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Abstract Camelina sativa (camelina) is emerging as

an alternative oilseed crop due to its short growing

cycle, low input requirements, adaptability to less

favorable growing environments and a seed oil profile

suitable for biofuel and industrial applications.

Camelina meal and oil are also registered for use in

animal and fish feeds; however, like meals derived

frommost cereals and oilseeds, it is deficient in certain

essential amino acids, such as lysine. In higher plants,

the reaction catalyzed by dihydrodipicolinate synthase

(DHDPS) is the first committed step in the biosynthe-

sis of lysine and is subject to regulation by lysine

through feedback inhibition. Here, we report enhance-

ment of lysine content in C. sativa seed via expression

of a feedback inhibition-insensitive form of DHDPS

from Corynebacterium glutamicums (CgDHDPS).

Two genes encoding C. sativa DHDPS were identified

and the endogenous enzyme is partially insensitive to

lysine inhibition. Site-directed mutagenesis was used

to examine the impact of alterations, alone and in

combination, present in lysine-desensitized DHDPS

isoforms from Arabidopsis thaliana DHDPS (W53R),

Nicotiana tabacum (N80I) and Zea mays (E84K) onC.

sativa DHDPS lysine sensitivity. When introduced

alone, each of the alterations decreased sensitivity to

lysine; however, enzyme specific activity was also

affected. There was evidence of molecular or struc-

tural interplay between residues within the C. sativa

DHDPS allosteric site as coupling of the W53R

mutation with the N80V mutation decreased lysine

sensitivity of the latter, but not to the level with the

W53R mutation alone. Furthermore, the activity and

lysine sensitivity of the triple mutant (W53R/N80V/

E84T) was similar to the W53R mutation alone or the

C. glutamicum DHDPS. The most active and most

lysine-insensitive C. sativa DHDPS variant (W53R)

was not inhibited by free lysine up to 1 mM,

comparable to the C. glutamicums enzyme. Seed

lysine content increased 13.6 -22.6% in CgDHDPS

transgenic lines and 7.6–13.2% in the mCsDHDPS

lines. The high lysine-accumulating lines from this

work may be used to produce superior quality animal

feed with improved essential amino acid profile.

Keywords Camelina sativa � Lysine �
Dihydrodipicolinate synthase � Corynebacterium
glutamicum � Feedback inhibition

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s11248-021-00291-6.

A. Huang � C. Coutu � M. Harrington �
K. Rozwadowski � D. D. Hegedus (&)

Agriculture and Agri-Food Canada, 107 Science Place,

Saskatoon, SK S7N 0X2, Canada

e-mail: Dwayne.Hegedus@canada.ca

D. D. Hegedus

Department of Food and Bioproduct Sciences, University

of Saskatchewan, Saskatoon, SK, Canada

123

Transgenic Res (2022) 31:131–148

https://doi.org/10.1007/s11248-021-00291-6(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0002-7790-5567
https://doi.org/10.1007/s11248-021-00291-6
https://doi.org/10.1007/s11248-021-00291-6
https://doi.org/10.1007/s11248-021-00291-6
https://doi.org/10.1007/s11248-021-00291-6
http://crossmark.crossref.org/dialog/?doi=10.1007/s11248-021-00291-6&amp;domain=pdf
https://doi.org/10.1007/s11248-021-00291-6


Introduction

Camelina sativa (camelina), an oilseed crop belonging

to the Brassicaceae family, has emerged as a platform

for aviation biofuel and various other industrial

applications (Bansal and Durrett 2016). It is being

developed as a sustainable rotation crop due to its short

lifecycle (100–120 days) and reasonable productivity

on marginal lands with low inputs (Vollmann and

Eynck 2015). The seed oil contains 50–60% polyun-

saturated fatty acids, of which 20–25% is omega 6

(linoleic acid, 18:2n-6) and 35–40% is omega 3

(linolenic acid, 18:3n-3) (Lu and Kang 2008). a-
linolenic acid is the precursor for the essential long

chain polyunsaturated fatty acids eicosapentanoic acid

(20:5 x3) and docosahexanoic acid (22:6 x3) that

have human health benefits. Camelina seed meal

generated by cold-pressing is rich in protein (450 g

Kg-1) and residual oil (100 g Kg-1) and can be used

as a source of protein in farmed fish (Hixson and

Parish 2014; Hixson et al. 2014; 2016a,b), poultry

(Kakani et al. 2012), and livestock (Cappellozza et al.

