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Towards universal neural network potential for
material discovery applicable to arbitrary
combination of 45 elements
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Computational material discovery is under intense study owing to its ability to explore the
vast space of chemical systems. Neural network potentials (NNPs) have been shown to be
particularly effective in conducting atomistic simulations for such purposes. However,
existing NNPs are generally designed for narrow target materials, making them unsuitable for
broader applications in material discovery. Here we report a development of universal NNP
called PreFerred Potential (PFP), which is able to handle any combination of 45 elements.
Particular emphasis is placed on the datasets, which include a diverse set of virtual structures
used to attain the universality. We demonstrated the applicability of PFP in selected domains:
lithium diffusion in LiFeSO4F, molecular adsorption in metal-organic frameworks, an
order-disorder transition of Cu-Au alloys, and material discovery for a Fischer-Tropsch
catalyst. They showcase the power of PFP, and this technology provides a highly useful tool
for material discovery.

TPreferred Networks, Inc., 100-0004, 1-6-1 Otemachi, Chiyoda-ku, Tokyo, Japan. 2 Central Technical Research Laboratory, ENEOS Corporation, 231-0815,
8 Chidoricho, Naka-ku, Yokohama, Kanagawa, Japan. ™email: takamoto@preferred.jp; ibuka.takeshi@eneos.com

| (2022)13:2991 | https://doi.org/10.1038/s41467-022-30687-9 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30687-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30687-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30687-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30687-9&domain=pdf
http://orcid.org/0000-0001-5739-6497
http://orcid.org/0000-0001-5739-6497
http://orcid.org/0000-0001-5739-6497
http://orcid.org/0000-0001-5739-6497
http://orcid.org/0000-0001-5739-6497
http://orcid.org/0000-0002-7607-2655
http://orcid.org/0000-0002-7607-2655
http://orcid.org/0000-0002-7607-2655
http://orcid.org/0000-0002-7607-2655
http://orcid.org/0000-0002-7607-2655
http://orcid.org/0000-0001-5509-4946
http://orcid.org/0000-0001-5509-4946
http://orcid.org/0000-0001-5509-4946
http://orcid.org/0000-0001-5509-4946
http://orcid.org/0000-0001-5509-4946
http://orcid.org/0000-0002-8825-4181
http://orcid.org/0000-0002-8825-4181
http://orcid.org/0000-0002-8825-4181
http://orcid.org/0000-0002-8825-4181
http://orcid.org/0000-0002-8825-4181
http://orcid.org/0000-0001-7141-8234
http://orcid.org/0000-0001-7141-8234
http://orcid.org/0000-0001-7141-8234
http://orcid.org/0000-0001-7141-8234
http://orcid.org/0000-0001-7141-8234
http://orcid.org/0000-0002-0827-2743
http://orcid.org/0000-0002-0827-2743
http://orcid.org/0000-0002-0827-2743
http://orcid.org/0000-0002-0827-2743
http://orcid.org/0000-0002-0827-2743
http://orcid.org/0000-0001-9270-3050
http://orcid.org/0000-0001-9270-3050
http://orcid.org/0000-0001-9270-3050
http://orcid.org/0000-0001-9270-3050
http://orcid.org/0000-0001-9270-3050
http://orcid.org/0000-0002-0214-4943
http://orcid.org/0000-0002-0214-4943
http://orcid.org/0000-0002-0214-4943
http://orcid.org/0000-0002-0214-4943
http://orcid.org/0000-0002-0214-4943
http://orcid.org/0000-0002-3204-621X
http://orcid.org/0000-0002-3204-621X
http://orcid.org/0000-0002-3204-621X
http://orcid.org/0000-0002-3204-621X
http://orcid.org/0000-0002-3204-621X
mailto:takamoto@preferred.jp
mailto:ibuka.takeshi@eneos.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

inding new and useful materials is a difficult task. Because

the number of possible material combinations in the real

world is astronomically large!, methods for material
exploration depending only on computer simulations are
required to search through a vast number of candidate materials
within a feasible amount of time.

One approach to the problem of material exploration is a
quantum chemical simulation, such as a density functional theory
(DFT)-based method, because many properties of materials stem
from atomistic-level phenomena. However, quantum chemical
calculations generally require enormous computational resources,
limiting the practical use of this method in material discovery for
two reasons. First, phenomena of interest in real-world applica-
tions often involve temporal and spatial scales vastly exceeding
the limitations of quantum calculations, which are usually several
hundreds of atoms at a sub-nanosecond scale. Second, many
simulations are required to explore the configurational space
during computational material discovery.

To address these challenges, several alternate computational
models have been developed to directly estimate the potential energy
surface of an atomic structure. For example, conventional methods
called empirical potentials, which model the interaction between
atoms as a combination of analytic functions, have been developed
with some success, including for simple pairwise models?, metals4,
covalent bonds®, and reactive phenomena®’. More recently, some
machine learning-based approaches have been proposed, including
Gaussian processes®~10 and support vector machines!!.

