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Glioblastoma (GBM) is one of the most common primary and deadliest malignant brain
tumor with chemoresistance and poor prognosis. There is a lack of effective
chemotherapeutic drug for the treatment of GBM. In this work, we reported the
preparation of a histone deacetylase (HDAC) inhibitor, DMC-HA, from the structural
modification of natural product curcumin. DMC-HAs were tested in an HDAC inhibition
assay and an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay
for cytotoxicity. It showed potent inhibition of HDAC1–2 and HDAC6 with IC50 values in
the submicromolar concentration range. DMC-HA significantly inhibited the proliferation of
human glioblastoma U87 cells and mediated apoptosis of U87 cells in a dose- and time-
dependent manner. In addition, DMC-HA elevated the acetylation level of histone H3 in
U87 cells. Pharmacokinetic studies showed that DMC-HA possessed acceptable
pharmacokinetic profiles, accompanied with certain brain permeability. Lastly, we
showed that DMC-HA suppressed the growth of tumor in U87 tumor xenograft model
in vivo with no obvious toxicity. These results demonstrate that DMC-HA has the potential
to be developed as a chemotherapeutic drug for GBM patients.

Keywords: derivative, glioblastoma, histone deacetylase inhibitor, curcumin, hydroxamic acid
INTRODUCTION

Glioblastoma (GBM) is one of the most common primary and deadliest malignant brain tumor with
striking genomic instability and therapeutic resistance. It remains a malignancy with poor prognosis
despite that great progress has been made with chemotherapy, radiotherapy (RT), and surgical
interventions (1). Although a survival benefit from temozolomide (TMZ) plus RT has been
observed in patients whose tumors contained a methylated DNA repair enzyme (2), many
patients succumb to this disease after a combination treatment of RT and TMZ with a median
survival of only approximately 15 months, and the survivors experience severe side effects from the
current treatment options (3). GBM tumor cells show inherent heterogeneous, highly invasive, and
resistance to the current regimens (4). A larger number of clinical trials have been performed to
investigate the efficacy of novel therapies, but only limited success has been achieved with prolonged
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survival in GBM patients. Thus, there are great urgent needs to
develop novel therapeutic approaches to improve the quality of
life of GBM patients (5).

Epigenetic mechanisms, such as acetylation and deacetylation of
histones, play an essential role in the epigenetic regulation of gene
expression. Histone deacetylases (HDACs) and histone
acetyltransferases (HATs) determine the acetylation status of
histones, regulating the transcription activation (6). HDACs are a
group of zinc-binding metalloenzymes that catalyze the removal of
acetyl groups from histones, resulting in chromatin compaction and
transcriptional repression of various genes, including those
implicated in the regulation of cell survival, proliferation, cell
cycle arrest, and apoptosis (7). HDACs are overexpressed in
several cancer types (8), and HDAC inhibitors can selectively alter
gene transcription in part by chromatin remodeling, thus changing
the structure of transcription factor complexes and resulting in cell
growth arrest, reduced migration/invasion, angiogenesis, induction
of apoptosis, and inhibition of DNA repair (9). To date, five HDAC
inhibitors have been used in the clinical practice. Vorinostat,
belinostat, romidepsin, and chidamide are approved for the
treatment of cutaneous or peripheral T-cell lymphoma and
panobinostat for multiple myeloma (10). Moreover, there are
growing clinical trials underway to investigate HDAC inhibitors
as single agents or in combination with other drugs to treat non-
hematological tumors (11).

HDAC inhibitors are emerging as a promising strategy for the
treatment of GBM (12). In the past several years, various studies
have exhibited the rational and robust targeted therapy of HDAC
inhibitors in the treatment of GBM (13). Mutations in histone H3
have been proven by Capdevielle et al. to be oncogenic drivers in
diffuse midline glioma, and targeting this epigenetic abnormality by
HDAC inhibitors is a potential therapeutic regimen for diffuse
midline glioma treatment through regulating scaffolding proteins
EBP50 and IRsp53 (14). A combined therapy approach involving
HDAC inhibitors and bromodomain protein (BRD) inhibitors has
been identified based on a transcriptome and subsequent gene set
enrichment analysis in patient-derived xenograft and stem-like
glioblastoma cells. This combination treatment reduces tumor
growth in orthotopic patient-derived xenograft of GBM and
warrants further clinical trials (15). Preclinical evidence shows
that HDAC inhibitor vorinostat has antitumor activity against
malignant glioma cell lines in vitro and orthotopic glioma
xenograft in vivo (16). The clinical study also showed that
vorinostat is well tolerated as a monotherapy in patients with
recurrent GBM and exhibited modest single-agent activity (17). In
addition, a phase I/II clinical trial showed that suberoylanilide
hydroxamic acid (SAHA, vorinostat) combined with standard
chemoradiation had acceptable tolerability in newly diagnosed
glioblastoma (18).

