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Abstract

Embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes an epigenetic
reprogramming of the male germ-line that is associated with transgenerational adult onset disease states. Further analysis
of this transgenerational phenotype on the brain demonstrated reproducible changes in the brain transcriptome three
generations (F3) removed from the exposure. The transgenerational alterations in the male and female brain transcriptomes
were distinct. In the males, the expression of 92 genes in the hippocampus and 276 genes in the amygdala were
transgenerationally altered. In the females, the expression of 1,301 genes in the hippocampus and 172 genes in the
amygdala were transgenerationally altered. Analysis of specific gene sets demonstrated that several brain signaling
pathways were influenced including those involved in axon guidance and long-term potentiation. An investigation of
behavior demonstrated that the vinclozolin F3 generation males had a decrease in anxiety-like behavior, while the females
had an increase in anxiety-like behavior. These observations demonstrate that an embryonic exposure to an environmental
compound appears to promote a reprogramming of brain development that correlates with transgenerational sex-specific
alterations in the brain transcriptomes and behavior. Observations are discussed in regards to environmental and
transgenerational influences on the etiology of brain disease.
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Introduction

Environment-genome interactions are critical to understanding

how health and disease are influenced by environmental

exposures. A large number of environmental factors and

compounds have been shown to influence a variety of diseases

[1], but few have been shown to promote DNA sequence

mutations [2]. In contrast, emerging evidence suggests epigenetics

(e.g. DNA methylation, RNA associated silencing and histone

modifications) is involved in the ability of environmental

experiences to regulate the genome and to develop stable

alterations in phenotype [3]. Since epigenetics can influence

genome-wide gene expression profiles (i.e. transcriptomes) of most

organs and cell types [4], environmental alterations in the

epigenome appears to be a mechanism potentially involved in

the abnormal transcriptomes associated with disease [5].

Previous observations have demonstrated that the embryonic

exposure to endocrine disrupting chemicals (i.e. vinclozolin and

methoxychlor) during gonadal sex determination induces a

transgenerational effect on adult male reproduction and sperm

production [6]. An extension of this study demonstrated that as

vinclozolin generation animals age (i.e. 6–14 months), a variety of

different disease states develop in a transgenerational manner (i.e.

F1–F4), including breast tumors, prostate disease, kidney disease

and immune abnormalities [7,8]. This transgenerational phenotype

is transmitted through the male germ-line and paternal allele [6,7].

Although females do develop disease [7,9], they do not transmit this

phenotype to the next generation [6,7]. Alterations in the male

germ-line epigenome were identified following endocrine disruptor

(i.e. vinclozolin) exposure [6]. This epigenetic reprogramming of the

male germ-line appears to allow the disease phenotype to become

transgenerational [3,6,7,8].

The biological process involved in the transgenerational disease

phenotype involves the epigenetic programming of the germ cells

during the critical period of gonadal sex determination [10,11]. As

the primordial germ cells migrate to the genital ridge and colonize

the bipotential gonad, their DNA becomes de-methylated [10,11].

The germ cell DNA is then initiated to re-methylate at the onset of

sex determination in a sex-specific manner [12]. The ability to

induce permanent alterations in the germ-line DNA methylation

pattern is hypothesized to in part allow the phenotype to become

transgenerational [3,6,7]. The influence this altered germ-line

epigenome subsequently has on the transcriptomes of developing

organs was recently shown for the testis [13] and investigated in

the current study using the brain.

Brain disorders such as autism, Rett Syndrome, Fragile X

Syndrome, and Angelman’s Syndrome appear to manifest during

postnatal neural development and involve epigenetic mechanisms.

Rett syndrome is the most common form of mental retardation in

young girls and is due to a mutation of MeCP2, a methylated

PLoS ONE | www.plosone.org 1 November 2008 | Volume 3 | Issue 11 | e3745



DNA binding protein that translates DNA methylation into gene

repression [14,15,16,17]. Abnormal genomic imprinting (i.e.

parent of origin monoallelic gene expression) can promote several

inherited syndromes including Angelman’s, Prader-Willi and

Beckwith-Wiedemann Syndromes [18,19]. Fragile X Syndrome

results from the hypermethylation of the Fmr1 promoter and loss

of FMRP expression [20]. Autism has also been associated with

mutations in a methylated CpG binding protein MBD1 [21].

These previous studies suggest epigenetics has a critical role in

brain development and neural disorders.

The current study was designed to investigate the actions of the

endocrine disruptor vinclozolin on a potential transgenerational

brain phenotype. The brain transcriptome was used to assess on a

molecular level transgenerational alterations in the brain, with a

focus on the hippocampus and amygdala. Behavioral assays were

also performed to assess potential alterations in brain function.

This allows for both a molecular analysis of brain genome effects

and a behavioral analysis to demonstrate how both processes are

affected. The current observations demonstrate that the exposure

of a gestating female during gonadal sex determination to the

environmental compound vinclozolin can promote a transgenera-

tional effect on the brain, three generations removed from the

exposure, involving alterations in the brain transcriptome and

behavior.

Results

Gestating rats were exposed to a daily intraperitoneal (IP)

injection of vinclozolin during embryonic (E) day E8-E14 of

development corresponding to the period of gonadal sex

determination [6,22]. Litter mate sisters were generally used for

the control (vehicle) and vinclozolin treatments. The F1 generation

animals from different litters were bred to generate an F2

generation and then F2 generation animals bred to generate the

F3 generation. Both the control and vinclozolin generations were

bred in a similar manner, with no sibling breedings, and animals

were housed, fed and maintained under similar conditions. The F1

generation embryo and F2 generation germ-line are directly

exposed to vinclozolin, so will have direct toxicology effects [23].