In recent years, neural network potentials (NNPs) have rapidly
gained attention owing to the high expressive power of neural
networks (NNs) combined with the availability of large-scale
datasets. As datasets and models evolve, the scope of NNP
applications has gradually expanded. As a benchmark for mole-
cular systems, the QM9 dataset!>13, which covers possible pat-
terns of small molecules, has been widely used. Initially, NNPs for
organic molecules have focused on H, C, N, and O, which are the
major elements in organic molecules. In subsequent studies,
NNPs have been extended to include elements such as S, F, and
CI'%15 For NNPs targeting crystal structures!®17, the Materials
Project!8, a large-scale materials database based on DFT calcu-
lations, is often used as a benchmark dataset. The Open Catalyst
Project, which targets molecular adsorption in catalytic reactions,
has constructed a massive surface adsorption structure dataset
known as the Open Catalyst 2020 (OC20) dataset!®20, In this
way, the area covered by NNPs has gradually expanded.

However, significant challenges remain in the application of
NNPs to computational material discovery. One unsolved issue is
how to achieve the generalization needed to accurately assess the
properties of unknown structures. All previously proposed data-
sets were generated based on known structures, and thus models
trained using such datasets are only applicable to a limited con-
figurational space. For example, the Open Catalyst Project have
clearly stated that previous datasets are inappropriate for their
adsorption task. By defining the system to be simulated in
advance, the local configuration of atoms and combinations of
elements to be generated can be reduced, thus significantly
decreasing the difficulty in creating the model. However, as a
disadvantage of this approach, it is necessary to recreate the
NNPs and datasets for each structure of interest.

In contrast to the tasks described in previous datasets, simu-
lations of unknown or hypothetical materials are quite common
in the process of material exploration. Thus, limiting the target
domain to existing materials is undesirable. This is where a major
gap exists between the requirements for current NNPs and
material exploration. This gap is analogous to the difference
between specific object recognition and general object recognition
in computer vision.

It was recently demonstrated that the NN losses in various
tasks follow a power law well based on the size of the dataset and
the number of NN parameters when applying a suitable model,
regardless of the target domain?l:?2. Thus, NNs can achieve a
high accuracy even with datasets having high diversity. This result
indicated that there is a way to overcome this challenging task
through the use of a sufficient dataset and architecture.

We applied the above concept to the development of an NNP.
Instead of collecting realistic, known stable structures, we
aggressively gathered a dataset containing unstable structures to
improve the robustness and generalization ability of the model.
The dataset includes structures with irregular substitutions of
elements in a variety of crystal systems and molecular structures,
disordered structures in which a variety of different elements exist
simultaneously, and structures in which the temperature and
density are varied. The NNP architecture was also designed under
the premise of this highly diverse dataset. The architecture should
treat many elements without a combinatorial explosion. In
addition, it can utilize higher-order geometric features and handle
the necessary invariances.

In this study, we created a universal NNP, called PreFerred
Potential (PFP), which is capable of handling any combination of
45 elements selected from the periodic table. We conducted
simulations using PFP for a variety of systems, including (i)
lithium diffusion in LiFeSO,F, (ii) molecular adsorption in metal-
organic frameworks, (iii) a Cu-Au alloy order-disorder transi-
tion, and (iv) material discovery for a Fischer-Tropsch catalyst.
All results demonstrated that PFP produces a quantitatively
excellent performance. All results were reproduced using a single
model in which no prior information regarding these four types
of systems was applied as a prerequisite for training.

Results

Lithium diffusion. The first example application is lithium dif-
fusion in lithium-ion batteries. Lithium-ion batteries are used in
various applications, such as portable electronic devices and
electric vehicles. The demand for lithium-ion batteries has been
increasing in recent decades, and new battery materials have been
explored. One of the essential properties of lithium-ion batteries
is their charge-discharge rate. Faster lithium diffusion, that is, a
lower activation energy of lithium diffusion, leads to faster charge
and discharge rates. DFT calculations have been widely applied to
lithium-ion battery materials?>?4, and the activation energies of
lithium diffusion have also been calculated for various
materials2>26, An activation energy calculation requires accurate
transition state estimations, as well as the initial and final states.
The transition state is a first-order saddle point in the reaction
pathway between the initial and final states. To correctly obtain
the structure and energy of the transition state, a smooth and
reproducible potential is required, even near the first-order saddle
point, which is far from the geometrically optimized structures
and harmonic vibration. The nudged elastic band (NEB)
method?” is one of the most widely used methods for obtaining
the reaction path, and an improved version of this method,
climbing-image NEB (CI-NEB)?, can be used to obtain the
transition state.

The tavorite-structured LiFeSO,F (P1) is a cathode material for
lithium-ion batteries with a high voltage of 3.6 V2°. According to
existing DFT calculations, this material shows a one-dimensional
diffusion, that is, the low activation energy of lithium diffusion in
only a single direction3). We calculated the activation energy of
lithium diffusion in LiFeSO,4F using the CI-NEB method using
PFP and compared the results with those of the existing DFT
calculations. It is noted that neither the crystal structure of
LiFeSO,F nor that of FeSO,F are included in the dataset.
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A delithiated structure of LiFeSO,F, that is, the structure of
FeSO,F, is obtained by removing all lithium in the LiFeSO4F unit
cell and then geometrically optimizing the cell parameters and site
positions while maintaining the symmetry. All CI-NEB calculations
were conducted with one lithium atom and a 2 x 2 x 2 supercell of
FeSO,F. The chemical formula is Li; ;, sFeSO,F. The cell parameters
are frozen to those of FeSOF. The diffusion paths in the [111] and
[101] directions contain three diffusion hops for each, and the
diffusion path in the [100] direction contains one diffusion hop?°.
There are nine NEB images for each CI-NEB calculation. PFP
conducts all of this calculation on a single GPU in ~5 min.