Although five HDAC inhibitors have been approved and
more than 20 new HDAC inhibitors are currently under
preclinical and clinical investigations against various cancer,
none of these HDAC inhibitors are specifically developed for
the treatment of GBM; therefore, the development of new HDAC
inhibitors for GBM is an ongoing opportunity and challenge.

Natural products are a great treasure for the discovery of
anticancer drugs (19). Indeed, several natural products have been
Frontiers in Oncology | www.frontiersin.org 2
found to exhibit anticancer activities by affecting HDACs, like
resveratrol, heliomycin chalcones, and curcumin (20). Curcumin
is a polyphenol extracted from turmeric, which exhibits diverse
and broad pharmacological activities (21). A few studies have
identified HDAC as one of the targets of curcumin, and it
downregulates the expression of HDAC (22). Despite its poor
bioavailability, curcumin has been identified to suppress
medulloblastoma growth in vivo through its HDAC inhibition
activity (23). In addition, curcumin has been proven to inhibit
cell proliferation, invasion, angiogenesis, and metastasis of GBM
in our previous work; thus, we hypothesis that curcumin could
be developed as an HDAC inhibitor for the treatment of GBM
(24–26). However, the poor HDAC inhibition activity and
selectivity impeded the direct application of curcumin as an
HDAC inhibitor for the treatment of GBM. Furthermore,
another major drawback of curcumin is its extremely low oral
bioavailability, translating to limited efficacy in vivo.

Based on these observations, we speculate that structural
modification of curcumin to be a potent HDAC inhibitor with
improved druggability is a feasible approach to apply it to the
treatment of GBM. Given the fact that hydroxamic acid is an
essential pharmacophore for HDAC inhibition, a novel
hydroxamic acid-based curcumin derivative, DMC-HA
(Figure 1), was designed and synthesized. Herein, we would
like to report the discovery and biological evaluation of DMC-
HA as a potent HDAC inhibitor for the treatment of GBM.
MATERIALS AND METHODS

Cell Lines and Culturing Conditions
Human GBM U87 cell line was purchased from the American
Type Culture Collection (ATCC). Cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) and maintained in a 37°C, 5%
CO2 incubator. After cells were routinely passaged at 2- to 3-day
intervals, experiments were carried out when the cells entered
exponential growth phase.

HDACs Inhibition Assay
The inhibition assays for HDACs were carried out according to
standard protocols. Briefly, purified HDACs were incubated with
the test compounds and a carboxyfluorescein-labeled peptide (1
mM) as substrate for 18 h at 25°C in a buffer consisting of 100
mM HEPES (pH 7.5), 1 mg/ml bovine serum albumin (BSA),
0.01% Triton X-100, 1% dimethyl sulfoxide (DMSO), and 25
mM KCl. The reaction was stopped by the addition of 45 ml of
100 mM HEPES (pH 7.5) and 0.08% sodium dodecyl sulfate
(SDS). The substrate and the product were then separated
electrophoretically using a LabChip 3000 system (Caliper Life
Sciences, Hopkinton, MA) with blue laser excitation and green
fluorescence detection.

Cell Viability Assay
Cells (5 × 104) were seeded into 96-well plates and exposed to
vehicle (PBS) or different concentrations of compounds for 72 h.
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Cell viability was measured using the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay and was
expressed as a ratio to the absorbance value at 570 nm of the
control cells.