Therefore, the F3 generation was selected to investigate transge-

nerational effects on the brain. The adult brains were collected for

histological analysis and RNA preparation. As previously reported,

no gross brain morphological abnormalities were observed [7]. In

addition, no alterations in serum steroid levels (i.e. progesterone,

estradiol, testosterone and corticosterone) were observed (data not

shown).

The transgenerational changes in the brain transcriptomes were

investigated with a microarray analysis of the adult (i.e. 12–15

months) hippocampus and amygdala. Differentially expressed

genes (i.e. altered genes) were identified with a statistically

significant (p,0.05) present call, a raw signal greater than 75,

and a greater than 1.5-fold change in expression between control

and vinclozolin generation brain samples. A dendrogram analysis

is shown in Figure 1 and indicates an increase (red) or decrease

(green) in gene expression between the control and vinclozolin F3

generation transcriptomes.

The transcriptomes of the amygdala and hippocampus in the

male brain demonstrated 92 genes altered in the hippocampus and

276 genes altered in the amygdala, with the majority (70%) being

decreased in expression (Figure 1). As a comparison, the F3

vinclozolin male whole brain from 6-month-old animals was

analyzed and had 778 altered genes, Supplemental Table S1.

Although the age of the whole brain used was different, the

majority (90%) of the genes altered in the male whole brain had an

increase in expression (Supplemental Table S1), suggesting

numerous brain regions are likely affected. A comparison of F3

vinclozolin generation male brain transcriptomes demonstrated

negligible overlap with each brain region (i.e. amygdala and

hippocampus) (Figure 2). Therefore, the vinclozolin F3 generation

male animals had distinct transgenerational changes in the

different brain transcriptomes (Figure 2 and Supplemental Tables

S2 and S3).

Figure 1. Brain transcriptome microarray analysis from F3 generation control (con) and vinclozolin (vin) animals. (A) Dendrogram for
male whole brain, male hippocampus and male amygdala for statistically significant regulated genes with signal above 75. (B) Dendrogram for female
hippocampus or female amygdala for statistically significant regulated genes. The scale at the bottom margin indicates an increase (red) and
decrease (green) in expression. The number of regulated genes is listed at the right of each gene set. The whole male brain was from 6 month old
animals, and amygdala and hippocampus from 12–15 month old animals.
doi:10.1371/journal.pone.0003745.g001

Epigenetic Effects
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Analysis of the transgenerational transcriptome effects in the

female hippocampus and amygdala were also assessed (Figure 1 &

2), and compared to the respective male transcriptomes.

Interestingly, the differentially expressed (i.e. altered) genes in

the hippocampus had the highest number of altered genes, 1,301

genes, with the majority (80%) being increased in expression, while

in the amygdala 172 genes were predominately decreased

(Figure 1B). The transgenerationally altered genes in the female

brain are shown in Supplemental Tables S4 and S5. The altered

genes in the female hippocampus and amygdala were distinct from

each other and from those observed in the male (Figure 2B). A

comparison of the altered genes in the female versus male

amygdala or hippocampus demonstrated that the majority of the

differentially expressed genes are region and sex-specific, (Figure 2

and Supplemental Tables S2, S3, S4 and S5).

The transgenerationally altered genes in the F3 vinclozolin male

and female generations were further analyzed. Cluster analysis of

categories of genes demonstrated that genes involved in transcrip-

tional regulation, signal transduction, and cytoskeleton were highly

represented (Figure 3 and Supplemental Tables S1, S2, S3, S4 and

S5). Other gene categories represented included those involved in

metabolism, cell cycle, development, proteolysis and apoptosis. A

mixture of up-regulated and down-regulated genes are represented

in all microarray analysis (Figures 1 & 3). In addition to the full lists

and categories of transgenerationally altered genes, the subsets of

altered genes similar within the male and female amygdala and

hippocampus are bolded in the respective Supplemental Tables

S2, S3, S4 and S5. The genes similar between amygdala and

hippocampus for the same sex are italicized (Tables S2, S3, S4 and

S5).

Analysis of specific cellular processes and pathways within the

different transgenerationally altered gene sets is shown in Table 1.

The pathways containing the highest numbers of affected genes

are listed. One pathway, mitogen-activated protein kinase

(MAPK) signaling pathway, was affected in all of the altered gene

sets. An illustration of the affected MAPK signaling pathway for

the female hippocampus is presented in Supplemental Figure S1.

A number of neural-pathway or neuro-processes were also

affected. One commonly affected pathway was the Neuroactive

Ligand-Receptor Interaction pathway. Other neural-pathways

affected include axon guidance, long-term potentiation, olfactory

transduction, gonadotropin releasing hormone (GnRH) signaling,

melanogenesis and long-term depression. An illustration of the

neuroactive ligand-receptor interaction pathway affected in the

female hipppocampus is presented in Supplemental Figures S2.

The female hippocampus was selected for the pathway examined

in Figures S1 and S2 due to having the largest numbers of altered

genes, but those genes altered in the other tissues are identified in

the Figure S1 and S2 legends. Although some similarities exist, the

group of affected pathways/processes within each gene set is

distinct. Those pathways distinct to a specific brain region are

indicated in bold in Table 1.

