cell-based screen

[13], and to suggest the targets against which selected compounds

from a chemical library should be tested, leading to the

identification of novel antagonists for all four members of the

adenosine receptor family [14]. Given the current levels of

performance achieved, in terms of sensitivity and specificity,

against experimentally-determined complete ligand-protein inter-

action matrices [15], these methods are emerging as a true fast and

efficient alternative to the more laborious proteomic profiling.
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The integration of differential cytotoxicity screening and virtual

target profiling for the identification of cancer-relevant targets was

put into practice within the context of CancerGrid, a European

Commission project under Framework Programme 6 [16]. Details

on the approach followed and the results achieved are discussed in

the following sections.

Results

For the sake of clarity, a summary scheme of the overall

differential in vitro and in silico screening (DIVISS) process followed

in this work is depicted in Figure 1. Starting with a chemical

collection of 30,000 compounds, differential cytotoxicity screening

resulted in the identification of two sets of small molecule hits

showing selective antiproliferative effects for tumor and healthy

cells, respectively, which by virtual target profiling led ultimately to

the identification of a list of 115 proteins of potential relevance to

cancer. Details of the results obtained at each stage of this novel

chemocentric approach to cancer target identification are

provided next.

High-throughput cytotoxicity screening
A cell-based cytotoxicity screening campaign was performed on

a chemical collection composed of 30,000 diverse molecules

selected mainly from the entire AMRI catalogue [17]. Single point

screening of these compounds at 50 mM concentration was

completed in duplicate on a colon cancer HCT116 cell line.

The correlation of the two independent viability values determined

for each compound is depicted in Figure 2a. An average Z9 factor

of 0.58 was derived from analysis of these duplicate data, which is

indicative of the quality of the assay and the data obtained. The

distribution of the number of compounds resulting in different

average percentages of cell viability is provided in Figure 2b. As

can be observed, almost 50% of the compounds had basically no

effect on the viability of the HCT116 cells. But most interestingly,

over 13% of the compounds showed remarkable toxic effects on

HCT116 cells, with viability values of 20% or lower. This

cytotoxic set of 4,158 compounds was selected for a follow-up

dose-response screening.

Differential cytotoxicity dose-response screening
To optimise our capacity of dose-response screening, a diverse

set of 2,000 molecules was first selected from the 4,158 cytotoxic

compounds identified in the previous high-throughput screening

campaign [18]. Dose-response curves on both tumor HCT116

and normal MRC-5 cells were determined in duplicate for these

2,000 compounds. To identify those small molecules that have

levels of toxicity on tumor cells significantly higher than those

observed on healthy cells, the ratio between the IC50 values

obtained in MRC-5 cells, IC50 (MRC-5), and those obtained in

HCT116 cells, IC50 (HCT116), was derived for each compound.

A total of 230 compounds were identified to be 5 times or more

cytotoxic in tumor cells than in healthy cells (IC50 MRC-5/IC50

HCT116$5). A chemotype clustering analysis [19] was then

performed on this first set of 2,000 compounds for which dose-

response data was produced. A cytotoxicity enrichment score was

then assigned to each chemotype cluster based on its relative

presence in the set of 230 compounds showing most selective

antiproliferative effects on tumor cells. Those chemotypes having

higher than 20% hit rate were selected and used to recover

compounds from the remaining 2,158 for which only single-point

measurements were available. This bias towards selective tumor

cytotoxic chemotypes led to the identification of 150 compounds

that were complemented with an additional set of 330 compounds

added on the basis of diversity criteria [18]. Dose-response curves

on both cell lines were obtained in duplicate for these 480

compounds, from which an additional set of 35 compounds was

identified as having cytotoxic selectivity for tumor cells relative to

Figure 1. Schematic flowchart of the DIVISS approach applied in this work leading to the identification of 115 proteins of potential
relevance to cancer.
doi:10.1371/journal.pone.0035582.g001
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healthy cells. Altogether, 2,480 compounds went through

differential cytotoxicity dose-response in vitro screening, leading

to the identification of 265 compounds with selective cytotoxicity

for tumor cells (Figure 1). Overall, 119,520 cytotoxicity data points

were generated, 60,000 from the primary cytotoxicity screenings

on HCT116 cells (30,000 compounds in duplicate) and 59,520

from the dose-response screenings (2,480 compounds at 6

concentrations in duplicate on two cell lines), which represents a

significant screening effort.