Cell Apoptosis Assay by Flow Cytometry
For apoptosis assays, 5 × 105 U87 cells were seeded into six-well
plates for 24 h and treated with a range of concentrations of
DMC-HA for 36 h. Annexin V-FITC/PI apoptosis detection kit
was used to perform the apoptotic assay following the
manufacturer’s instructions (Beyotime, Jiangsu, China). After
treatment, 1 × 106 cells were washed using 1 ml binding buffer for
three times, then centrifuged at 300×g and stained with 10 ml
Annexin V-FITC solution at 37°C for 15 min. Before detecting, 5
ml PI solution was added to the samples, and the apoptotic cells
were detected using flow cytometry (FACSCalibur BD, BD
Biosciences, San Jose, CA, USA).

Cell Cycle Analysis
For cell cycle analysis, U87 cells (5 × 105 cells/well) were seeded
into six-well plates and treated with the indicated concentrations
of DMC-HA for 24 h. Cells were detached, fixed in 70% ethanol
Frontiers in Oncology | www.frontiersin.org 3
in PBS (−20°C) overnight and resuspended in PBS supplemented
with 100 µg/ml RNase and 50 µg/ml PI for 30 min. Cell cycle
analysis was performed on a flow cytometry (FACSCalibur BD,
BD Biosciences, San Jose, CA, USA).

Hepatic Microsome Stability Assay
Metabolic stability was assessed in the presence of human,
mouse, and rat liver microsomes (XenoTech, Lenexa, KS,
USA). All liquid dispenses and transfer steps were performed
with the Freedom Evo automated liquid handler (Tecan US).
Compound stock solutions were initially prepared in 100%
DMSO and subsequently diluted in acetonitrile for the assay.
The pH of the reactions was kept at 7.4 with potassium
phosphate buffer. The reaction wells were prepared by adding
microsomes to a well and allowed to warm to 37°C. Then,
compound was added to each well. The reactions were stirred
by adding cofactor reduced nicotinamide adenine dinucleotide
phosphate (NADPH) to the reaction well containing microsomes
and compounds. Negative controls received buffer only.
Immediately after reactions started, 0-min aliquots were
promptly collected and mixed in a separate well with ice cold
acetonitrile to quench the reactions. The remainder of the
A

B

FIGURE 1 | Curcumin-based HDAC inhibitor, DMC-HA, was designed from three FDA approved HDAC inhibitors. (A) Pharmacophore model for HDAC inhibitors
was applied to the structure of DMC-HA. (B) Proposed binding model of curcumin (violet) and DMC-HA (green) with HDAC (PDB code: 5edu).
November 2021 | Volume 11 | Article 756817

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Curcumin Derivative as HDAC Inhibitor
reaction volume was incubated at 37°C with shaking. An
additional aliquot was collected at 60 min after the start of the
reaction and promptly quenched with ice cold acetonitrile.
Samples were vortexed and centrifuged at 3,500 rpm for
10 min. The amount of compound in the supernatant was
determined by liquid chromatography–tandem mass
spectrometry (LC/MS/MS) (Thermo Fischer Scientific, San
Jose, CA, USA), and the percent of parent compound
remaining after 60 min was calculated. Results are the mean of
each reaction triplicate, normalized to the internal standard, and
expressed as the percent of compound remaining after the
incubation time.

Pharmacokinetic Study
The animal studies were approved by the Institutional Animal
Care and Used Committee. The pharmacokinetic study of DMC-
HA was carried out with female SD mice. The compound (2.0
mM) was suspended in DMSO (10%) and Tween 80 (10%) in
PBS (80%). A single dose of 1 mg/kg was administrated by
intravenous injection (n = 3 mice), followed by blood collection
via retro-orbital bleeding at 0.25, 0.5, 2.0, 4.0, 8.0, 12.0, and 24 h.
Whole blood samples were added to a tube containing
ethylenediaminetetraacetic acid (EDTA) and centrifuged.
Plasma was collected and stored at −20°C. Compound
standards were prepared with pooled plasma samples. Fifty
microliters of thawed plasma and standards were added into
wells of Ostro Pass-Through Sample Preparation Plate (Waters)
for solid phase extraction. Acetonitrile (150 ml) containing
internal standard was added and mixed by pipette. Next, clear
sample solution was eluted by positive pressure processor under
60 psi for 5 min. The sample solution can be used directly for LC-
MS/MS analysis.