To investigate important brain genes relevant to behavior and

brain disease (e.g. schizophrenia), and to confirm the microarray

analysis, a quantitative real-time PCR procedure was used to

determine the expression of genes listed in Table 2, (e.g. examine

catechol-o-methyltransferase (Comt) expression). The hippocam-

pus and amygdala from control and vinclozolin F3 generation rats

were collected, RNA isolated and analyzed. The ratio of gene

expression between vinclozolin and control (V/C) samples is

Figure 2. Comparison of the F3 generation regulated gene sets (i.e. transcriptomes). Venn diagram with total regulated (.1.5 fold-change
between control and vinclozolin) genes listed and the overlap, (A) brain nucleus differences within a sex; (B) sex differences within a brain nucleus.
doi:10.1371/journal.pone.0003745.g002

Epigenetic Effects
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shown for both the microarray and quantitative PCR procedures.

The analysis showed the same trends in expression for the majority

of the genes with microarray or QPCR observations (Table 2),

with slight changes in the magnitude of the effects. One gene

Grik2 was found to be annotated incorrectly on the microarray

chip using non-coding sequence oligonucleotides, so the QPCR

procedure is accurate for this gene and not the microarray. For

Vof16 female hippocampus the microarray had a greater than 10-

fold increase, but for the QPCR a decrease. Further analysis

demonstrated the control signal in the microarray was artificially

low due to inaccurate normalization from the mismatch

oligonucleotides. The Drd2 gene expression in male amygdala in

the microarray had a decrease, while the QPCR had an increase,

Table 2. The signal for the microarray was at the low limit of

detection which may contribute to the difference. Therefore, the

quantitative PCR procedure confirmed the majority of the

microarray analysis, for the genes investigated that had brain

disease relevance discussed below, but some differences were

observed for various technical reasons.

A correlation of several transgenerationally affected genes

previously shown to be involved in brain disease or neurological

disorders is shown in Table 2. We focused on genes identified by

two or more studies in the literature as being likely candidate genes

involved in mental disorders. The Comt gene [24,25,26]

microarray data for male and female amygdala and hippocampus

are presented. The S100 (calcium binding protein A4) [28] gene

expression was increased in the male amygdala. The male

amygdala and female hippocampus showed an increase in

expression in brain derived neurotropic factor (BDNF) and the

male amygdala had an increase in D2 dopamine receptor (DRD2)

expression. There is an increase in the expression of ischemia-

related factor Vof16 [28] in the male and female hippocampus.

Finally, there is an increase in expression in the female amygdala

of the glutamate receptor (Grik2), as determined with QPCR.

Therefore, a number of genes previously shown to be involved in

brain abnormalities and behavior were found to be transgener-

ationally altered, Table 2.

Experiments were initiated to extend the molecular analysis to a

more behavioral level. Behavioral analyses of the control and

vinclozolin F3 generation male and female animals were

performed (Figure 4). A light:dark box procedure and an elevated

plus-maze procedure was used to measure anxiety-like behaviors

and general motor activity. Both young postnatal (P) day 70–155

(P70–155) and aged postnatal (P.200) rats were used in the

analysis. In brief, there was a significant effect of sex on latency to

enter dark, time on the light side, and transitions for young rats

and a significant effect of sex on latency to enter dark for old rats.

Previously, we demonstrated that vinclozolin F3 generation

Figure 3. Categorization of genes into functionally related gene groups with the number of genes up-regulated or down-regulated.
(A) male hippocampus regulated gene list; (B) male amygdala regulated gene list; (C) female hippocampus regulated gene list; and (D) female
amygdala regulated gene list.
doi:10.1371/journal.pone.0003745.g003

Epigenetic Effects
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animals between 6–12 months of age develop a number of

different adult onset diseases [7]. Therefore, the young P70-155

animals were selected for behavioral studies to avoid any disease

artifacts. However, the aged (P.200) animals were also used for

comparison with the younger animal behaviors and to better

correlate with the microarray analysis. Supplemental Table S6

summarizes the performance in the light:dark box under low

lighting conditions for female and male young and aged rats. In

general, this condition did not appear to produce the high anxiety-

like states that were found under the higher lighting conditions,

based on the time spent in the light compartment.

In regards to alterations in female behavior, Figure 4A–F shows

the results from young and aged female rats tested in the light:dark

box under high lighting conditions and in the elevated plus-maze.

There were no differences between control and vinclozolin

generation rats in the latency to enter the dark compartment,

time spent on the light side of the box, or in the number of

transitions made between the light or dark sides of the box. In aged

female rats there was a tendency for vinclozolin generation rats to

show a decreased latency to enter the dark side and a significant

decrease in time spent in the light side of the box, with no

differences in the number of transitions (Figure 4A–C). The

elevated plus-maze results from young and aged females are shown

in Figure 4D–F. In both age groups, vinclozolin generation rats

demonstrated a decrease in both the percent time spent on the

open arms and in the percent of open arm entries, with no

difference in the number of total arm entries.

With respect to alterations in male behaviors, Figure 4G–L

shows the response from young and aged males in the light:dark

box under high lighting conditions and young males in the

elevated plus maze. Young males demonstrated no difference in

the latency to enter the dark side of the box, but vinclozolin

generation males demonstrated a significant increase in the time

spent on the light side of the box and in the number of transitions

between the light and dark sides of the box. No differences

between control and vinclozolin generation rats were found in the

aged males. Figure 4J–L demonstrates the performance of young

males on the elevated plus-maze. No differences between control

and vinclozolin generation rats were present for percent open arm

time or percent of open arm entries. However, there was a

significant increase in the number of total arm entries in

vinclozolin generation rats. Aged males were not run on the

elevated plus-maze task because they were too large for the

dimensions of the apparatus.