2012; Colombini et al. 2014; Kahindi et al. 2014).

Atlantic cod (Gadus morhua) tolerated up to 24%

inclusion of camelina meal in place of fish meal in

their diets without affecting weight gain (Hixson et al.

2016a); however, the levels of several essential amino

acids are limiting as in most plant-based diets (Zubr

2003; Galili et al. 2016). Lysine and methionine, in

particular, are often added as supplements to fish

(Wilson and Halver 1986), poultry (Kidd et al. 1998)

and swine feed (Brinegar et al. 1950) diets.

Improvement in the essential amino acid profile

would increase camelina meal inclusion rates in feed.

High-lysine corn varieties have been obtained through

traditional breeding, as exemplified by the opaque2

mutation (Mertz et al. 1964); however, this is linked to

inferior agronomic traits. Improved Quality Protein

Maize was successfully developed for commercial

applications (Gibbon and Larkins 2005), but progress

has been slow for other crops. Lysine content has been

increased in cereal grains through transgenic expres-

sion of high lysine proteins, such as endogenous

histones (Wong et al. 2015), BiP chaperone (Kawa-

katsu et al. 2010) or lysine-enriched fusion proteins

(Yu et al. 2005; Chang et al. 2015; Liu et al. 2016;

Jiang et al. 2016). Similar approaches have been taken

with dicotyledonous species, including Nicotiana

tabacum (Keeler et al. 1997), Glycine max (Zhang

et al. 2014) and Brassica napus (Wang et al. 2011).

Increased lysine content has also been achieved by

suppressing the accumulation of low lysine seed

storage proteins in B. napus (Kohno-Murase et al.

1995) and cereals (Kim et al. 2013; Schmidt et al.

2016).

Lysine and three other essential amino acids

(methionine, isoleucine, and threonine) are derived

from the aspartic acid pathway (Jander and Joshi 2010;

Atkinson et al. 2012a; Galili et al. 2016; Wang et al.

2018). A crucial rate-limiting steps in lysine biosyn-

thesis is catalyzed by the enzyme dihydrodipicolinate

synthase (DHDPS; EC 4.2.2.52) (Galili 2002; Zhu and

Galili 2003; Silk and Matthews 1997; Wang et al.

2018), which catalyses the condensation of pyruvate

and (S)-aspartate semialdehyde (ASA) to form (4S)-4-

hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid

(HTPA) (Blickling et al. 1997a). HTPA is further

converted into lysine following reduction, amination,

epimerization and decarboxylation reactions (Atkin-

son et al. 2013; Skovpen and Palmer 2013). Plant

DHDPS enzymes are encoded by the dapA gene and

localized to plastids (Ghislain et al. 1990) where their

activity is regulated through feedback inhibition by

free lysine (Jander and Joshi 2010) (Dereppe et al.

1992; Frisch et al. 1991; Ghislain et al. 1990;

Kumpaisal et al. 1987; Negrutiu et al. 1984). Expres-

sion of lysine-insensitive DHDPS variants can

increase accumulation of free lysine in plants

(Frankard et al. 1992). Increased lysine levels in

tobacco leaves (Ghislain et al. 1995) and the ability of

a maize DHDPS to complement an Escherichia coli

dapA mutation in the presence of an inhibitory lysine

analouge (Shaver et al. 1996) were attributed to a

lysine-insensitive DHDPS variants with single amino

acid changes in their allosteric sites. The E. coli

DHDPS is partially-insensitive to lysine and lysine

content increased in tobacco seeds when it was co-

expressed with a feedback-insensitive aspartate kinase

(AK, lysC) (Karchi et al. 1994). The Corynebacterium

glutamicum DHDPS (CgDHDPS, CordapA) is insen-

sitive to feedback inhibition and total lysine content

increased twofold in B. napus seeds when expressed

alone and up to five-fold in soybean seeds when

expressed in combination with AK (Falco et al. 1995).