Western Blot Analysis for H3-Histone
Acetylation
U87 cells (5 × 105 cells/ml) in six-well plates were incubated with
DMC-HA and lysed in radioimmunoprecipitation assay (RIPA)
buffer containing protease and phosphatase inhibitors. Protein
contents in the lysates were determined by Bradford’s assay, and
50 mg was separated by SDS polyacrylamide gel electrophoresis
(SDS-PAGE) electrophoresis. Proteins were transferred to
membranes and probed with human anti-acetylated H3 and
anti-b actin antibodies as a loading control. Membranes were
then labeled with the appropriate horseradish peroxidase (HRP)-
conjugated immunoglobulin G (IgG), and protein bands were
visualized using enhanced chemiluminescence. (Bio-Rad,
Hercules, CA, USA).

In Vivo Study
Six-week-old BALB/c nude mice were purchased from Shanghai
Experimental Animal Center of Chinese Academy of Science
(Shanghai, China). All animal protocols were implemented
according to the guidelines of the Association for Assessment
and Accreditation of Laboratory Animal Care. U87 cells (3 × 106)
were subcutaneously implanted into the right flank of mice. After
6 days of tumor growth, tumors grew to approximately 100 mm3,
and mice were randomly divided into three groups with nine
Frontiers in Oncology | www.frontiersin.org 4
animals in each group. Mice in two groups were intraperitoneally
injected with 20 mg/kg vorinostat or DMC-HA, respectively,
every day for a total of 13 days. The control group was
intraperitoneally injected an equal volume of DMSO. Body
weights and tumor volumes were measured every 2 days. After
treatment, all of the mice were sacrificed, and the tumors were
harvested, weighted, and photographed. The tumor volume was
calculated according the formula: tumor volume = (length ×
width2)/2.

Statistical Analysis
All tests were performed using SPSS Graduate Pack 11.0
statistical software (SPSS, Chicago, IL, USA). Descriptive
statistics, including the mean and SE, in addition to one-way
ANOVAs, were used to determine significant differences. *p <
0.05 and **p < 0.01 were considered statistically significant.
RESULTS

Design and Synthesis of Curcumin-Based
HDAC Inhibitor
We started our project with reference to the well-established cap-
linker-metal binding group pharmacophore model for HDAC
inhibitors. This model represented by a capping group is able to
interact with the rim of the catalytic tunnel of the enzyme,
opposite to a zinc-binding group (ZBG) at the bottom of the
catalytic cavity, and a carbon linker connecting the two parts
(27). To date, numerous studies have established that
hydroxamic acid is a powerful Zn-chelating group; three Food
and Drug Administration (FDA)-approved HDAC inhibitors
(vorinostat, panobinostat, and belinostat; Figure 1A) also
contain this ZBG (28). The predicted docking pose of
curcumin (Figure 1B) suggested that one of the phenyl of
curcumin was positioned next to the zinc cation; thus, we
envisaged that insertion of hydroxamic acid group into one of
the benzene rings of curcumin may facilitate its occupation of the
catalytic site and enhance the HDAC binding affinity, leaving the
second phenyl group toward the solvent space (capping region).
Finally, the structure of curcumin-based HDAC inhibitor is
given in Figure 1, namely, DMC-HA.

HDAC Inhibition Assay
To date, 18 HDAC enzymes have been identified and grouped into
four classes. Class I (HDACs 1–3 and 8), class II (HDACs 4, 5, 7,
and 9 as class IIa and HDACs 6 and 10 as class IIb), and class IV
(HDAC 11) are Zn-dependent isozymes, while class III isozymes
(Sirt1-7) were quite different from the other ones as they utilize
NAD as a cofactor. We systematically investigated the in vitro
enzymic inhibitory activity of DMC-HA on different class of HDAC
isoforms. The inhibitory activity against HDACs 1, 3, 4–6, 8, 10, and
11 subtypes and SIRT1 of DMC-HA was measured, and the results
are shown in Table 1. Vorinostat is used as a control compound.
DMC-HA exhibited IC50 values of 0.51, 1.67, 0.38, 2.93, and 8.39
mM against HDACs 1, 3, 6, 8, and 10, respectively, while the IC50

values on the four other subtypes exceeded 10 mM. Although both
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vorinostat and DMC-HA are inert to HDAC4 and HDAC5, it has
been reported that class IIa (including HDACs 4, 5, 7, and 9)
enzymes are inefficient on histone substrates; class I HDACs,
especially HDACs 1–3, and HDAC 6 (class IIb) are considered
key targets for cancer treatment (29). Overall, the current
biochemical data showed that DMC-HA is a potent inhibitor of
class I and class IIb isoforms.