Discussion

The current study was designed to investigate the transgenera-

tional actions of vinclozolin on the brain transcriptome and

behavior. The objective was to provide both molecular and

behavioral evidence for any transgenerational effects. Previously,

transgenerational effects were observed on mate preference

behavior in the F3 generation vinclozolin animals [29], with

females from either control or vinclozolin F3 generation having a

mate preference for control generation males and not vinclozolin

generation males. Due to this effect on behavior, the current study

extends this analysis to investigate the transgenerational effects of

vinclozolin on the brain transcriptome and anxiety-like behavior.

Therefore, the previous study (29) focused on mate preference and

evolutionary biology while the current study investigates molecular

effects on the brain and disease associated behaviors. Although no

major morphological effects were observed between the control

and vinclozolin generation animals, significant transgenerational

alterations were observed in the brain transcriptomes. Minimal

overlap was observed between the genes altered in the hippocam-

pus and amygdala. This finding suggests the epigenetic program-

ming of the different brain regions are distinct, such that the

eventual effect on the various transcriptomes are unique.

Interestingly, the F3 generation male and female hippocampus

and amygdala had transgenerational transcriptomes unique from

each other. The current observations demonstrate that vinclozolin

promotes a sex-specific transgenerational programming of the

brain transcriptomes.

Analysis of the transgenerationally altered genes demonstrated a

number of cellular processes and signal pathways being affected.

Although each brain region was distinct in the individual gene set

affected, a number of processes and pathways were similar

(Table 1). For example, the mitogen activation pathway kinase

(MAPK) signaling pathway that is responsive to a large number of

regulatory growth and differentiation factors was common to all

the altered transgenerational transcriptomes. Interestingly, a

Table 1. Pathways/processes (KEGG) with the greatest
number of affected genes along with any neural-pathway/
processes (*) with multiple altered genes.

Altered Cellular Process/Pathway
Number Altered
Genes Score

Male Amygdala

MAPK Signaling Pathway 6 1.68

Wnt/Calcium Signaling Pathways 6/4 4.0/1.17

*Neuroactive Ligand-Receptor Interactions 4 0.2

*Glioma 3 2.6

*Long-Term Potentiation 3 2.3

*Olfactory Transduction 3 5.05

Male Hippocampus

Colerectal Cancer 2 2.53

Cytokine Receptor Interactions 2 1.65

Jak-Stat Signaling Pathway 2 2.03

MAPK Signaling Pathway 2 0.61

*Neuroactive Ligand-Receptor Interactions 2 0.4

Female Amygdala

Antigen Processing and Presentation 2 3.35

Cell Adhesion Molecules (CAMs) 2 1.81

Colorectal Cancer 2 2.43

MAPK Signaling Pathway 2 0.64

Nitrogen Metabolism 2 6.46

Female Hippocampus

MAPK Signaling Pathway 25 3.21

Focal Adhesion 19 3.02

Wnt Signaling Pathway 19 4.9

*Axon Guidance 16 3.97

*Neuroactive Ligand-Receptor Interaction 13 21.06

*Long-Term Potentiation 11 3.87

*GnRH Signaling Pathway 10 2.29

*Melanogenesis 10 2.43

*Long-Term Depression 7 1.21

The statistical score (Score) is from a hypergeometric test with the larger the
value from 0.0 (either + or 2) being more significant. The bolded pathways are
those specific to a brain region compared to the others.
doi:10.1371/journal.pone.0003745.t001
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number of brain neuronal pathways were affected and in common

with most transgenerational gene sets. These include melanogen-

esis, axon guidance and long-term potentiation (Table 1). A

process affected in most of the altered transgenerational

transcriptomes was the neuroactive ligand-receptor interaction

process. Although correlation of pathways or genes with specified

brain functions cannot be made, observations suggest transgenera-

tional reprogramming of the brain transcriptome may alter

behavior. Therefore, behavior studies were performed on the

control and vinclozolin F3 generation animals, with a focus on

anxiety-like behaviors due to the alterations in the amygdala

transcriptomes. Although anxiety behaviors were the focus, the

whole brain transcriptome data suggests other behavioral indices

may also be influenced.

Findings revealed that vinclozolin generation female rats

demonstrated an increase in anxiety-like behaviors. In the females

from the vinclozolin generation lineage, both young and aged

female rats showed significant decreases in percent open arm time

and percent open arm entries, without an alteration in general

activity level on the elevated plus-maze. In aged females, these

findings were consistent with the results from the light:dark box, in

which there was a decrease in time spent on the light side of the

box. Young females did not demonstrate differences between

control and treated rats, suggesting that the light:dark task may be

less sensitive or that a different component of anxiety-like behavior

is assessed in the elevated plus-maze.

In contrast to females, male rats showed decreased anxiety-like

behavior in the light:dark box. In both the light:dark box and

elevated plus-maze, treated young males showed hyperactivity that

may be related to increased exploration, high sensation-seeking

behavior, and/or increased impulsivity. An example of such

behavior is an enhanced susceptibility to acquire self-administra-

tion of the abused drug, amphetamine [30]. Aged males were

generally less active than younger males when tested in the

light:dark box, and this difference was significant under low-

lighting conditions. The decreased activity in these aged rats may

be normal and partially explained by the previous observation that

aged males greater than 6 months develop various diseases such as

prostate disease, kidney disease, immune abnormalities and tumor

development [7]. Younger animals less than six months old do not

develop disease other than spermatogenic cell defects [6,7].