In rice, free lysine levels increased up to 12-fold in

leaves and 60-fold in seeds in transgenic lines co-

producing the E. coli AK and DHDPS in the chloro-

plast in combination with RNA interference to reduce
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levels of the catabolic enzyme lysine ketoglutaric acid

reductase/saccharopine dehydrogenase (LKR/SDH)

(Long et al. 2013). How this affected total lysine

content was not determined. Similarly, production of a

chloroplast-localized CgDHDPS and suppression of

LKR/SDH expression increased free lysine by 40-fold

in transgenic corn seed (Frizzi et al. 2008). In

Arabidopsis thaliana, production of a bacterial

lysine-insensitive DHDPS in a T-DNA insertion

mutant of LKR/SDH synergistically increased free

lysine levels 80-fold in the seed (Zhu and Galili

2003, 2004). Expression of CgDHDPS in a maize

opaque mutant with reduced levels of the zein storage

protein enhanced total lysine accumulation 1.3-fold in

the grain (Huang et al. 2005). These data provide

unambiguous evidence that manipulation of critical

regulatory steps in the lysine biosynthetic pathway

(AK, DHDPS and LKR/SDH) can lead to enhanced

lysine accumulation in cereal grains and oilseeds. Here

we examine the application of CgDHDPS and several

engineered lysine-insensitive isoforms of an endoge-

nous C. sativa DHDPS for increasing lysine levels in

camelina meal.

Materials and methods

Plant materials and growth conditions

Camelina sativa (L.) Crantz line DH55, the source of

the Genbank reference genome (Kagale et al. 2014;

2016), was used in this study. Plants used for

phenotyping were grown in RediEarth (W.R. Grace

& Co., Ajax, ON, Canada) in pots in a growth cabinet

with the following settings: 16 h light/8 h dark and

20�C day/18 �C night temperature cycle.

Seed germination and seedling growth assay

Seeds were surface-sterilized with 70% ethanol for

5 min and then with a 2.5% sodium hypochlorite

solution (50% household bleach) for 7 min. After five

washes in distilled water, seeds were placed on 0.5 X

MS (Murashige and Skoog 1962; pH 6.0), 1% sucrose,

0.8% agar plates. Germination was recorded as the

emergence of the radical. Seedling growth was

monitored on the same media with or without

1.5 mM S-(2-aminoethyl)-L-cysteine (AEC; Sigma),

a non-metabolizable analogue of lysine.

Cloning and analysis the DHDPS gene from C.

glutamicum and C. sativa

The C. glutamicum DapA (CgDHDPS) open reading

frame (ORF) was amplified by polymerase chain

reaction (PCR) from the genomic DNA of strain

ATCC 130,302 (American Type Culture Collection)

using KAPA HotStart DNA polymerase (VWR,

Mississauga, ON, Canada) and two gene-specific

primers: CgDHDPS-F (EcoRI) and CgDHDPS-R

(BamHI) (Supplemental Table S1). The resultant

DNA was digested with EcoRI and BamHI and ligated

into pUC18 digested with the same restriction

enzymes and then transformed into E. coli DH10B.

Camelina sativa DH55 DHDPS cDNA was amplified

from 100 ng leaf total RNA using the One-Step RT-

PCR kit (Life Technologies) and two gene-specific

primers: CsDHDPS F3 and CsDHDPS R3 (Supple-

mental Table S1). The resultant cDNA was purified

and ligated into pGEM-T Easy (Promega) and trans-

formed into E. coli DH10B. Several independent

clones were sequenced to identify isoforms encoded

by homoeologous genes. Of the three homoeologues

in the camelina genome (Kagale et al. 2014; 2016),

two were identified and used for further studies; these

were denoted B4 (Csa16g004020) and B6

(Csa05g092770). Chloroplast targeting peptides were

detected using the ChloroP 1.1 Server (http://www.

cbs.dtu.dk/services/ChloroP-1.1/pages/output-expl.

php).

Site-directed mutagenesis of CsDHDPS cDNA

Mutations resulting in single amino acid changes were

introduced into regions of CsDHDPS B6 within or

adjacent to the allosteric site both independently and

in combination. These were designated as CsDHDPS

mA (W53R), CsDHDPS mB (N80V) and CsDHDPS

mC (E84T) according to the numbering of residues in

the E. coli DHDPS. CsDHDPS B6 cDNA was cloned

into pGEM-T Easy and site-directed mutagenesis

(SDM) conducted using the Quick Change SDM kit

(Life Technologies). Oligonucleotides used for clon-

ing and mutagenesis are provided in Supplemental

Table S1. Plasmid DNA was isolated from E. coli

using the Qiaprep Spin Miniprep kit (Qiagen). Primers

spanning the SDM site and Pfu Turbo high fidelity

DNA polymerase (Agilent Technologies) were used to

amplify the entire plasmid. DpnI is a restriction
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enzyme specific for methylated DNA and was used to

remove the template plasmid leaving only the

unmethylated plasmid DNA derived from the PCR.