Antiproliferative Efficacy of DMC-HA on
Cell Lines
As DMC-HA was identified as a potent novel inhibitor for
HDACs, its antiproliferative activities on a panel of cancer cell
lines and normal cells were evaluated, including four glioma cell
lines, and the results are shown in Table 2. Vorinostat and
curcumin were also tested as positive controls. Curcumin had
moderate antiproliferative activities with IC50 values at the range
of 16.4–49.2 mM against all eight cell lines, whereas its
hydroxamic acid derivative, DMC-HA, exhibited more potent
activities with IC50 values below 5.3 mM against these cell lines,
suggesting a remarkable potency increase. In particular, DMC-
HA is a potent compound against four glioma cell lines, with
IC50 of 2.99 in U251, 2.78 mM in U87, 4.62 mM in SHG44, and
3.38 mM in LN229 cell line, which were comparable with that of
positive control vorinostat. More importantly, DMC-HA
exhibited low toxicity to human umbilical vein endothelial cells
(HUVECs), suggesting the safety of DMC-HA.

Effect of DMC-HA on Histone H3
Acetylation in Cells
Next, DMC-HA-induced acetylation of histone H3 in living cells
was analyzed using Western blot method. We compared the
inhibition capacities of DMC-HA and vorinostat against
Frontiers in Oncology | www.frontiersin.org 5
HDACs in U87 cells first. After the incubation with various
concentrations of DMC-HA or vorinostat, acetylated H3 levels
in U87 cells were tested. As shown in Figure 2A, DMC-HA and
vorinostat dose dependently increased the acetylation of histone
H3 after the cells were treated for 24 h. However, it seems that
vorinostat more significantly elevated the acetylation of histone
H3 compared to that of DMC-HA at the same concentrations.
Then, the acetylation of histone H3 after treatment with 5 mM
DMC-HA for different times were detected, and the results
showed that it increased in a time-dependent manner (Figure 2B).

Cell Cycle Profiles of U87 Cells Treated
With DMC-HA
Inhibition of HDACs results in anticancer effect through various
mechanisms, like cell cycle arrest, reduced proliferation, and
induction of apoptosis (30). Thus, the cell cycle profile of the
human GBM cell line U87 treated with DMC-HA was analyzed
by using flow cytometry. As reported in Figure 3, after
incubation with different concentrations of DMC-HA for 36 h,
DNA content analysis of cells revealed a strong increase in G2/M
phase population and an associated decrease in G0/G1
population. Although in control cells, only 4.6% of cells were
in G2/M phase, 14.5% of cells in G2/M phase were found after
treatment with 2.5 mM DMC-HA. Besides, an increase in sub-
G0/G1 population, an indication of cell apoptosis, was also
observed after the incubation of DMC-HA, suggesting that
DMC-HA could promote apoptosis.

DMC-HA Induces Apoptosis in U87 Cells
To further investigate the apoptotic effect of DMC-HA on GBM, we
treated U87 cells with increasing concentrations of DMC-HA. After
48 h, the morphological changes of DMC-HA-treated U87 cells
TABLE 1 | In vitro HDAC enzyme inhibitory activity of DMC-HA.

Compd. IC50 (mM)a

HDAC1 HDAC3 HDAC4 HDAC5 HDAC6 HDAC8 HDAC10 HDAC11 SIRT1

Vorinostat 0.19 0.32 >10 >10 0.02 0.34 0.76 0.89 >10
Curcumin 23.81 –

b 38.18 – – – >50 28.10 –

DMC-HA 0.51 1.67 >10 >10 0.38 2.93 8.39 >10 >10
No
vember 2021 | Vo
lume 11 | Article 7
aValues are the mean of three experiments.
b
–, not determined.
TABLE 2 | Antiproliferative activity of DMC-HA against several cancer cell lines.