Therefore, the younger animal behavioral analysis is not

influenced by disease, but behavior in the older animals needs to

be considered in regards to their potential disease states. The

behavior analysis was performed on both younger and older

animals for comparison and the older animal age better correlated

with the microarray analysis.

The mechanisms mediating the sex differences in anxiety-like

behavior in vinclozolin generation females and males remain

unknown. Hormones and metabolites of progesterone and

testosterone have been shown to alter anxiety-like behaviors

[31,32,33,34]. Previously we reported the F3 generation vinclo-

zolin animals had no major effects on hormone levels [6,7], and

steroid levels for progesterone, estradiol, testosterone and

corticosterone were not affected in the current study, (data not

shown). Therefore, altered endocrinology does not appear to be a

factor in the altered anxiety behaviors observed. The anxiety-like

behavior assessed will likely involve multiple causal factors. For

example, one factor that could cause alterations in the anxiety-like

behavior is that, since the F2 germ line was directly exposed to

vinclozolin, these F2 generation rats may rear F3 pups differently

from control F2 rats, potentially leading to altered anxiety in adult

F3 rats. For this reason, caution should be used in the mechanistic

interpretation of the behavioral studies. For this reason we have

referred to the behaviors observed as anxiety-like and caution

should be used in interpretation of the behavioral studies.

The analysis of the brain transcriptomes demonstrated that a

number of genes previously shown to be involved in brain disease

or neurological disorders were transgenerationally altered

(Table 2). For example, the catechol-o-methyltransferase (Comt)

gene is expressed in the brain and associated with the etiology of

schizophrenia and depression [25,26,27]. The serotonin trans-

porter (SLLGA4) gene is important for brain function and linked

to abnormalities such as autism [28]. The S100 calcium binding

protein A4 gene has been shown to be involved in developmental

stress responses [29]. The altered expression of brain derived

neurotrophic factor (BDNF) and the D2 dopamine receptor

(DRD2) is significant as the former has been implicated in

Alzheimer’s disease, affective disorders, posttraumatic stress

disorder, schizophrenia, and substance dependence [35], while

Table 2. Genes related to mental health disorders that show a significant (in bold) alteration in expression in Vinclozolin-lineage
rats.

Gene Area Cont Vincl V/C Alteration QPCR V/C

Comt (catechol-O-methyltransferase) Male Amygdala 293 182 0.62 Decrease 0.01

Female Amygdala 265 238 0.9 Decrease 0.21

Male Hippocampus 324 149 0.46 Decrease 0.60

Female Hippocampus 206 250 1.21 Increase 1.60

Grik2 (Glutamate receptor, ionotropic) Female Amygdala 4 39 9.84 Increase 5.62

S100a4 (Calcium binding rpotein A4) Male Amygdala 84 119 1.41 Increase 1.28

Bdnf (brain derived neurotropic factor) Male Amygdala 72 113 1.58 Increase 1.26

Female Hippocampus 137 236 1.72 Increase 4.23

Drd2 (D2 dopamine receptor) Male Amygdala 65 37 0.56 Decrease 2.28

Vofl6 (Ischemia-related factor) Male Hippocampus 43 95 2.21 Increase 2,09

Female Hippocampus 7 122 18 Decrease 0.88

Listed are raw microarray signals, with V/C indicating the ratio of the signals. Although several of the V/C ratios are less than 1.5-fold changed, they are presented to
allow comparison with the quantitative PCR (QPCR) results. The Real-time QPCR for the genes indicated regarding the vinclozolin/control (V/C) ratio is presented. All the
microarray and QPCR ratios in bold were statistically significantly different (P,0.05) between control and vinclozolin values.
doi:10.1371/journal.pone.0003745.t002

Epigenetic Effects

PLoS ONE | www.plosone.org 6 November 2008 | Volume 3 | Issue 11 | e3745



Figure 4. Performance in the light:dark box in young and aged third-generation female and male rats. Data are mean6SEM of latency to
enter dark (A, G), time spent in the light side of the box (B, H) and the total number of transitions made between the light and dark sides of the box (C, I)
in young (left panel) and aged (right panel) control and vinclozolin generation rats. For young and aged female rats N = 8–9/group. For B aged: t15 = 2.65,
p,0.018. * P,0.05, compared with control. Performance in the elevated plus-maze in young and aged third-generation female and male rats. Data are
mean6SEM of percent open arm time (D, J), percent open arm entries (E, K) and total entries (F, L) in young (left panel) and aged (right panel) control and
vinclozolin generation rats. For young rats, all animals from above are shown; for aged rats, N = 5 (control) and 7 (vinclozolin). The aged group represents
a subset of those run in the light:dark box shown because of technical (unstable lighting) conditions during testing for the first 5 rats; these rats were
omitted from the analysis. For D young: t15 = 2.30, p,0.036. For E young: t15 = 2.51, p,0.024. For D aged: t10 = 2.40, p,0.037. For E aged: t10 = 2.82,
p,0.018. *P,0.05, compared with control. For young male rats, N = 9–12/group. For aged male rats, N = 9–10/group. For H young: t19 = 22.65, p,0.016.
For I young: t19 = 22.46, p,0.024. * P,0.05, compared with control. All young male animals L: t19 = 23.32, p,0.004. *P,0.05, compared with control.
doi:10.1371/journal.pone.0003745.g004

Epigenetic Effects
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the latter has been implicated in post traumatic stress syndrome

(PTSD), anxiety, social dysfunction, and depression [36]. Potential

altered epigenetic regulation of the ischemic-related factor Vof16

gene is also associated with stress responses [29]. Therefore, a

number of genes previously shown to be involved in brain

abnormalities and behavior were found to be transgenerationally

altered. Although causal relationships cannot be made in the

current study, the role of specific transgenerationally altered genes

can be investigated in the future.