DpnI-digested SDM reaction was used to transform

E. coli DH10B and plasmids from positive colonies

were sequenced to verify the mutations. To combine

mutations, N80VB6F and N80VB6R SDM primers

were used to integrate the N80V mutation (mB) into

CsDHDPS B6 W53R (mA) to create the W53R/N80V

double mutant (mAB). Similarly, the mBmC-F and

mBmC-R SDM primers were used to integrate the

N80V and E84T mutations into CsDHDPS B6 W53R

to create the triple mutant (mABC).

Complementation of the E. coli dapA2 auxotroph

with CgDHDPS and CsDHDPS

Open reading frames encoding CsDHDPS B4 (364 aa;

Csa16g004020) and CsDHDPS B6 (365 aa;

Csa05g092770) or mutagenized variants were ampli-

fied from the pGEM-T Easy plasmids by PCR using

Pfu Turbo DNA polymerase (Agilent Technologies)

with CsDHDPS-F6 (EcoRI) and CsDHDPS-R6 (KpnI)

primers (Supplemental Table S1). The purified frag-

ments were digested and inserted into the EcoRI and

KpnI sites of pUC18 in-frame with the LacZ ORF

translation start codon. pUC18 plasmids harbouring

the CsDHDPS variants or CgDHDPS were introduced

into the E. coli dapA- lysine auxotrophic strain AT997

(Genetic Stock Center, Yale University) which con-

tains a defective dhdps gene and requires supplemen-

tation with lysine or diaminopimelic acid (DAP) to

maintain normal growth on M9 minimum medium.

Transformed colonies were isolated on M9 medium

with 100 lM DAP and 100 lg/ml ampicillin at 37�C.
Growth was monitored on M9 medium alone, as

well as M9medium in the presence of 100 lMDAP or

increasing concentrations of AEC (Sigma). Cells were

grown in 10 ml of media in custom-built 50 ml

Erlenmeyer flasks fitted with a 10 ml test tube sidearm

at 37 �C with shaking at 225 rpm (Department of

Chemistry, University of Saskatchewan). Cell culture

was periodically transferred to the sidearm and optical

density (A610nm) recorded with a digital colorimeter

(Horizon 5965-50).

DHDPS activity assay

DHDPS-containing cell extract was prepared using a

procedure modified from Silk et al. (1994). Briefly,

E. coli DH10B cells harboring the pUC18 DHDPS

plasmids were grown in LB broth supplemented with

100 lM DAP, 14.8 lM thiamine hydrochloride,

1 mM MgSO4
.7H2O, 11 mM D-glucose, 100 lg/ml

ampicillin at 37�C with shaking (225 rpm). To induce

DHDPS expression, 0.5 mM isopropyl b-D-1-thio-
galactopyranoside (IPTG) was added to the cultures

when the OD600 reached 0.6–0.8 and incubated for

6 h. Cells were harvested by centrifugation and pellets

washed twice in buffer consisting of 50 mM Tris–HCl

(pH 7.5), 1 mM EDTA, 1 mM 2-mecaptoethanol,

20% glycerol and 10 mM pyruvate, and re-suspended

in 150 ul of fresh buffer. The cells were lysed by

sonication for 30 s and stored at -20 �C. Total protein
concentration was determined using a Q bit fluorime-

ter (Life Technologies).

DHDPS activity was measured as previously

described (Vauterin et al. 2000) using L-aspartic-b-
semi-aldehyde (L-ASA) as the substrate. Assays were

carried out in 1 ml of buffer consisting of 100 mM

Tris–HCl (pH 8), 35 mM pyruvate, 2 mM neutralized

L-ASA, 40 ll cell extract and 35 ll of o-aminoben-

zaldehyde solution (0.5 mg o-ABA/35 ll ethanol).

Reactions were incubated at 37oC for 30–90 min

depending on the DHDPS activity in the reaction

mixtures. The reactions were stopped by addition of

200 ll 12% trichloric acid (TCA) and placed in the

dark. Under acidic conditions, o-ABA and L-2,3-

dihydrodipicolinate react to form an adduct with a

deep purple color (Yugari and Gilvarg 1965; Atkinson

et al. 2012b), which develops maximally 2 h after

TCA addition. The adduct is stable for about 6 h and

its’ absorption is measured at 520 nm (Mitsakos et al.