In addition, MD simulations were performed to confirm the
results of the CI-NEB calculation and demonstrate that PFP can
be used for the finite-temperature dynamics simulation. The same
structure as the initial state of the CI-NEB calculation was used
for MD simulations. The temperature was set at 300, 325, 350,
375, and 400 K. Eight trajectories of 100 ps were generated for
each temperature. The details of the MD simulation settings and
the calculation method for the activation energy are described in
Supplementary Note 13.

The obtained lithium diffusion paths are shown in Fig. 1, and
the activation energies are shown in Table 1. The PFP
qualitatively reproduces a DFT result in which LiFeSO,4F exhibits
one-dimensional diffusion. Furthermore, quantitatively, the PFP
reproduces the DFT result with high accuracy. Although neither
transition states nor reaction pathways are explicitly given in the
training data for creating PFP, it is possible to correctly infer the
energies of the transition states far from a stable state, as well as
harmonic oscillations from such state.

Molecular adsorption in metal-organic framework. Metal-
organic frameworks (MOFs) are a class of nanoporous crystalline
materials with exceptionally high surface area. They consist of
metal centers bridged by organic linkers, thereby creating diverse
crystalline structures with a wide range of elements. Thus, these
materials are ideal for testing the capability of PFP owing to their
complex chemical structures containing organic and inorganic
parts with unique crystalline pore structures. Such a system is
normally difficult to reproduce using a conventional classical

interatomic potential without finetuning the potential parameters.
Quantum chemical calculations, such as the DFT approach, may
avoid such issues in exchange for tremendous computational costs.

To test the applicability of PFP to MOFs, some representative
materials were selected, and the cell geometries were optimized.
Here, it should be emphasized that none of the MOF structures
are included in our training dataset; thus, this is an out-of-
domain test of our model. The starting crystalline structures were
obtained from the Cambridge Structure Database (CSD)33. The
initial structures were cleaned by removing the physically
adsorbed molecules in the pores of the MOFs. Water molecules
that are chemically bound to the metal centers are maintained.
These structures are referred to as hydrated structures. Other
minor cleansing procedures were performed by adding hydrogen
atoms to the framework and removing overlapping atoms to
ensure physically reasonable crystal structures and stoichiome-
tries. Dispersion interactions were also considered. The Grimmes
D3 model was adopted for this purpose34. Notably, the dispersion
correction can be calculated separately from the DFT, and adding
it to PFP is still effective from a view of calculation time. To
maximize the efficiency of the dispersion correction calculation,
we implemented the GPU-accelerated version of DFT-D3 using
PyTorch3 and made it open-source and freely available3®. Details
of the calculation setup are provided in Supplementary Note 14.

The PFP-optimized crystal structures were compared with the
experimental crystalline structures reported in the literature.
Figure 2a shows the relative error in the cell volume of the MOF
crystals. The individual cell parameters are provided in
Supplementary Note 15. The predicted and experimental lattice
parameters are in good agreement, and the mean absolute error of
the cell volume is +4.5% and +3.4% with and without dispersion
corrections, respectively. This translates to a deviation in the
lattice parameters of approximately +0.7% for both cases. The
results are encouraging because a good agreement is obtained,
although MOFs are out-of-domain datasets, and no such
structure is used to train the PFP.

Some MOFs have unsaturated open-metal sites that are active
for the chemisorption of small molecules. For example, MOF-74
is a MOF with a one-dimensional pore structure consisting of

Fig. 1 Lithium diffusion paths projected onto a 2 x 2 x 2 supercell of FeSO4F. Elements are represented by white spheres (oxygen), black spheres
(fluorine), dark gray octahedra (iron), and light gray tetrahedra (sulfur). The small red spheres represent the lithium diffusion path in the [111] direction,
from the large green sphere (initial lithium site) to the large red sphere (final lithium site). The diffusion paths in the [101] and [100] directions are
represented by purple and blue spheres, respectively. The figure is drawn using the VESTA visualization package3'.
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Table 1 Activation energies for lithium diffusion through
LiFeSO4F at the dilution limit (i.e., through FeSO4F).