The distributions of the resulting average IC50 values for all

2,480 compounds on tumor HCT116 and normal MRC-5 cells

are illustrated in Figure 3a. The fact that most screened

compounds have determined IC50 values below 25 mM is a good

indication of the validity of the first screening. In this respect, just

over 12% of the compounds for tumor cells, compared to the

almost 26% for normal cells, gave an IC50 value above 25 mM,

whereas 25% and 22% of the compounds screened on tumor and

normal cells, respectively, returned an IC50 value below 5 mM.

The final distribution of the cytotoxicity ratios per compound is

provided in Figure 3b, where large values are associated to

promising compounds having some degree of selective cytotoxicity

for tumor cells relative to healthy cells. As can be observed, the

vast majority of compounds (over 60%) returned cytotoxicity ratios

between 0.5 and 2 meaning that they were basically unselective

between tumor and healthy cells. But most interestingly, 711

compounds (29%) were found to be 2 times or more cytotoxic in

tumor cells than in healthy cells, with 265 of them showing

cytotoxicity ratios above 5. In contrast, 277 compounds (11%)

were found to be 2 times or more cytotoxic in healthy cells than in

tumor cells, with 251 of them having cytotoxicity ratios below 0.2.

These two sets of 265 and 251 compounds (Figures S1 and S2)

showing selective antiproliferative effects for tumor and normal

cells, respectively, will be carried over to the next phase of virtual

target profiling (Figure 1). A similarity analysis (Figure S3)

highlighted the diversity of chemical structures within each set

but also between the two sets, a point worth stressing in support of

phenotypic screening approaches over target-directed strategies

for complex diseases.

Virtual target profiling
Each one of the two cell-line selective compound sets was

processed in silico against the 4,643 ligand-based protein models

derived from publicly available resources [20–28] using a validated

similarity-based approach described earlier [14,15]. With regards

to the 265 selective tumor cytotoxic compounds, at least one target

interaction was predicted for 173 of them (65%), reflecting that the

chemical space defined by the set of tumor selective compounds

was decently covered by small molecules present in public

chemogenomic databases. For these compounds, a total of 2,356

molecule-protein interactions were predicted. Of those, 818

interactions between 139 molecules and 229 proteins were

predicted to have activities of 1 mM or better (pAct$6), meaning

that on average each tumor selective compound was expected to

potentially interact with 6 targets. In comparison, at least one

target interaction was predicted for 117 of the 251 selective

cytotoxic compounds on normal cells (47%), meaning that 53% of

those compounds was found to be outside the applicability domain

defined by small molecules in public chemogenomic databases

[15]. For these compounds, a total of 1,023 molecule-protein

interactions were predicted. Of those, 463 interactions between 84

molecules and 160 proteins were predicted to have activities of

1 mM or better (pAct$6), resulting in an average number of 5

interacting proteins per compound.

A comparative analysis of the predicted interactions from the

two cell-line selective compound sets allows gaining a better insight

on the proteins likely to be differentially relevant for tumor cell

lines. The results are illustrated in the Venn diagram depicted in

Figure 4a, which schematically shows the degree of overlap and

Figure 2. a) Correlation of two independent viability values determined for the same compound and b) distribution of viability
values for the chemical library of 30,000 compounds.
doi:10.1371/journal.pone.0035582.g002
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uniqueness between the two target lists. In this respect, it was

found that up to 114 proteins were predicted to be hit at least once

by some compound in either set, with the list of proteins being

mainly composed by G protein-coupled receptors (45%) and

enzymes (37%). In contrast, only 46 proteins were found to be

solely hit by compounds with selective cytotoxicity for healthy

cells, with a distribution among protein families very similar to the

one obtained previously for the list of shared proteins (41% of G

protein-coupled receptors and 37% of enzymes). But most

interestingly, a list of 115 proteins hit uniquely by compounds

with selective cytotoxicity for tumor cells was identified (Table S1).

Analysis of its composition among the main protein families of

therapeutic relevance reveals a clearly differentiated signature

from the other two lists of proteins. As shown in Figure 4b, the list

is mainly composed of enzymes (58%) and the presence of G

protein-coupled receptors has been reduced significantly (16%).