Endocrine disruptors are a class of compounds that alter

hormone actions and endocrinology [8,37,38]. Many environ-

mental compounds from fungicides to plastics have endocrine

disruptor activity [38,39]. The endocrine disruptor used in the

current study was vinclozolin, which is a fungicide used in the fruit

industry [38]. Vinclozolin and its metabolites are anti-androgenic

compounds that bind and alter androgen receptor actions [40].

Embryonic and early postnatal exposure to vinclozolin [22,38,40]

or other endocrine disruptor compounds promote adult onset

disease in numerous species [1,6,37,39,41]. The frequency of

transgenerational disease induction and reproducibility of the

phenomena [6,7] suggests an epigenetic mechanism is involved.

In the context of the current study, two potential epigenetic sites

of action for environmental toxicants need to be considered. The

first is during the active development of a specific organ when the

epigenome and transcriptome is undergoing a cascade of

developmental stages to eventually establish the adult organ

transcriptome and physiology. In the event a factor reprogrammed

or altered an epigenetically labile site or metastable allele of the

epigenome during this development, the adult organ may not have

the proper transcriptome and become susceptible to develop

disease. This epigenetically induced adult onset disease state would

not be passed to subsequent generations, but may be a significant

factor in disease etiology [3,42]. In regards to behavior this has

been termed a context-dependent epigenetic modification [43].

The second major epigenetic site of action involves reprogram-

ming the epigenome of the germ-line [3,6,8]. The embryonic

programming of the genome during gonadal differentiation could

be modified to promote an abnormal epigenome. In the event this

modified epigenetic program (i.e. DNA methylation) became

imprinted-like, then all subsequent generation programming

would be influenced [3]. The primordial germ cells undergo a

de-methylation prior to gonadal development and then re-

methylation in a sex-specific manner during sex determination

[10,11,12]. The germ cells at this time of development appear to

be sensitive to epigenetic re-programming [6,7,8]. Observations

demonstrate that the endocrine disruptor vinclozolin can alter the

epigenome of the male germ-line transgenerationally. The ability

of this altered epigenome to promote a transgenerational

epigenetic alteration in the transcriptome has been shown in the

developing testis [13] and is speculated to be the mechanism

behind the subsequent development of heritable adult onset

disease [3,6]. The role of epigenetic alterations in the brain cell

populations as a causal factor in the transcriptome and behavior

alterations remains to be elucidated in future studies.

The combined current observations indicate that vinclozolin

exposure of a gestating female rat during gonadal sex determina-

tion can promote a transgenerational alteration in the brain

transcriptome and behavior. We suggest this is due to an

epigenetic alteration in the male germ-line that transgenerationally

transmits, through an altered germ-line epigenome, an altered

epigenetic reprogramming of the brain. The transgenerational

changes in different regions of the brain (i.e. hippocampus and

amygdala) are distinct and sex specific. These molecular changes

in the brain transcriptome are associated with altered behavior,

but the causal relationships remain to be established. Interestingly,

the alterations in male and female behavior are different, with

females developing an increase in anxiety-like behavior and males

a decrease in anxiety-like behavior and an increase in activity.

Therefore, an environmental compound (i.e. endocrine disruptor)

exposure during pregnancy promoted a transgenerational alter-

ation in brain programming and behavior. The observations

suggest some element of neurodegenerative disease and brain

abnormalities may be induced through an epigenetic transgenera-

tional mechanism. The component of brain abnormalities that are

transgenerational remains to be determined, but some neurode-

generative conditions and abnormalities are familial and have a

paternal heritability. Future studies will need to determine the role

of transgenerational epigenetic mechanisms in brain development,

physiology and disease.

Materials and Methods

A. Animals & In Vivo Procedures
Gestating outbred Sprague-Dawley mother rats from timed

pregnant colonies housed at the Washington State University

Vivarium were given intraperitoneal (IP) injections of vinclozolin

(100mg/kg/day) from embryonic day 8–14 (E8–E14) of gestation

(i.e. F0 generation) as previously described [44]. Sperm positive

vaginal smear date was identified as embryonic day 0. Gestating

control mothers (i.e. F0 generation) received vehicle alone (i.e.

sesame oil and DMSO). At least 8 lines (individual F0 injected

females) were generated for controls and 8 lines for vinclozolin

generations for these analyses. The F1–F3 generation animals

derived from a vinclozolin exposed F0 mother are referred to as

vinclozolin generation animals, while those from control F0

generation mothers are identified as control generation animals.