Method Activation energy (eV)

[1mi [101] [100]
DFT30 0.208 0.700 0.976
PFP (NEB) 0.214 0.677 1.015
PFP (MD) 0.202 - -

Note that DFT values are calculated without Hubbard U corrections32, although our datasets
were calculated based on the corrections. The tests conducted by Muller et al. indicate that the
corrections do not significantly affect the predicted activation energies30.
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Fig. 2 Validations of MOF structures created by PFP. a Relative error
between optimized unit cell and experimentally determined cell volumes.
b Mean binding energies of H,O molecules in selected MOFs with open
metal sites with PFP, PFP-+D3, and reference values. All reference values
are obtained from DFT calculations.

metal(M)-oxide nodes bridged by a DOBDC ligand (DOBDC =
2,5-dioxido-1,4-benzenedicarboxylate)?”. It is one of the early
generations of MOFs, and its unique structure and properties
have been well-studied38. There are different versions of MOF-74
with Ni, Co, Mg, and Zn, as well as of their combinations as the
metals. The metal node is normally coordinated with water
molecules because of the hydrothermal synthesis. The sample
needs to be dehydrated by annealing at 200 °C to remove the
water molecules and create open metal sites. These sites can be
the locations for the adsorption of various small molecules and
may act as metal centers for catalytic reactions. Another well-
known example of MOFs with open metal sites is Cu-BTC
(Cu3(BTC),, where BTC = benzene-1,3,5-tricarboxylate)3®. Cu-

BTC contains a copper-oxide node linked by BTC. These copper
nodes can be activated by removing the chemisorbed molecules.
These systems are a good test ground for the fidelity of PFP for
molecular adsorption in nanoporous materials.

The mean binding energy of a water molecule is given by

AE = —E (MOF + Ny o HZO) /Nio

ey
+E(MOF)/Ny o + E(H,0),
where E(MOF + Ny o x H)O), E(MOF), and E (H,0) are the total

energies of the fully hydrated, dehydrated, and isolated water
molecules, respectively. In addition, Ny (, is the number of water

molecules in the system, which is 18 for all cases. Based on this
definition, the more stable the compound, the more positive AE.

Figure 2b displays the mean binding energies of water
molecules in the selected MOFs with open-metal centers. The
agreement between our predictions and those found in the
literature is quite impressive. The largest deviation is in the case
of Mg, where the error is more than 10%, whereas all other cases
remain within a few percent points on average. For MOF-74
series, the agreement is better with PFP+D3. This is consistent
with the fact that the literature reports use vdw-DF as the DFT
functional. Conversely, in the case of Cu-BTC, the result is nearly
identical to that of PFP. However, this reference uses PBE
functional only, and there is no dispersion correction applied.
Therefore, this is also consistent with our observation. Most
importantly, PFP correctly predicts the trend in the binding
energy of water molecules in a quantitative fashion.

It should be emphasized that neither the MOFs nor the metal-
organic complexes examined in this section are explicitly
provided in the training dataset for creating the PFP. Therefore,
PFP learned to correctly predict the interaction between the metal
centers and water molecules in such structures from the energies
and forces of isolated molecules and periodic solids.

Cu-Au alloy order-disorder transition. Some precious metal
alloys are well known for their catalytic activity, and extensive
experimental and theoretical studies have been conducted. For
example, gold—copper alloys are well-studied catalysts for the
oxidation of CO and selected alcohol40-42,

Local microscopic structures and atomic arrangements are
essential for the performance of the catalyst. The Cu-Au alloy is a
particularly interesting example because it is fully miscible over a
wide composition range and exhibits an order-disorder
transition3, The critical temperature is known to depend on
the composition of the alloy and has been well-studied in the
literature®4.

To demonstrate the applicability of PFP, we conducted
Metropolis Monte Carlo (MC) simulations to investigate the
transition temperature between ordered and disordered phases at
various compositions of Cu-Au alloy. The calculations were
applied at three different compositions: CuAu;, CuAu, and
CuzAu for their well-defined ordered structures. Each unit cell
was expanded to 4x4 x4 unit cells and used as the starting
geometry. The details of MC moves are shown in Supplementary
Note 16.

The characterization of the resulting structures from MC
simulations is summarized in Fig. 3. The computed order
parameters show a clear transition from ordered to disordered
phases. Perfectly ordered structures at low temperatures have
well-defined order parameters and can be seen as a single point.
By contrast, as the temperature increases, disturbances appear,
and the plot becomes dispersed. The calculated transition
temperatures are 300-400 K for CuAu;, 800-900 K for CuAu,
and 600-700 K for CuszAu. These trends are consistent with the
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Fig. 3 Voronoi weighted Steinhardt parameters of CuAus, CuAu, and CuzAu. The ordinate and abscissa of each plot represent g4 and g6, respectively.
These order parameters are calculated with respect to Cu in the case of CuAus and CuAu, and with respect to Au in the case of CusAu. The disordered
structures can be observed as the diffused points in the figures.
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reported transition temperatures (CuAus, 440-480K; CuAu,
670-700 K; CuzAu, 660-670 K#4) and demonstrate the applic-
ability of PFP.

Material discovery for a Fischer-Tropsch catalyst. Another
example of the power of PFP is given in the context of a het-
erogeneous catalysis. The Fischer-Tropsch (FT) reaction is a
synthesis of hydrocarbons from hydrogen and carbon monoxide,
involving a wide variety of elementary chemical reactions*>40.
This reaction process is particularly important for the generation
of fuel from renewable and sustainable energy sources. In this
example, we focus our attention on the methanation reactions
and CO dissociation processes on Co surfaces.

The methanation reactions of synthesis gases are well
documented in the literature*’. In particular, 20 elementary
reactions on the Co(0001) surface have been examined, and
corresponding activation energies are compared with the values
reported in the literature.