To complement this picture, Figure 4c provides the class

distribution of the 67 enzymes found in this list. A clear bias

towards transferases (43%) is observed, very much in agreement

with the importance conferred to kinases as therapeutic targets for

cancer [29,30].

Proof of concept
It may not escape the scrutinous eye of the cancer researcher

that within the list of 115 potential tumor selective proteins (Table

S1) there are two widely recognized anticancer targets, namely,

histone deacetylases (HDACs) and heat shock protein 90-alpha

(HSP90), both of which known to be expressed in colon cancer

HCT116 cell lines [7,8] and to confer tumor selectivity upon small

molecule inhibition [31,32]. Accordingly, in an attempt to close

the cycle of the DIVISS approach presented above, inhibitors of

these two targets were used to exemplify at this stage that indeed

selective antiproliferative effects can be achieved on the tumor

HCT116 and normal MRC-5 cell lines used in this work.

To this end, suberoylanilide hydroxamic acid (SAHA) and 17-

(allylamino)-17-demethoxygeldanamycin (17AAG) were selected

as representative pan-HDAC and HSP90 inhibitors, respectively.

Dose-response curves on both HCT116 and MRC-5 cell lines

were determined for the two inhibitors (Figure S4). The results

confirmed that both compounds inhibited the proliferation of

HCT116 cells in a dose dependent manner, while having little or

no effect on MRC-5 cells. In particular, the IC50 values of SAHA

and 17AAG on HCT116 cells were 0.64 mM and 0.2 mM,

respectively, which resulted in 781 and 93 fold selectivity,

respectively, relative to the antiproliferative effect on MRC-5

cells. These observations provide confirmation of the ability of the

DIVISS approach for identifying cancer-relevant targets.

We checked also whether within the set of 265 compounds

showing selective antiproliferative effects for tumor cell lines there

was any compound that could have been tested on a range of

colon cancer cell lines and for which screening data was also

available in the public domain. Much to our surprise, we found

experimental data in PubChem [23] for eight compounds that

were also present in our tumor selective set (Table S2). Among

them, five compounds are reported to have affinity for the amine

oxidase flavin-containing B enzyme (MAO-B), a target present in

our list of 115 putative cancer-relavant proteins (Table S1). But,

most interestingly, one of them, NSC680350 (CID 387030), was

reported to have an IC50 of 80 nM for MAO-B, in good

agreement with our predictions. In addition, it was also tested at

multiple human tumor cell lines, including six colon cancer cell

lines. Among them, the pGI50 value reported in PubChem for

colon HCT116 cell lines (4.64) is, within the variability limits of

this type of experiments, in good agreement with the pGI50 value

obtained in this work for the same type of cell lines (5.19). The

dose-response curve of the cytotoxicity of NSC680350 on

HCT116 cell lines in this work and a summary of all colon

cancer data found in PubChem for this compound is provided in

Figure S5.

Discussion

Substantiation of the potential relevance to cancer of the list of

115 proteins identified as being targeted solely by tumor selective

compounds was performed by two independent perspectives. On

the one hand, all 115 proteins were scored on the basis of recently

derived oncogene probabilities (OncoScores) and checked for

currently available experimental data on the up- and down-

regulation in colon cancer samples [33,34]. On the other hand, we

used all drug-target interaction data available from public

resources [20–28] to rank order all drugs based on the number

of known targets within the list of 115 proteins and check for

whether cancer was the primary indication among the top ranked.

The results provide ample support for the use of the DIVISS

approach to identifying cancer-relevant targets.

The OncoScores for all 115 proteins targeted by tumor selective

compounds were obtained from the CGPrio website [34]. To

assess whether this list of proteins is enriched with probable

Figure 3. a) Distribution of the cytotoxicity (IC50 values) of the selected compounds on HCT116 and MRC5 cells and b) distribution
of the selective cytotoxicity against HCT116. NT means ‘‘non toxic’’.
doi:10.1371/journal.pone.0035582.g003
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oncogenes with respect to other lists of proteins, OncoScores were