The brains from males were collected at 12 months of age and

females at 15 months of age for analysis of the hippocampus and

amygdala. Adult F1 vinclozolin generation (offspring from F0

mothers) males were bred to F1 vinclozolin generation females to

generate the F2 vinclozolin generation. Adult F2 vinclozolin

generation males were bred to F2 vinclozolin generation females

to generate the F3 vinclozolin generation. Rats for the control

groups (i.e. generations F1–F3) were bred in the same manner for

all the generations. No inbreeding or sibling crosses were

generated. All animals were housed in the same room with similar

lighting and feeding conditions. All procedures have been

approved by the Washington State University Animal Use and

Care Committee. The hormone assays were performed by the

Assay Core Laboratory of the Center for Reproductive Biology at

Washington State University. These assays were radioimmunoas-

says for corticosterone, progesterone, testosterone and estradiol.

Serum was collected from the same animals used in the microarray

analyses for hormone assays. No differences were observed

between control and vinclozolin F3 generation animals in steroid

levels, (data not shown).

B. Brain Collection and Histology
The brain was removed in less than 1 minute and placed in

crushed ice to chill. The brain was then cut in half along the

midline. The hippocampus and amygdaloid nuclei were dissected

from on side of each brain using a chilled brain mold and specific

brain areas were dissected using coordinates from Paxinos and

Watson (Hippocampus: Bregma 22.12 to 24.52; Amygdala

Bregma: 22.30 to 23.60) within 3–5 min [45]. Tissue was placed

in chilled TRIZOL (150 ml) in 1.5 ml eppendorfs tubes according

to the manufacturers specifications. After all brains were dissected,

the eppendorfs tubes were vortexed (15 sec) and then frozen on
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dry ice. Tissues collected for histology were fixed in Bouin’s (Sigma

St. Louis, MO) for 1 hour, embedded in paraffin and sectioned.

Sections were stained with hematoxylin and eosin according to

standard procedures. The Center for Reproductive Biology,

Histology Core Laboratory assisted with these procedures. The

animal numbers were n = 6 for vinclozolin and n = 6 for controls

from 3 different lines (i.e. F0 injected mothers) for the F3

generation.

C. Microarray Analysis and Bioinformatics
The Genomics Core in the Center for Reproductive Biology at

Washington State University performed the microarray analysis as

previously described [46,47]. Briefly, RNA from control and

vinclozolin F3 generation adult male whole brain or male and

female hippocampus or amygdala was reverse transcribed into

cDNA and cDNA was transcribed into biotin labeled RNA. Biotin

labeled RNA was then hybridized to the Affymetrix rat R230 2.0

gene chips (Affymetrix, Santa Clara, California). Biotinylated

RNA was then visualized by labeling with phycoerythrin-coupled

avidin. The microarray chip was scanned on an Affymetrix Gene

Chip Scanner 3000 (Affymetrix, Santa Clara, CA). The micro-

array image data were converted to numerical data with

GeneChip Operating Software (GCOS version 1.2.1.001; Affy-

metrix) using a probe set target signal of 125. An analysis was

performed with GCOS to assess the relative abundance of the

transcripts based on signal and detection calls (present, absent or

marginal). This information was imported into Genespring

software (Silicon Genetics, Redwood City, CA) and normalized

using the recommended defaults. This includes setting signal

values below 0.01 to a value of 0.01, total chip normalization to

the 50th percentile, and normalization of each chip to the median.

Unless otherwise indicated, in order for a transcript to be

considered present it had to be both present in the GCOS

present/absent call, and have an expression level greater than 75.

Briefly, the signals from 11 perfect matched oligonucleotides for a

specific gene and 11 mis-matched oligonucleotides were used to

make comparisons of signals to statistically determine a present call

using a one-sided Wilcoxian’s signed rank test. In order for a

transcript to be considered changed it had to exhibit at least a 1.5-

fold change between the means of the control and vinclozolin

samples and have a Students 1-tail t-test p#0.05 between samples.

The raw signal cut off was 75. Therefore, the data presented are

for genes that were determined to be statistically present and found

to have a statistically significant difference between control and

vinclozolin samples.

Two different experiments were performed involving two

different sets of animals, RNA sample preparations and micro-

array chips. Therefore, two control and two vinclozolin generation

samples were analyzed on four different chips. This allowed a 2X2

factorial comparison with all present/absent calls and changes in

expression to be statistically significant for further analysis. The R2

for the replicate microarray chips was found to be R2.0.98, which

indicated negligible total variability between replicates. This R2

value and statistical analysis indicated that the chip number used

was appropriate. The number of chips required for specific

experiments has been previously reviewed [48] and 2 biological

replicate chips were determined to be statistically appropriate.