Each simulation cell geometry consisted of 45 Co atoms with 5
atomic layers. Only the bottom three layers were constrained, and
the rest were allowed to relax. The vacuum size was set to 10 A
(1A =10"19m). The geometry is optimized until the maximum
force of all atoms reaches below 0.05 eV/A. The activation energy
was determined by CI-NEB using 14 images for each process.
Zero-point energy corrections were also included in the
calculations.

Figure 4 shows a comparison of the computed activation
energies between PFP and the reported values*’. The correlation
coefficient is 0.98, and the mean absolute error is 0.097 eV,
indicating the high fidelity of PEP for the prediction of activation
energies in this class of chemical reactions.

Backed with the high fidelity of PFP, we explored possible
promoter elements for the CO dissociation reaction on a Co
surface. CO dissociation is a critical part of the overall reaction
mechanism of the FT process. Although it was reported to be
approximately 1 eV for the activation energy of pure Co surfaces,
a reduction of the activation barrier is desired, and several efforts
have been reported in the literature*s. However, DFT calculations
for such exploration demand a high computational cost, and PFP
can accelerate such a screening process. Specifically, we explored
the CO dissociation reaction pathways by CI-NEB on the
Co(1121) step surface. In the promoter search process, a Co
atom was randomly replaced with a promoter element, and the
CI-NEB calculations were repeated over the surface. The CI-NEB
was repeated 10 times on each surface, and a list of activation
energies was obtained.
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Fig. 4 Comparison of the activation energies of methanation reactions of
synthesis gas on Co(0001). The ordinate and abscissa represent the PFP
prediction and reference DFT values, respectively. The zero-point energy
corrections of the transition states are also included in the data.
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Fig. 5 CO molecule interactions on the Co(1121) surface. a Normalized
activation energies of CO dissociation. b CO adsorbed configuration of a
Co(1121) surface with V promoters. The representative atoms are Co
(pink), O (red), C (small gray), and V (big gray).

Because they are often found in the literature as promoters of
certain reactions, we chose the following 11 elements (Ag, Ce, K,
Li, Mg, Mn, Na, Pt, Ru, V, and Zn) for our study. The results are
summarized in Fig. 5a. Among the list, the most significant
reduction (~40%) was found with V, whereas the others showed a
minor impact on the activation barrier. The lowest energy
configuration of CO adsorbed Co(1121) with V is shown in
Fig. 5b. The CO molecule was found to lie across the Co and V
bridge sites. In fact, some experimental studies have already
reported a significant reduction in the activation energy of Co by
V, although we identified the element without any prior
knowledge from the literature>>0. The agreement between our
findings and the literature is consistent. It is encouraging to note
that our approach can facilitate the use of PFP in complex
systems such as a heterogeneous catalysis.

Discussion
We developed a universal NNP called PFP, which operates on
systems with any combination of 45 elements.

The results indicate that a single NNP model can describe a
diverse set of phenomena with high quantitative accuracy and low
computational cost. In addition, it was also shown that PFP can
reproduce structures and energetic properties that were not
envisioned during the design phase. The detailed correspondence
between the results and the PFP dataset is shown in Supple-
mentary Note 11. The reproduction of the simulations in the
Results section using OC20 DimeNet++ model is shown in
Supplementary Note 12. Our results suggest that the approach to
constructing a unified NNP, instead of training an independent
NNP for each target task, is promising. Further comparison of
calculation time between PFP and DFT is included in Supple-
mentary Note 6. Although DFT calculations or other electronic
structure calculations from first principles are still considered to
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be reliable because of the strong physics background, PFP can
greatly mitigate another limitation of atomistic simulations
caused by the time and space scales. The combined study of DFT
and PFP or experiments using PFP-based screening will also
accelerate the field of material discovery. The simulation script
files and output data are provided in Supplementary Data 1.

The result of the Fischer-Tropsch catalyst is an example of
applying PFP to an actual material discovery task. This is a typical
case in which NNP is able to achieve the following three prop-
erties at the same time: (1) the ability to handle a wide variety of
elements, (2) the ability to handle phenomena that were not
assumed at the time of training, and (3) a significantly faster
speed than that of DFT.

These results further confirm that PFP is versatile and
applicable for screening a wide range of materials without prior
knowledge of the atomic structures in the target domain.

Methods

Dataset systems and structures. In this study, we generated an original dataset
which covers various systems. See Supplementary Note 10 for the definition of each
subcomponents and the detailed calculation conditions on how to generate them,
and Supplementary Note 19 for the statistical information of our dataset. The
summary of our dataset is shown below. The visualized examples of typical
structures are shown in Supplementary Note 7.

Early examples of large datasets with quantum chemical calculations include
QM91213 and the Materials Project!8. They were generated by conducting DFT
calculations on various molecules or inorganic materials and collecting physical
properties in geometrically optimized structures to accelerate drug or material
discovery. Although they have been utilized for predicting physical properties such
as HOMO-LUMO gaps or formation energies of optimized structures, they are
insufficient for generating universal potentials for new material discovery because
they mainly focus on optimized structures. In particular, the reaction, diffusion,
and phase transitions are dominated by structures far from the optimized
structures. By contrast, it is unsuitable to sample geometrically random structures.
Because the probability distribution of the structures follows a Boltzmann
distribution, geometrically random structures that tend to show much higher
energies compared to optimized structures rarely appear in reality. Therefore, it is
important to cover as many diverse structures as possible while limiting those
showing valid energies.