Cell lines IC50 (mM)

Vorinostat Curcumin DMC-HA

Human lung cancer cell line A549 1.13 ± 0.21 32.9 ± 3.99 5.33 ± 0.93
Human liver cancer cell line HepG2 2.8 ± 0.43 18.3 ± 3.21 4.28 ± 0.52
Human leukemia cell line K562 0.22 ± 0.12 16.4 ± 1.23 1.95 ± 0.71
Human colon carcinoma cell line SW-620 0.51 ± 0.03 49.2 ± 7.42 3.22 ± 0.30
Human glioblastoma cell line U251 2.62 ± 0.59 27.6 ± 3.11 2.99 ± 0.48
Human glioblastoma cell line U87 3.82 ± 0.73 31.9 ± 2.90 2.78 ± 0.81
Human glioma cell line SHG44 4.23 ± 0.92 24.6 ± 4.52 4.62 ± 0.72
Human glioma cell line LN229 2.90 ± 0.18 21.9 ± 4.65 3.38 ± 0.29
Human umbilical vein endothelial cells HUVEC 8.71 ± 0.98 58.5 ± 7.92 27.43 ± 3.94
56817
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were observed, such as cell shrinking, rounding, and detachment
(Figure 4A). In addition, an increase in lactate dehydrogenase
(LDH) release was correlated with increasing concentrations of
DMC-HA after 48 h of treatment (Figure 4B), suggesting that
DMC-HA induces cell death in a dose-dependent manner in U87
cells. To further confirm whether DMC-HA could induce apoptosis
in U87 cells, cells were stained with Annexin V and PI after
Frontiers in Oncology | www.frontiersin.org 6
treatment with various concentrations of DMC-HA. Flow
cytometry analysis of the cells is shown in Figure 4C; DMC-HA
treatment induced an increase in both early- and late-stage
apoptosis of U87 cells, and treatment with 10 mM DMC-HA
resulted in an increase in total apoptotic cells from 3.3% up to
90.0% (Figure 4D). Together, these results indicated that DMC-HA
can trigger apoptosis of U87 cells.

Microsomal Stability Evaluation
of DMC-HA
Structures that are active in vitromay not be potent in vivo due to
their susceptibility to metabolism in the body. We then
thoroughly examined the liver microsomal metabolic stability
of DMC-HA across three different species (Table 3). Curcumin
is indeed metabolically labile in mice, rat, and human with short
half-life and high clearance rate. However, DMC-HA is relatively
more metabolically stable; the half-life in three species is two to
five times longer than those of curcumin, suggesting that the
introduction of the hydroxamic acid group might block the
metabolically labile sites and increase the metabolically
stability. In addition, the half-life of DMC-HA in human
microsome is generally two to three times longer than those in
mice and rats. Collectively, the in vitro liver microsomal stability
of DMC-HA is favorable, guaranteeing its further in vivo studies.

Pharmacokinetic and Distribution
Study of DMC-HA
As DMC-HA exhibited adequate metabolic stability in microsomal
stability assay, we decided to evaluate its in vivo pharmacokinetic
profiles and assess the relationship between in vitro and in vivo
A

B

FIGURE 2 | (A) Dose-dependent effect of DMC-HA and vorinostat on
histone H3 acetylation. (B) Time-dependent effect of DMC-HA on histone H3
acetylation at the concentration of 5.0 mM.
FIGURE 3 | DMC-HA induces G2/M phase arrest. Cell cycle profiles of DMC-HA incubated U87 cells were analyzed by flow cytometry. Cells were exposed to
DMC-HA at the indicated concentrations for 24 h (right). Quantitative analysis of cells (left). Data were represented as mean ± SD of three independent experiments.
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pharmacokinetic data. The preliminary in vivo pharmacokinetic
study for DMC-HA was performed in mice. SD mice were
intravenously injected with 1 mg/kg DMC-HA or orally
administrated with 10 mg/kg DMC-HA. Plasma samples were
collected and analyzed with LC-MS/MS. Following p.o.
administration, DMC-HA reached its peak concentration of about
1.0 mg/ml near 40 min, and moderate plasma clearance (8.7 L/h/kg)
and half-life (4.1 h) were observed (Table 4). In addition, DMC-HA
displayed acceptable oral bioavailability (40.2%).

Discovery of drugs for the treatment of GBM encounters
formidable challenges to their ability to cross the blood–brain
barrier (BBB) (31). Thus, we further investigated the distribution
Frontiers in Oncology | www.frontiersin.org 7
of DMC-HA to identify whether it has the ability to cross the BBB.
The results in Figure 5 show that although the brain concentrations
of DMC-HA were not high relative to the plasma exposure (brain-
to-plasma ratios of 0.08–0.23), it can indeed penetrate the BBB and
distribute from plasma into brain tissue. In addition, stable and
durable distribution of DMC-HA in the brain was observed after
p.o. administration. Nevertheless, optimization for the balance
among potency, selectivity, metabolic stability, and brain
permeability in a single molecule was challenging. These
preliminary results provide valuable information for further
structure optimization of DMC-HA and a guidance for its
following in vivo studies.
TABLE 3 | Microsomal stability of DMC-HA.