also calculated for all the 46 proteins targeted by normal selective

compounds and the 114 proteins shared by the two sets of cell-line

selective compounds. The trends of the cumulative percentage of

proteins with OncoScores above a certain probability value found

within each list are displayed in Figure 5. As can be observed, it is

found that 36.5% of the 115 proteins targeted by tumor selective

compounds have an oncogene probability above 0.7 and that,

under the same OncoScore cutoff, this percentage is significantly

higher than the 8.7% and 19.3% of the 46 proteins targeted by

normal selective compounds and the 114 proteins shared by the

two sets of compounds, respectively. Having provided evidence

that this selection of 115 tumor selective proteins is enriched with

putative oncogenes, the IntOGen platform [33] was then used to

inspect whether any protein from the list was in addition known to

be significantly altered (corrected p-value ,0.05) in terms of up- or

down-regulation in colon cancer. A total of 29 of those proteins

(25%) could indeed be confirmed to be significantly altered in

colon cancer, 10 of which having an OncoScore above 0.7. The

OncoScores and regulation marks for the whole list of 115 tumor

selective proteins are provided Table S1.

The subset of 42 tumor selective proteins with OncoScore

higher than 0.7 is provided in Table 1. Not surprisingly, its

composition is highly biased by protein kinases (52%), although

there is also an important representation (21%) of transcription

factors. Of mention is however the fact that a couple of G protein-

coupled receptors (GPCRs) are found in this highly probable

oncogene subset, namely, the D(1A) dopamine receptor (DRD1)

and the sphingosine 1-phosphate receptor 1 (S1PR1). GPCRs

have traditionally been regarded as the main targets for diseases of

the central nervous system. But most interestingly, the relevance of

GPCRs in cancer drug discovery was revisited recently and the

potential role of S1PR1 in particular highlighted [35].

A close look at the top-20 ranked proteins present in Table 1

reveals that the list contains proteins that may be somewhat

unexpected from the viewpoint of its relationship to colorectal

cancer. For example, the androgen (AR) and estrogen (both ESR1

and ESR2) nuclear hormone receptors are known to be relevant in

prostate and breast cancers, and the alpha-type platelet-derived

(PDGFRA) and epidermal (EGFR) growth factor receptors are

recognised angiogenesis factors. However, recent studies suggest a

role in intestinal carcinogenesis for nuclear receptors in general

[36] and growth factor receptors [37], including precisely AR [38],

ESR1 [39], ESR2 [40], PDGFRA [41] and EGFR [42].

PDGFRA in particular is also known to be significantly down-

regulated in colon cancer [33]. In addition, further evidences exist

in the literature of drugs targeting primarily some of those targets

and having an effect on the proliferation of human colorectal

tumour cell lines, including HCT116 [40,43]. Among them,

raloxifene is a high affinity binder of both ESR1 and ESR2 and

has been reported to inhibit HCT116 cell growth in a dose-

dependent manner [40] and afatinib is a potent EGFR inhibitor

that was recently shown to inhibit the growth of HCT116 cell lines

with an IC50 value of 1.62 mM [43]. These examples provide

ample bibliographical support to the relevance in colon cancer for

some of those proteins that would have been otherwise completely

overlooked.

It may also surprise that currently recognised cancer targets,

such as HSP90, are not present in Table 1. In this particular case,

the target is indeed contained in the full list of 115 proteins

provided in Table S1 but with a low OncoScore = 0.023. It is thus

worth stressing here that CGPrio [34] is a machine learning

method based on the differential properties of known cancer genes

and on the assumption that genes with similar properties

(including sequence conservation, protein domains and interac-

tions, and regulatory data) to known cancer genes are more likely

to be involved in cancer. It is used here as a prioritization method,

as it has been shown that a large percentage of new cancer genes

have high CGPrio probabilities [33,34], but it doesn’t mean that

absolutely all cancer genes share these properties, and thus there

Figure 4. a) Venn diagram of the protein targets predicted for the selective cytotoxic compounds to HCT116 and MRC-5 cell lines;
b) distribution across protein families of the 115 targets predicted to interact uniquely with selective cytotoxic compounds to
tumor cells; and c) distribution across enzyme classes of the 67 enzymes present in the list of 115 putative cancer targets.
doi:10.1371/journal.pone.0035582.g004
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may well be some bona fide cancer targets, such as HSP90, with a

low CGPrio probability. In this respect, the low OncoScore

obtained for HSP90 means only that, on the basis of current

knowledge on cancer genes, HSP90 does not share properties with

the rest of cancer genes for which information is available. Taken

together, these results emphasize the potential applicability of the

DIVISS approach as a complementary strategy to the identifica-

tion of cancer-relevant targets.