Previous studies have demonstrated that microarray data are

validated with quantative PCR data [47,49]. Due to the presence

of 11 different oligonucleotide sets for each specific gene being

used on the microarray versus only a single primer set for a gene in

a quantative PCR, the microarray is more effective at eliminating

false positive or negative data and provides a more robust

quantitation of changes in gene expression. However, validation of

microarray data was performed with six selected genes using a

quantitative real-time PCR procedure. Although the magnitude of

the change can vary, the absence or presence of a change is generally

consistent, Table 2. A brain related genes COMT, Grik 2, S100a4,

Bdnf, Drd2 and Vol16 were selected to perform quantitative PCR

analyses to confirm the microarray data. The primer sets used for the

Comt were forward: 59-GAGATCTTCACGGGGTTTCA-39 re-

verse: 59-AGATGTGGTGTGAGCTGCTG-39; for Grik 2 forwar-

d:59ACAGTTCATCAGCCAATGCTGTGC-39 reverse 59AAC-

TGCACCAAATCCAAGATGGCG-39; for S100a4 forward

59ATACTCAGGCAACGAGGGTGACAA-39 reverse 59TCATG-

GCAATGCAGGACAGGAAGA-39; for Bdnf forward 59AGA-

AGGTTCGGCCCAACGAAGAAA-39 reverse 59AGAAAGAG-

CAGAGGAGGCTCCAAA-39; for Drd2 forward 59TGACA-

GTCCTGCCAAACCAGAGAA-39 reverse 59CACACCGAGAA-

CAATGGCAAGCAT-39; and Vol16 forward 59TCGGAGCG-

TAATACCAACAGCTCA-39 reverse 59ACACGTGTAGACAA-

TGCAGAGGGA-39. The primer sets used for the constitutively

expressed S2 gene were (S2, forward 59- GCTCGTGGAGG-

TAAAGCTGA-39, and reverse 59- TGAGACGAACCAGCACA-

GAG-39). Similar observations were made with this quantitative PCR

procedure and the microarray analysis, Table 2.

D. Behavioral Analysis
Animals were housed under a 12:12 hr light:dark cycle (lights on

at 07:00am) with food and water available ad libitum. Females

designated as ‘‘young’’ were between postnatal day (P) 93-124 and,

and males designated as ‘‘young’’ were between P82-155. Females

designated as ‘‘aged’’ were between P369-386 and males

designated as ‘‘aged’’ were between P202-385, with one rat tested

at P527. The total number of animals analyzed is listed in the

figure legend.

The light:dark box consisted of Plexiglas that was a total of

106 cm in length, 22 cm in width and 25 cm in height. Clear

Plexiglas comprised 72 cm of the length and black Plexiglas

comprised 34 cm of the total length. The clear portion had a clear

floor and a white Plexiglas lid, and the black portion had a black

floor and a black Plexiglas lid. A light (23 W) was placed 11 cm

over the center of the white lid.

The elevated plus-maze was as previously described [50] and

consisted of a ‘‘plus’’-shaped platform made of black opaque

Plexiglas, which was 10 cm in width and 50 cm in length, creating

a 10610 cm neutral zone in the center. The plus-maze was

elevated 50 cm from the floor. Two of the arms were enclosed

with black Plexiglas walls 40 cm high, with no ceiling.

F3 generational male and female Sprague-Dawley rats from

control and vinclozolin lineages were used in a blinded procedure

for the behavioral studies. All behavioral experiments were carried

out during the first 5 hr of the light cycle, and the same rats were

always tested the same time of day. The light:dark box has been

used to assess the level of anxiety-like behavior in rodents. It is

based on the natural aversion to bright light and open spaces

[51,52], and it has been used to model anxiety. Decreased latency

to enter the dark side of the box and more time spent in the dark

side are believed to signify increased anxiety levels, and

pharmacological studies validate these behaviors as measures of

increased anxiety. For the light:dark box, rats were placed

individually into the light side of the compartment at the end

opposite from the dark compartment, facing the dark compart-

ment. The latency to enter the dark compartment, time spent in

the light side of the compartment and number of transitions made

between the light and dark compartments were recorded for

5 min. The rat was considered to be in a compartment only when

all four paws were located in that compartment. Animals were first
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tested in the light:dark box with only ambient lighting (no

additional lighting). One day to one week later, rats were again

tested in the light:dark box exactly as described above except that

additional lighting overhead was present to provide a second

‘‘dose’’ of conditions that might reveal differences between groups

on anxiety-related behavior compared with when no overhead

light was present. The light (described above) was placed on the

white lid above the center of the light compartment. One week

after testing in the light:dark box in which the additional lighting

was used, all rats were tested in the elevated plus-maze as

previously described [50]. The elevated plus-maze relies on the

animal’s natural fear of open spaces, and the percent time spent on

the open arms and percent of open arm entries are believed to be a

measure of general anxiety level [53]. For this task, rats were

placed individually into the center (neutral) zone of the maze,

facing an open arm. Rats were allowed to explore for a 5 min

period, and the number of open and closed arm entries and time

spent on the open and closed arms were recorded. Animals were

considered to be in the open or closed arms only when all four

paws crossed out of the neutral zone. Percent open arm time was

calculated by taking the time spent in the open arms and dividing

it by the sum of the time spent in the open arms plus time spent in

the closed arms. The percent of open arm entries was calculated

by taking the number of open arm entries and dividing it by the

sum of the number of open arm plus closed arm entries.

E. Statistical Analysis
The non-behavioral data were analyzed using a SAS program.

The values were expressed as the mean6SEM. Statistical analysis

was performed and the difference between the means of control

and vinclozolin samples or animals were determined using a

Student’s t-test. In vivo experiments were repeated with 3–6

individuals for each data point. A statistically significant difference

was confirmed at p#0.05. A two-way ANOVA was used to

analyze the effect of sex and treatment (control or vinclozolin) on

each of the five behaviors measured on young rats and each of the

three behaviors measured on both sexes of old rats. Young and old

rats were analyzed separately. Before doing ANOVA, the data was

tested for normality and log-transformed if necessary to normalize

it. When the ANOVA reported no interaction between sex and

treatment, the ANOVA re-calculated to test for the effect of sex

and the effect of treatment but not their interaction. Subsequent

analysis was conducted separately for each sex and each age by

comparing between control and vinclozolin generation rats using a

two-tailed, unpaired t-test. Statistical significance was considered if

p#0.05. All statistical differences are reported in the figure

legends.
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