Compd. Human Liver Microsomal Stability Mice Liver Microsomal Stability Rat Liver Microsomal Stability

T1/2 (min) CLint (ml/min/mg) T1/2 (min) CLint (ml/min/mg) T1/2 (min) CLint (ml/min/mg)

Curcumin 17.2 82.0 15.3 92.9 10.4 138.2
DMC-HA 91.6 17.5 32.7 43.2 40.7 34.2
Novem
ber 2021 | Volume
A B

C D

FIGURE 4 | DMC-HA induces apoptosis in U87 cells. (A) Phase contrast images of U87 cells incubated with indicated concentrations of DMC-HA for 48 h. (B) LDH
release as measure of the cytotoxic effect of DMC-HA. (C) U87 cells were treated with DMC-HA; after 24 h of treatment, cells were collected and stained with
Annexin V/PI, followed by flow cytometric analysis. (D) Histograms display the percentage of cell distribution. Data are represented as mean ± SD of three
independent experiments. ***p < 0.001 vs. control group.
11 | Article 756817
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In Vivo Antitumor Efficacy of DMC-HA
Given the promising in vitro properties and good pharmacokinetic
profiles of DMC-HA, we evaluated its in vivo behavior in U87
tumor xenograft model. U87 cells were subcutaneously inoculated
into the right flank of mice. The mice were randomly divided into
three groups (n = 9); the positive control vorinostat and DMC-HA
were administered by the oral route once daily at the dose of 20 mg/
kg. The resulting tumors were excised from the animals after
treatment (Figures 6A, B). Both compounds showed no
observable toxicity during the administration period and had no
effects on the body weight (Figure 6D). Vorinostat at the dose of 20
mg/kg showed moderate inhibition on the tumor volume (24.7%,
p = 0.04 vs. control) (Figure 6C). Interestingly, DMC-HAwasmuch
more active than vorinostat at the same dose, which inhibited the
tumor volume with a value of 52.1% (p = 0.00083). Taken together,
these data indicated that DMC-HA was efficacious in inhibiting the
growth of GBM in vivo and deserved further evaluations.
DISCUSSION

In the present study, we developed a novel HDAC inhibitor, DMC-
HA, derived from natural product curcumin. DMC-HA was
prepared by introducing a privileged pharmacophore, hydroxamic
acid moiety, into the benzene ring of curcumin. We demonstrated
that DMC-HA exhibited IC50 in the submicromolar to micromolar
range against HDACs and micromolar antiproliferative activity
against seven cancer cell lines, including four glioma cell lines.
The cell cycle profiles of U87 cells showed that DMC-HA induced a
strong increment of G2/M population, and it caused a marked
increase in apoptosis, which was determined by Annexin V/PI
staining. DMC-HA had an acceptable human microsomal stability
Frontiers in Oncology | www.frontiersin.org 8
and oral bioavailability. More importantly, the antitumor efficacy of
DMC-HA was demonstrated in U87 xenograft-bearing mice. Our
results provide a rational for developing DMC-HA as a new anti-
GBM therapy.

GBM is one of the most malignant form of primary brain tumor
with extremely poor prognosis. The current treatment guidelines for
GBM includes maximal surgical resection followed by radiotherapy
and adjuvant chemotherapy. However, due to the lack of effective
chemotherapeutic drugs, recurrence is inevitable after standard of
care. Themedian survival of patients with GBM is approximately 8–
15 months, and only 3%–5% of patients survive longer than 3 years.
This promotes the development of potent chemotherapeutic drugs,
which could destroy the residual GBM cells after surgical treatment.
A number of targeted anticancer drugs, such as novel small-
molecule kinase inhibitors, monoclonal antibodies, FDA-approved
drugs, and some natural and synthetic anti-GBM agents are the
main focus of researchers nowadays (32).