The BioCarta resource [44] was then used to perform an analysis

of the main pathways in which these 42 highly probable oncogenes

are involved. A total of 131 pathways were retrieved, with 68 of

them (52%) having two or more proteins and only 9 (7%) containing

five or more proteins. The latter group is composed mainly of

signaling pathways. Among them, the MAPKinase signaling

pathway contains seven of those probable oncogenes, namely,

BRAF, MAP2K1, MAP3K8, MAPK10, RAF1, STAT1, and

TGFBR1, and the Erk1/Erk2 MAPK signaling pathway involves

six of them, namely, EGFR, MAP2K1, PDGFRA, RAF1, SRC,

and STAT3 (see Table 1). The remaining 7 pathways are the

Bioactive peptide induced, EGF, and PDGF signaling pathways, the

signaling of hepatocyte growth factor receptor, and the ones

defining the role of ERBB2 in signal transduction and oncology, the

CARM1 and regulation of the estrogen receptor, and the

sumoylation by RANBP2 regulates transcriptional repression, all

involving 5 of those probable oncogenes (Table 1). The link between

some of these pathways and cancer has been already recognised in

previous studies [45,46].

In recent years, the amount of publicly available in vitro data on

the interaction of drugs with multiple proteins has increased

dramatically [20–28]. Analysis of these data has revealed that most

cancer drugs are multitarget agents rather than selective molecules

[47]. Accordingly, we took the list of 115 targets hit by selective

compounds on HCT116 and performed a search for those drugs

that, based on currently available affinity data determined

experimentally [20–28], would show at least micromolar affinity

on the largest number of those targets. Figure 6 collects the results

obtained for the 20 drugs having at least micromolar affinity for

more than 5 tumor selective proteins. Remarkably, 18 of those

drugs have cancer as their primary indication, 4 of which target

mainly HDACs, whereas the other 14 have different affinity

profiles on a wide range of kinases. The presence of chlorprom-

azine and amitriptyline in this list, indicated for psychosis and

depression, respectively, and targeting mainly GPCRs instead of

HDACs or kinases, may come as a surprise at this stage. However,

in the line of what was previously mentioned about the new

perception of GPCRs in cancer [35], recent reports indicate that

chlorpromazine, potentially through its action on multiple tumor

selective GPCRs, can change influx properties of membranes and

that this property makes it a promising chemosensitizing

compound for enhancing the cytotoxic effect of tamoxifen, an

antagonist of the estrogen receptor, present also in the list of 115

tumor selective proteins [48]. From a drug perspective, these

results provide further support to the relevance for cancer of the

115 proteins identified.

There are two recognisable extensions to the version of the

DIVISS approach presented here. The first obvious extension is in

the use of other cell lines. In this particular study, HCT116 and

MRC-5 cell lines have been taken as models of tumor and healthy

cell lines, respectively. However, there are numerous alternative

human tumor cell lines that can be used instead and those can in

turn be differentially compared to several healthy cell lines as well

[49]. Accordingly, differential anticancer screens on each

particular combination of tumor and healthy cell lines will in

principle lead to different, yet complementary, lists of cancer-

relevant targets. The second potential extension is in the coverage

of larger chemical spaces, an aspect that is inherent to any

screening campaign. The present study focussed on a diverse

selection of 30,000 molecules from the AMRI catalogue, currently

containing over 240,000 compounds. The size and nature of the

chemical library used in the differential cytotoxicity screens

essentially determines the number and diversity of small molecule

hits identified and they ultimately define the type of targets that, by

means of in silico target profiling, will be selectively associated to

each cell line.