To achieve this, ANI—114, ANI-2x!5, and tensor-mol>! sampled not only
geometrically optimized structures of various molecules, but also their surrounding
regions using NMS, MD, or meta-dynamics. Using these methods, we can obtain
datasets to generate the potential to reproduce phenomena with large structural
deformations, such as protein-drug docking, which is important in drug discovery.
However, these datasets focus only on molecules and do not cover systems such as
crystals and surfaces. One recent study that deserves attention is OC202°, which
has an order of magnitude larger number of data than previous studies.
Nevertheless, this dataset also focuses on catalytic reactions and only contains data
on the adsorbed structures. As we have shown, it is worth noting that these
adsorbed structures are generated with known stable structures. As a result, the
accuracy of the energy predictions is much lower for structures that depart from
known stable structures.

Following these insights and issues, we generate an original dataset that covers
all systems with molecular, crystal, slab, cluster, adsorption, and disordered
structures, as shown in Table 2. For each system, we sampled various structures,
such as geometrically optimized structures, vibration structures, and MD
snapshots, to collect the data necessary to obtain a universal potential.

Our dataset consists of a molecular dataset calculated without periodic
boundary conditions, and a crystal dataset calculated with periodic boundary
conditions. Each dataset contains the structure and corresponding total energies
and forces obtained through DFT calculations. The crystal dataset also includes the
atomic charges. The molecular dataset supports nine elements: H, C, N, O, P, S, F,
Cl, and Br. There is maximum of eight atoms from among C, N, O, P, and S in a
molecule. In addition to stable molecules, unstable molecules and radicals are also
included. Various structures are generated for a single molecule through
geometrical optimization, NMS, and MD at high temperatures. The two-body
potentials for almost all combinations of up to H-Kr are also calculated as
additional data. For the crystal dataset, 45 elements are supported, as shown in
Fig. 6. This includes a variety of systems, such as bulk, cluster, slab (surface), and
adsorption on slabs. Non-stable structures, such as Si with simple cubic (Pm3m) or
FCC (Fm3m) structures or NaCl with a zincblende structure (F43m), as well as
non-optimized structures, are also included in the crystal dataset. For the bulk,
cluster, and slab, we generated structures by changing the cell volumes or shapes, or
by randomly displacing the atomic positions, instead of applying the NMS method.
For the adsorbed systems, we generated structures with randomly placed molecules
in addition to the structure-optimized ones using PFP. Disordered structures are
generated using MD at high temperatures for randomly selected and placed atoms.

Molecules are also included in the crystal dataset. The two-body potentials for
almost all combinations of up to H-Bi were also calculated. The computational
resources used to acquire these datasets were ~6 x 10* GPU days.

We provide an atomic structure dataset called the high-temperature multi-
element 2021 (HME21) dataset, which consists of a portion of the PFP dataset>2.
See Supplementary Note 17 for further details.

Training with multiple datasets. In addition to the above molecular and crystal
datasets, we used the OC20 dataset as a training dataset. This means that there are
multiple datasets generated by different DFT conditions that are inconsistent with
each other. Attempting to merge these datasets simply does not yield a good
performance in practice. Overlapping dataset regions with different DFT condi-
tions may have harmed the training because each data point would have resulted in
inconsistent energy surfaces.

However, because these datasets are well sampled in each area of strength, it is
desirable to use as much data as possible to improve the generalization. Therefore,
we assigned labels corresponding to the DFT conditions during training and
trained the entire dataset concurrently. During inference, it is also possible to select
which DFT condition to infer by assigning labels in the same way as during
training. This approach makes it possible to learn multiple mutually contradictory
datasets with high accuracy. In addition, as the model learns the consistent
properties of all datasets and the differences in each, it is expected that domains
that have only been computed in one DFT condition will be transferred to the
inference under other DFT conditions. The additional benchmark is shown in
Supplementary Note 20.

Considering that datasets will become even larger in the future, the mechanism
for the simultaneous training of datasets with different DFT conditions will become
more important.

We considered the crystal dataset as the most basic one. All applications shown
in this study are calculated in the corresponding calculation mode.

DFT calculation conditions. DFT calculations for the molecular dataset are carried
out using the wB97X-D exchange-correlation functional®! and the 6-31G(d) basis
set®? implemented in Gaussian 16%3. To reproduce the symmetry-breaking phe-
nomena of the wavefunction, such as a hydrogen dissociation, we carry out
unrestricted DFT calculations with a symmetry-broken initial guess for the
wavefunction. However, for geometrical optimization calculations, we carry out
restricted DFT calculations. We only consider singlet or doublet spin configura-
tions except for diatomic potentials.