2011; Erzeel et al. 2013; Atkinson et al. 2014). L-ASA

was synthesized by Dr. D. Palmer in the Department of

Chemistry, University of Saskatchewan, Canada. The

effect of free lysine on DHDPS activity was assessed

by inclusion of lysine in the reaction mixture at

concentrations ranging from 12.5 lM to 10 mM

depending on the sensitivity of the enzyme.
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Construction of binary vectors and plant

transformation

DHDPS is localized to the chloroplasts of higher

plants (Wallsgrove and Mazelis 1980), therefore, the

amino-terminal chloroplast transit peptide (CTP) from

the A. thaliana Rubisco small subunit (At1g67090)

was appended to the CgDHDPS. The region encoding

the CTP was amplified from A. thaliana genomic

DNA using AtCTP-F and AtCTP-R and then re-

amplified using CTP-F2 and CTPCgDS-R1 primers

(Supplemental Table S1). The CgDHDPS open read-

ing frame (ORF) was amplified from the pUC18

plasmid (above) using CTPCgDS-F1 and CgDS-R2

primers. The amplified fragments were purified and

the CTP fragment was fused in-frame to the amino-

terminus of CgDHDPS using SOEing PCR (Horton

1995) with gene-specific CTP-F2 and CgDS-R2

primers. All PCR reactions were performed with

KAPA HiFiTM HotStart DNA polymerase (VWR).

Following SalI and NotI restriction digestion, the

CTP-CgDHDPS fragment was amplified and cloned

into the Gateway enter vector pENTR1A (Life Tech-

nologies). ThemCsDHDPS W53R ORF was amplified

by PCR and cloned into the KpnI and NotI sites of

pENTR1A. The CTP-CgDHDPS and mCsDHDPS

W53R ORFs were transferred into the Gateway

compatible binary vector pWY190 (Rozwadowski

et al. 2008) via LR recombination. The vector uses the

Pap85 promoter to direct expression of the transgene

and is active during seed maturation and early seed

germination in A. thaliana. The Streptomyces species

PAT (phosphinothricin acetyltransferase) gene under

the control of the constitutive tCUP2 promoter from

tobacco (Wu et al. 2003) was used to provide selection

for glufosinate (DL-phosphinothricin). The binary

vector plasmids were transferred into Agrobacterium

tumefaciens GV301 pMP90 and transformation of C.

sativa DH55 (Kagale et al. 2014) was conducted using

the floral dip method (Nguyen et al. 2014). Seed was

provided by I. Parkin (Agriculture and Agri-Food

Canada). Screening for positive glufosinate-resistant

transformants was performed by spraying 6-day-old

seedlings with 1.5 g L-1 Liberty herbicide (Bayer

CropScience). Single-insert homozygous lines were

selected using a droplet digital PCR (ddPCR) method

(Comte et al. 2017) based on comparison of the copy

number of the PAT gene with CsActin2 as an internal

reference.

Expression of the transgenes was verified using

reverse-transcription PCR (RT-PCR). Total RNA was

isolated from 5–10 mg of developing seed (30 days

post-anthesis) using a protocol optimized for isolation

of RNA from B. napus developing seeds (Sjödahl et al.

1993). RNase-free DNase I (Promega, Madison, WI,

USA) was used to eliminate genomic DNA from total

RNA prior to gene expression analysis using gene-

specific primers (Supplemental Table S1) and the

SuperScript one-step RT–PCR kit (Life Technologies)

as described by Huang et al. (2009). The number of

PCR cycles was optimized (30–35 cycles) so that the

RT–PCR fell within the linear range. Transcripts from

the C. sativa 18S ribosomal gene were amplified using

Cs18S-F and Cs18S-R primers (Supplemental

Table S1) and used as a normalization standard. Three

biological replicates were conducted.

Protein homology modeling

The theoretical structure of the C. sativa DHDPS

isoform CsDHDPS-B6 was constructed based on

target-template alignment using ProMod3 Version

1.1.0 within the Swiss-Model server (Biasini et al.

2014). Coordinates that were conserved between the

target and the template were copied from the template

to the model. Insertions and deletions were remodelled

using a fragment library and side chains reconstructed.