Figure 5. Distribution of oncogene probabilities for the proteins predicted uniquely for compounds selective to HCT116 (black)
and MRC-5 (light grey) and the proteins found in both selective sets (dark grey). NA collects all proteins for which oncogene probabilities
were not available from CGPrio [34].
doi:10.1371/journal.pone.0035582.g005
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Conclusions
Cell systems are implicitly robust and selectively acting on one

particular target may not be the most efficacious way of

modulating or interfering with them as the system may always

find ways to compensate for the selective perturbation incorpo-

rated. Instead, targeting multiple essential targets in tumor cells

may be a more efficient strategy to make more difficult for the cell

system to compensate for all perturbations introduced. Indeed,

recent evidences indicate that most cancer drugs attain their in vivo

efficacy through modulation of multiple targets rather than

Table 1. List of 42 proteins with OncoScore .0.7 among the 115 proteins identified by the DIVISS approach.

No. Protein Name Gene Name OncoScore

1 Alpha-type platelet-derived growth factor receptor PDGFRA Q 1.000

2 Androgen receptor AR 1.000

3 Angiopoietin-1 receptor TEK 1.000

4 B-Raf proto-oncogene serine/threonine-protein kinase BRAF 1.000

5 Epidermal growth factor receptor EGFR 1.000

6 Estrogen receptor ESR1 1.000

7 FL cytokine receptor FLT3 1.000

8 Hepatocyte growth factor receptor MET q 1.000

9 Mast/stem cell growth factor receptor KIT Q 1.000

10 Proto-oncogene tyrosine-protein kinase ABL1 ABL1 1.000

11 Proto-oncogene tyrosine-protein kinase Src SRC 1.000

12 RAF proto-oncogene serine/threonine-protein kinase RAF1 1.000

13 Vascular endothelial growth factor receptor 1 FLT1 1.000

14 Vascular endothelial growth factor receptor 3 FLT4 1.000

15 Cell division protein kinase 2 CDK2 0.999

16 Nuclear factor of activated T-cells, cytoplasmic 1 NFATC1 0.999

17 Peptidyl-prolyl cis-trans isomerase FKBP1A FKBP1A Q 0.999

18 Signal transducer and activator of transcription 3 STAT3 0.999

19 Cell division protein kinase 5 CDK5 0.998

20 Estrogen receptor beta ESR2 0.998

21 Glycogen synthase kinase-3 alpha GSK3A 0.996

22 Proto-oncogene tyrosine-protein kinase FGR FGR 0.992

23 Mitogen-activated protein kinase kinase kinase 8 MAP3K8 q 0.984

24 Short transient receptor potential channel 4 TRPC4 0.981

25 Histone deacetylase 4 HDAC4 0.975

26 Mitogen-activated protein kinase 10 MAPK10 0.974

27 TGF-beta receptor type-1 TGFBR1 0.970

28 E3 ubiquitin-protein ligase Mdm2 MDM2 q 0.966

29 Histone deacetylase 7 HDAC7 0.959

30 Peroxisome proliferator-activated receptor gamma PPARG 0.959

31 Histone deacetylase 9 HDAC9 Q 0.953

32 Acyl-CoA desaturase SCD q 0.940

33 Dual specificity mitogen-activated protein kinase kinase 1 MAP2K1 0.895

34 Histone deacetylase 1 HDAC1 0.895

35 Histone deacetylase 6 HDAC6 0.895

36 D(1A) dopamine receptor DRD1 0.866

37 Sphingosine 1-phosphate receptor 1 S1PR1 0.863

38 Signal transducer and activator of transcription 1-alpha/beta STAT1 q 0.824

39 Krueppel-like factor 5 KLF5 Q 0.745

40 Poly [ADP-ribose] polymerase 1 PARP1 0.711

41 Phosphatidylinositol-4,5-bisphosphate 3-kinase PIK3CD 0.708

42 Cyclin-dependent kinase 5 activator 1 CDK5R1 0.701

The OncoScore is the oncogene probability calculated from CGPrio [34].The arrows next to the gene name mark the set of 10 proteins from this list that are known to be
significantly altered (corrected p-value ,0.05) in terms of up- or down-regulation in colon cancer, as extracted from the IntOGen platform [33].
doi:10.1371/journal.pone.0035582.t001
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selective interaction on a single target. The big question is then

defining the essential protein signature of each cancer type, so it

can be thoroughly addressed by novel cancer therapeutic agents

[50]. The DIVISS strategy presented here represents a novel

chemocentric approach to the identification of cancer-relevant

drug targets that complements efficiently other established

bioinformatics and functional approaches [51,52] and thus may

contribute to increasing our confidence on potential drug targets

[53].