Spin-polarized DFT calculations for the crystal dataset are carried out using the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional® implemented
in the Vienna Ab-initio Simulation Package65’68 (VASP), version 5.4.4, with GPU
acceleration®70. The projector-augmented wave (PAW) method’!72 and plane-
wave basis are used with a kinetic energy cutoff of 520 eV and pseudopotentials, as
shown in Fig. 6. Here, k-point meshes are constructed based on the cell parameters
and the k-point density of 1000 k-points per reciprocal atom. However, I'-point-
only calculations are carried out for structures with vacuum regions in all
directions, such as molecules and clusters. For the DFT calculations on a wide
variety of systems, including insulators, semiconductors, and metals, under the
same conditions, we use Gaussian smearing with a smearing width of 0.05 eV. The
generalized gradient approximation with Hubbard U corrections (GGA+U)
proposed by Dudarev et al. 32 is used with the U—] parameters shown in Table 3.
To maintain the consistency of the energies and forces in the different systems, we
use the GGA+U method for all structures, including metallic systems. To consider
both ferromagnetism and anti-ferromagnetism, we carry out a calculation with
both parallel and anti-parallel initial magnetic moments and adopt the result with
the lowest energy. Nevertheless, for some systems, we carry out the calculations
using only parallel initial magnetic moments. Bader charge analyses’3-76 are
carried out to obtain atomic charges.

Trained properties. The energy of the system, atomic forces, and atomic charges
are used for the training procedure. Atomic charges are considered as supple-
mentary data. Although they are neither directly used to calculate energy nor to
simulate the dynamics, they are expected to have information about the local
environment of the atoms.

Neural network architecture. The TeaNet® architecture was used for the base
NNP architecture of the PFP. The TeaNet architecture incorporates a second-order
Euclidean tensor into the GNN and performs message passing of scalar, vector, and
tensor values to represent higher-order geometric features while maintaining the
necessary equivariances. For a detailed explanation of the TeaNet architecture, such
as step-by-step operation, the method of treating invariances, schematic compar-
ison between the other models, and the reported original performances for both
learning procedure and MD applications, see the original material®. The bench-
mark score using HME21 dataset is shown in Supplementary Note 18. The cor-
responding code is provided in Supplementary Data 2. In addition, OC20 dataset
benchmark is shown in Supplementary Note 1. The comparison of NNP archi-
tectures from the view of invariances are shown in Supplementary Note 9.
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Table 2 Comparison of DFT calculated datasets that can be used to train the neural network potential.
Dataset Systems Structures # of

Molecule Bulk Cluster Slab Adsorption Disorder Opt. Vib. MD TS Elements Data
Materials Project® v v v Unlimited ~ >1x10%
OQMD?®3 v/ v/ Unlimited 8 x10°
NOMAD>4 v v Unlimited > 5x 107
Jarvis-DFT>> v v Unlimited >4 x10°
AFLOW?>6 v v/ v Unlimited >3 x106C*1)
QMo91213 v v 5 1x10°
PubChemQC>’ v v 30 >3x106(*2)
MD1758 v v 4 9x106
Sn2 reactions®® v/ v v/ v 6 4 %105
ANI-114 v v v v 5 2x107
ANI-2x15 v/ v v v 7 9x106
COMP6&V21> v v v v 7 2x10%
tensor-mol 0.1 v v 2 4 %105
water>!
tensor-mol v v 4 3x106
0.1 spider>!
TeaNet®0 v v/ v 18 3x10°
0C209.20 v v v v 56(*3) 1x108
PFP molecular v v v v 9 6x106
dataset (ours)
PFP crystal v v v v v v/ v v v 45 3x108
dataset (ours)
(*1): The number is checked on May 24, 2021. (*2): The number is taken from 57, and is updated weekly. (*3): The number was checked using only the training dataset of version 1.

1 2
H He
3 4 5 6 7 8 9 10
Li_sv [Be_sv B C N (©] F Ne
1" 12 13 14 15 16 17 18
Na_pv |Mg_pv Al Si P Cl Ar
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
K_sv |Ca_sv|Sc_sv| Ti_pv | V.sv |Cr_pv [Mn_pv|[Fe pv| Co |Nipv|Cupv| Zn |Ga d|Ge d| As Se Br Kr
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
Rb_sv | Sr_sv| Y_sv | Zr_sv [Nb_pv|Mo_pv| Tc_pv [Ru_pv|Rh_pv| Pd Ag Cd In_d | Sn_d Sb Te | Xe
55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86|
Cs_sv | Ba_sv Hf _pv | Ta_pv | W_sv |Re_pv|[Os_pv| Ir Pt Au Hg Tl.d | Pb.d| Bi d - - -
87 88 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
57 58 59 60 61 62 63 64 65 66 67 68 69 70 al
La Ce Pr3 |Nd_3[Pm_3|Sm 3| Eu Gd | Tb. 3| Dy 3|Ho 3| Er3|Tm3]| Yb Lu_3
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

Fig. 6 The 45 elements supported by PFP are colored in the periodic table. Pseudopotentials used in the DFT calculations for the PFP crystal dataset are
also shown in the periodic table. These are supplied with the VASP package, version 5.4.4, and chosen by the Materials Projects.

Table 3 List of U—J parameters. Values except for Cu are
used in the Materials Project'®, and the value for Cu is
determined by Weng et al. 77,

Ni
6.2

\'
3.25

Cr
3.7

Mn
3.9

Fe
53

Co
3.32

Cu
4.0

Mo
4.38

w
6.2

Elements
U-J (eV)

To adopt the PFP dataset, several architectural modifications were made in this
study. The major modifications are shown below.