Analysis of RNA-sequencing data from The Cancer Genome
Atlas (TCGA) revealed significant increase in the expression levels
of HDACs 1–3 and HDAC 7 in high grade gliomas, implying that
HDACs are potential drug targets for GBM therapy (33). Vorinostat
was the first inhibitor entering clinical trials to treat GBM; however,
the phase II trial of vorinostat with radiotherapy and concomitant
TMZ did not meet the efficacy endpoint. In this clinical study,
patients received oral vorinostat (300 or 400 mg/day) due to the
poor pharmacokinetic profiles of vorinostat, which might be the
reason for the failure (18). Panobinostat and valproic acid had also
been evaluated in clinical studies using combination strategy but
were terminated because of some reasons (34). Nevertheless, many
preclinical studies showed significant promise about HDAC
inhibitors synergizing with other drugs or alone for GBM
treatment (12). Studies found that FK228 could augment TMZ
FIGURE 5 | Concentrations of DMC-HA in plasma and brain over time following a single administration in mice. Left, i.v. 5 mg/kg; right, p.o. 10 mg/kg.
TABLE 4 | Pharmacokinetic properties of DMC-HA in mice.

Compd. Dose Tmax (h) Cmax (ng/ml) AUC0–t (ng•h/ml) AUC0–∞ (ng•h/ml) Cl (L/h/kg) T1/2 (h) F (%)

DMC-HA i.v. 1 mg/kg – – 493 502 1.8 3.2 40.2%
DMC-HA p.o. 10 mg/kg 0.67 1,072 1,982 2,013 8.7 4.1
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sensitivity in vivo and in vitro partially by blocking PI3K/AKT/
mTOR signal pathway (35). Treatment with tubastatin A, a selective
HDAC6 inhibitor, was reported to abrogate TMZ resistance by
decreasing and inactivating EGFR protein (36). In addition, Luesch
et al. demonstrated that class I selective HDAC inhibitor largazole
exhibited in vitro antiproliferative activity against GBM cells and
sufficient BBB permeability (37). As great challenges and barriers
exist in the application of HDAC inhibitors to the treatment of
patients with GBM, a better candidate is urgently required. In this
study, we designed our HDAC inhibitor based on the well-
established cap-linker-metal binding group pharmacophore model
for HDAC inhibitors. Hydroxamic acid was selected as the ZBG,
which was connected to one of the phenyl of curcumin. We
envisaged that insertion of hydroxamic acid group into one of the
benzene rings of curcumin may facilitate its occupation of the
catalytic site and enhance the HDAC binding affinity. The HDAC
enzyme inhibition assay showed that DMC-HA exhibited IC50

values of 0.51, 1.67, 0.38, 2.93, and 8.39 mM against HDACs 1, 3,
6, 8, and 10, respectively, suggesting that DMC-HA is a potent pan
HDAC inhibitor.

The BBB limits the delivery of systemically administered
drugs to the brain, thus excludes the vast majority of
the current cancer therapeutics from GBM treatment (38). The
poor pharmacodynamic/pharmacokinetic properties of the
present FDA-approved HDAC inhibitors makes it challenging
to convert them for the treatment of GBM. There is no doubt
that drugs with poor BBB permeability could not exert efficacy to
Frontiers in Oncology | www.frontiersin.org 9
the tumor cells within brain. In this study, we investigated the
distribution of DMC-HA to identify whether it has the ability to
cross the BBB. The results in Figure 5 show that although the
brain concentrations of DMC-HA were not high relative to the
plasma exposure, it can indeed penetrate the BBB and distribute
from plasma into brain tissue. In addition, stable and durable
distribution of DMC-HA in the brain was observed after p.o.
administration. These preliminary results provided important
information for the further in vivo antitumor evaluation of
DMC-HA. It is now widely accepted that evaluating whether a
drug could across an intact BBB into brain is a critical first step in
developing effective therapies for GBM. Pharmacokinetic study
must be a key consideration for the newly designed compound as
effective therapies for GBM.

Altogether, our study demonstrated that DMC-HA, a novel
hydroxamic acid derivative of curcumin, showed potent
inhibition of HDACs and suppressed the human glioblastoma
cell proliferation. The good bioavailability of DMC-HA and its
ability to inhibit tumor growth in a U87 GBM xenograft model
implies that DMC-HA warrants further development as an
antitumor agent for the treatment of GBM.
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