Materials and Methods

Screening Library
The CancerGrid consortium had privileged access to the entire

chemical catalogue at AMRI [17], currently containing 241,000

compounds and found particularly relevant for drug discovery

purposes in a comparative analysis of 23 supplier databases [54].

This relatively vast, diverse and unique chemical space was

complemented with a focused set of 1,500 compounds synthesized

Figure 6. Profiles of experimental affinity data of the 20 drugs, among 4,819, hitting more than 5 targets found solely in tumor
selective compounds. Only affinities above 1 mM are considered. Color coding reflects pAffinity ranges: white 6–7; light grey 7–8; dark grey 8–9;
black .9. Color codes for targets refer to HDACs (yellow), kinases (orange), and other (green).
doi:10.1371/journal.pone.0035582.g006
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at the University of Bari. To adjust the number of compounds to

our screening capacity, an optimal diversity selection was

performed [55]. The final screening collection was limited to a

diverse selection of 30,000 compounds, a number that was fitting

optimally our capacity for cytotoxicity screening.

Cell types and culture conditions
A colon adenocarcinoma (HCT116) and normal human lung

fibroblast (MRC-5) cell lines were purchased from the American

Type Culture Collection (ATCC, Manassas, VA). HCT116 cells

were maintained in McCoy’s 5a Modified Medium supplemented

with 10% FBS, 100 units/ml penicillin, and 100 mg/ml strepto-

mycin at 37uC in a humidified 5% CO2 incubator. Subculturing

was done using 1:5 ratio twice a week. MRC-5 cells were

maintained in DMEM supplemented with 10% FBS, 100 units/ml

penicillin, and 100 mg/ml streptomycin at 37uC in a humidified

5% CO2 incubator. Subculturing was done using 1:3 ratio twice a

week. A cell bank was established for the cell lines used during the

differential toxicity screening campaign. In all experiments, the

doubling time between cancer and normal cells was approximately

24 hours.

Assay developments and validation
The high-throughput in vitro assay for measuring toxicity and

antiproliferative effects of small molecules was implemented as

described earlier [56]. Cell lines were grown in culture flasks to 90%

confluences, then harvested in counted cell density and seeded into

384-well microtiter plates. Test compounds were then added in

various concentrations (in 2% DMSO final concentration) and

incubated with the cells in CO2 incubators at 37uC for 48 h. This

incubation period has the advantage of allowing those compounds

that are not directly toxic but can block or slow down cell

proliferation to have enough time to show their effect. During this

period, FBS content of the medium was decreased to avoid the

masking effect of FBS on toxicity. Detection of viability is based on

the reduction of resazurin (Alamar blue) by living cells, resulting in

an increased fluorescent signal [57]. For the transformation of the

assay into a high-throughput format, a Beckman Biomek liquid

handling system and a Wallac Victor plate reader were used.

Protocols needed for handling the 384-well plates were established

for both single-concentration screening and dose-response curve

determination. A plate map was used for the validation of the assay

on 384-well plates, which is suitable for the determination of dose-

response curves for 16 compounds at the same time using 6

concentrations in triplicate. This experiment was run in parallel on

5 plates and repeated three times on different days. From the dose-

response curves, IC50 values were determined and analyzed. To test

the reproducibility and robustness of the assay for high-throughput

screening, Z9 factors (,0.72) and S/B ratios (,10) were determined

and the respective plate-to-plate and day-to-day coefficients of

variation found to be 5.0%, 2.7%, 1.7% and 5.6%. Based on the

established assay protocol, single-point screenings were done at

50 mM compound concentration in duplicate. Likewise, IC50 values

were obtained from the toxicity dose-response curves from six

compound concentrations in duplicate and calculated with Micro-

cal Origin 5.0. Compounds showing selective cytotoxicity for tumor

cells relative to healthy cells are identified by large values of the ratio

IC50(MRC-5)/IC50(HCT116), whereas the inverse of this ratio

serves to recognize compounds with selective cytotoxicity for

healthy cells relative to tumor cells.