First, the Morse-style two-body potential term is introduced in addition to the
TeaNet architecture. The main purpose is to reproduce the short-range repulsion
effect. When the distance between two atoms becomes much closer than the stable
bond distance, the nuclear repulsion force becomes dominant, and the energy
increases rapidly as the distance decreases. Usually, these types of structures are not
observed during the dynamics simulations. In addition, the requirement of accurate
energy estimations is not considered for these high-energy structures. However, if
the NNP does not learn these structures, it is difficult to reproduce the above
nature when the structure accidentally contains a very close atom pair. It is possible
to estimate extremely low energies for these structures. As an example of the

application of PFP, such a scenario may be fatal when performing exploratory
atomic system calculations, such as structure sampling using Monte Carlo methods
or structure estimation using generative models. From the aspect of the training
procedure, extremely large values make the training process difficult. Therefore, we
trained the parameters of the Morse-style two-body potential for all possible
combinations of elements independently and added them to the energy term
separately. This modification is aimed to expand the practical convenience. Neither
the dataset nor the applications presented in this study deal with such an
energetically extreme region, and it is assumed that the introduction of the two-
body potential has negligible effect.

As described in the “Dataset systems and structures” section, the dataset
contains multiple DFT conditions, such as different basis functions or exchange-
correlation functionals. The data points are consistent at a high accuracy level
under the same computational conditions but not between different computational
conditions. This difference cannot be eliminated by zero-point shifts or linear
multiplications of the energy. Unifying these sub-datasets directly is considered to
provide unintended virtual energy gaps. To address this problem, the DFT
condition is set as an additional input label during the training. Label information
is also needed during inference. This is referred to as the calculation mode of PFP.
Therefore, the calculation mode has two aspects. One is to enable the training of
multiple datasets that have different conditions simultaneously, and the other is to
provide a feature to select those conditions for users.

The output of the TeaNet architecture is modified to output atomic charges in
addition to the total energy. Charges are considered auxiliary values. Unlike the
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charge equilibrium method, the charges are calculated using the forward path of
the GNN. The explicit Coulombic interaction term was not included. This
modification has two purposes. One is to allow PFP users to use the output charges
for post-processing molecular dynamics. The other is to increase the number of
learned properties for the same DFT calculations.

NNP characteristics. In this section, the characteristics of PFP are summarized
from the perspective of NNP architecture.

PFP, or its GNN architecture TeaNet, has invariance for E(3) transformations.
In other words, PFP holds rotational invariance, translational invariance, and
mirror-image reversal invariance. In addition, PFP is a fully local interaction
model. This means that the information of the local structure cannot propagate
over an infinite distance. For example, suppose there are two molecules, A and B,
that are sufficiently far apart. It is guaranteed that whatever state molecule B is in
(i.e., stationary, in the middle of a chemical reaction, or artificially erased at a
certain moment during the simulation), molecule A is, in principle, unaffected. The
number of GNN layers is 5. The cutoff distance of the GNN layer depends on the
stage of the layer; they are set to 3, 3, 4, 6, and 6 A, respectively. This was
determined by considering the balance between computational cost and accuracy.
This can be regarded as a special case where all cutoff distances are equal to 6 K,
which is the original TeaNet architecture. Since GNN is multi-layered, the
information of the atoms propagates through the network to their neighbors, and
thus the distance at which one atom interacts with another is the summation of
those cutoff distances, which is 22 A. The physical counterpart of this phenomenon
is the long-range interactions that occur as a result of the connected electron
orbitals, such as metallic bonds and interactions through 7-bonds.

Those properties are beneficial for improving generalization. Since both
invariances and the local interaction model are satisfied, the spatial invariances are
maintained for two spatially separated molecules independently. Furthermore, the
extensive energy properties are preserved. In other words, when a system is
composed of the sum of separated subsystems, the energy is also the sum of such
subsystems. In addition, when the size of the system is doubled in the direction of
the periodic boundary, the energy of the system is guaranteed to double.

PFP follows TeaNet’s differentiable nature up to a higher order with respect to
the position of the atom. The smoothness of the energy surface is a property
directly related to the stability of the calculation, both in minimization calculations,
such as structural relaxation calculations and NEB methods, and in long-time
dynamics calculations. Furthermore, although molecular dynamics simulations use
forces corresponding to first-order derivatives of energy, they often require
quantities corresponding to higher-order derivatives, such as elastic modulus
calculation, or minimization based on the quasi-Newton method.

The additional benchmark of the PFP architecture using OC20 dataset is shown
in Supplementary Notes 1, 3, 4 and 8. The regression score for our dataset is
shown in Supplementary Note 2 and Note 5.

Data availability

The simulation script files and output data corresponding to the result section data
generated in this study are provided in Supplementary Data 1. The atomic structure
dataset called the high-temperature multi-element 2021 (HME21) dataset generated in
this study have been deposited in open access repository figshare under accession code
https://doi.org/10.6084/m9.figshare.19658538°2.

Code availability

The code for NNP architecture benchmark using HME21 including TeaNet (base model
of PFP) implementation with the trained parameters is provided in Supplementary
Data 2. PFP is provided in the proprietary software named Matlantis. The code and
trained parameters are not open-source, but PFP can be used to reproduce the results
through software-as-a-service (https://matlantis.com/).
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