Finally, the geometry of the model was regularized by

using GROMOS96 force field (Guex et al. 2009). The

structure of DHDPS-2 from A. thaliana (PDB 4dpp)

(Griffin et al. 2012) was identified as the best template

by searching the SWISS-MODEL template library

(SMTL version 2018-04-25, PDB release 2018-04-20)

using BLAST (Camacho et al. 2009) and HHblits

(Remmert et al. 2012). The 4dpp structure was

determined by X-ray diffraction with a resolution of

2.00 angstroms. 4dpp shared a sequence identity of

90.52% and had a quaternary structure quality esti-

mate (QSQE) of 0.71 with respect to the generated

homology model CsDHDPS-B6. The CsDHDPS-B6

model conformed with the 4dpp template with a global

mean quality estimate (GMQE) of 0.80 and a Qmean

score of - 0.19 (Benkert et al. 2011). Imaging was

done using UCSF Chimera (Pettersen et al. 2004).
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Amino acid quantification

Seeds were defatted with n-hexane based on the

methods of Troeng (1955) and Barthet and Daun

(2004). Mature seeds (2–3 g) were placed in sealed

steel tubes with 3 ball bearings and 25 ml of hexanes

(Sigma). Samples were ground for 45 min using an

Eberbach shaker followed by vacuum filtration to

remove oils and hexane. Defatted meal was air-dried

overnight followed by storage at - 20�C. Total

nitrogen content of the defatted meal was determined

using a Flash EA 1112 Series N/Protein Analyser

(Thermo Scientific). This system uses a dynamic flash

combustion system coupled with a gas chromato-

graphic separation system based on the AOACOfficial

Method 972.43 (1997). Approximately 15 mg of

defatted meal from each sample was analyzed in

triplicate. The nitrogen to protein conversion factor

used was 6.25 (Jones 1931; AACC International

Method 46-18.01 1999). Moisture levels in the

defatted meal were determined as weight loss upon

drying to stability (AACC Method 44-01.01 1999).

Approximately 700 mg of defatted camelina meal was

dried at 105�C for 24 h in a forced-air oven.

Amino acid profiles were analyzed following the

procedure of AOAC Method 994.12 (2005) and Tuan

and Philips (1997). Tryptophan was quantified fol-

lowing the method of Nielsen and Hurrell (1985).

Microwave digestion methods were modified from

Lill et al (2007) and Kabaha et al (2011). Separation

and quantification of amino acids was performed using

a high-performance liquid chromatography (HPLC)

system (Waters Alliance 2695) equipped with a

Waters 2475 fluorescence detector with excitation

wavelength of 250 nm, emission wavelength of

395 nm and an AccQ-Tag C18 column for hydrolysate

amino acid analysis, 3.9 9 150 mm (Waters). Gradi-

ent elution was diluted with AccQtag Eluent A buffer,

water and acetonitrile. Amino acids were resolved

using a multi-step gradient elution with an injection

volume of 5 ll. Response peaks were recorded and

analysed with Empower 3 software (Waters Corp.).

Pre-column derivatization using AccQ-Fluor reagent

(Waters Corp.) was done for all samples, except

tryptophan which was diluted with an equivalent ratio

of borate buffer and acetonitrile prior to HPLC

analysis. For all amino acids except cysteine, methion-

ine and tryptophan, 5 mg of sample (protein basis) was

hydrolyzed with 6 M HCL (Optima grade, Fisher

Scientific) with 1% (w/v) phenol in a 10 ml quartz

hydrolysis tube using a microwave digester (CEM

Discover SPD) set at a ramp time of 5.5 min, hold at

195�C for 10 min, maximum pressure of 140 psi and

maximum power of 300 W. Hydrolysates were neu-

tralized with sodium hydroxide, filtered through a

0.45 lm Phenex RC syringe filter to remove partic-

ulates and applied to a Waters Oasis HLB C18

Cartridge for sample cleanup prior to HPLC analysis.

Amino acids were eluted from the cartridge with 5%

(v/v) acetonitrile. Flow-through and washes were

collected. Cysteine and methionine were determined

as cystic acid and methionine sulfone after oxidation

with performic acid followed by microwave hydrol-

ysis with 6 M HCl, neutralization and filtration.