Chemogenomic databases
There are currently several public sources that contain chemical

structures with information on the binding or functional activity to

protein targets. Those used in the present work include

ChEMBLdb [20], PDSP [21], IUPHARdb [22], PubChem [23],

DrugBank [24], BindingDB [25], BindingMOAD [26], AffinDB

[27], and NRacl [28]. Altogether contain a total of 329,303 unique

ligands with 1,505,348 interactions to 4,643 unique proteins.

Among them, there are 4,819 small-molecule drugs with 30,875

interactions to 4,120 unique protein targets.

Affinity predictions and validation
To be processed efficiently, molecular structure information

needs to be encoded using some sort of mathematical descriptors.

In this work, three types of two-dimensional descriptors were used,

namely, SHED, FPD, and PHRAG [58,59], each one of them

characterizing chemical structures with a different degree of

fuzziness and thus complementing each other in terms of structural

similarity and hopping abilities. For any biological target under

study, the ensemble of molecular descriptors capturing the

structural and pharmacophoric features of all molecules for which

affinity data is publicly available from chemogenomic databases

represents a mathematical description of this target from a

chemical perspective. On this basis, the affinity of a compound

for a given target can be estimated by inverse distance weighting

interpolation of the experimental affinities from all neighboring

molecules found within a pre-determined applicability domain

[15]. Based on the ligand-based target models defined from all the

pharmacological data available in chemogenomic databases, each

small molecule can be currently processed against 4,643 proteins.

The output returns a list of the targets for which affinity is

predicted for every query molecule. The method has been

successfully validated retrospectively, on its ability to predict the

entire experimental interaction matrix between 13 antipsychotic

drugs and 34 protein targets [15], but also prospectively, on its

capacity to identify the correct targets for all molecules contained

in a biologically-orphan chemical library [14] and to correctly

anticipate the affinity profile of the drug cyclobenzaprine on a

panel of 8 protein targets [60].

Oncogene expression and probabilities
Expression profiles for proteins in various types of cancer were

directly extracted from IntOGen [33]. IntOGen is a framework

that currently contains and integrates data from almost 800

independent experiments collecting transcriptomic alterations,

genomic gains and losses, and somatic mutation information in

different human cancer types. Oncogene probabilities (Onco-

Scores) were calculated with CGPrio [34] using the PC-GS-PD-

PI-RD dataset that integrates a set of heterogeneous data

accounting for protein conservation (PC), gene structure (GS),

protein domains (PD), protein-protein interactions (PI), and

regulatory data (RD).

Small molecule inhibitors
SAHA, a pan-HDAC inhibitor, was kindly provided by Ciro

Mercurio (DAC s.r.l., Milan, Italy) with 95% purity and 17AAG, a

HSP90 inhibitor, was obtained from Sigma (St Louis, MO) with

95% purity.
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Figure S1 Distributions of pairwise similarities using
PHRAGS (top) and PFPD (bottom) descriptors between
compounds with selective cytotoxicity in HCT116 cell
lines (left), MRC-5 cell lines (middle), and HCT116 and
MRC-5 cell lines (right).

(PDF)
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Figure S2 List of chemical structures showing selective
cytotoxicity for HCT116 cell lines.
(PDF)

Figure S3 List of chemical structures showing selective
cytotoxicity for MRC-5 cell lines.
(PDF)

Figure S4 Dose-response curves of 17AAG, an HSP90
inhibitor (left), and SAHA, a HDAC inhibitor (right), on
the HCT116 and MRC-5 cell lines.
(PDF)

Figure S5 Dose-response curve (left) of the cytotoxicity
of compound NSC680350 (CID 387030; internally known
as MC-309) on HCT116 cell lines (GI50 = 6.4 mM). Also

provided (right) are the pGI50 values of the compound on the two

cell lines tested in this work and the six colon cancer cell lines for

which data is available in PubChem.

(PDF)

Table S1 List of all 115 proteins identified by the
DIVISS approach as from small molecule hits selective
to HCT116 relative to MRC-5. The OncoScore is the

oncogene probability calculated with CGPrio [34]. The arrows

next to the gene name mark the set of 29 proteins that are known

to be significantly altered (corrected p-value ,0.05) in terms of up-

or down-regulation in colon cancer, as extracted from the

IntOGen platform [33].

(DOC)

Table S2 List of all interactions available in PubChem
for compounds present within the list of 265 cytotoxic
selective in HCT116 cell lines.
(DOC)
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