Tryptophan was determined by hydrolyzing 10 mg

of sample (protein basis) in 4.2 M NaOH in a 10 ml

quartz hydrolysis tube with a Teflon liner using a

microwave digester (CEM Discover SPD) set at a

ramp time of 6.0 min, hold at 215�C for 20 min,

maximum pressure of 140 psi and maximum power of

300 W. Hydrolyzed samples were neutralized with

HCl and filtered prior to application on a Waters Oasis

HLB C18 Cartridge. Tryptophan and 5-methyl tryp-

tophan (internal standard) were eluted from the

cartridge with 5% (v/v) acetonitrile/5% (v/v) metha-

nol. The flow-through and washes were collected.

Samples were stored at - 20�C prior to dilution and

HPLC analysis. D,L 2-amino-butyric acid (0.1 mM)

and D,L 5-methyl-tryptophan (0.1 mM) (Sigma-

Aldrich) were used as internal standards and added

to the sample hydrolysates following acid or base

hydrolysis.

Statistical analysis

For enzyme activity, Levene and Shapiro–Wilk tests

were used to assess the homogeneity of variance and

the normality at each treatment level. Differences

between means of the lysine treatment levels within

each line were identified using least squared regres-

sion followed by comparison with control (lysine = 0

lM) using the Dunnett’s test (JMP version 15.0.0;

https://www.jmp.com/en_ca/home.html). Lines with

probability of less than 0.05% were considered

significant.

Percentages of each amino acid were calculated as a

proportion of the total recovered amino acids, adjusted

to a recovery of 100%. The Grubbs test was used to
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identify and remove outliers from the technical

replicates prior to pooling for each biological repli-

cate. Three biological replicates were used to evaluate

the differences between means of all lines, for each

amino acid, using standard least squared regression

and ranked using the Tukey least significant difference

test (LSD). P values less than 0.05% were considered

significant.

Amino acid analysis and nitrogen analysis were

performed in triplicate and moisture determination as

a single sample. Technical replications presenting a

large coefficient of variation ([ 10) were repeated.

Dunnett’s test or a one-way ANOVA with a multiple

comparison Tukey HSD test were used to identify and

rank significant differences.

Results

Isolation of C. sativa DHDPS cDNA

Two cDNAs encoding CsDHDPS, denoted B4

(Csa16g004020) and B6 (Csa05g092770), were iden-

tified and are homoeologues on sub-genomes I and III,

respectively. Another CsDHDPS homoeologue

(Csa07g004000) is present on sub-genome II, but did

not appear among the cDNA clones sequenced.

Csa05g092770 is closely linked to a truncatedDHDPS

gene (Csa05g092750) that may have arisen from a

duplication event. Differences between the CsDHDPS

B4 and B6 proteins included deletion of R29 within the

chloroplast targeting peptide at the amino terminus of

B4, and replacement of K146 and V254 in B6 with R145

and D253 in B4. A putative chloroplast targeting

peptide was predicted to be located at the amino-

terminus of all plant DHDPS enzymes (38 aa in C.

sativa, 29 aa in A. thaliana, 32 aa in N. tabacum, 65 aa

in Z. mays) (Fig. 1). Alignment of CsDHDPS B6 with

other plant and bacterial DHDPS enzymes showed the

plant DHDPSs shared variable identity with their C.

sativa counterparts (94% with A. thaliana, 75% with

Nicotiana tabacum, 67% with Zea mays), while the

bacterial DHDPSs were more divergent (27% with

E. coli and 22% with C. glutamicum).

Residues identified as crucial for catalytic activity

of microbial DHDPS were conserved in the C. sativa

DHDPS, including two residues near the amino-

terminus (T107 and T108 corresponding to T44 and

T45 in the E.coli DHDPS, respectively) and eight

residues near the carboxy-terminus (Y170, Y194, R199,

K222, C224, G243, I261, and N300 corresponding to Y107,

Y133, R138, K161, A163, G186, I203 and N248 in the E coli

DHDPS (Fig. 1). These residues have roles in the

formation of the Schiff base (101-118, IPR020624;

194-224, IPR020625; http://www.ebi.ac.uk/interpro/

entry), proton relay during catalysis (Y107 and Y170),

pyruvate binding (T108 and I261) and reaction active

sites (Y194, K222) (http://www.uniprot.org/uniprot/

Q9LZX6). Notably, K222 (equivalent to K184 of the

mature CsDHDPS protein) is conserved in the active

site and plays a fundamental role in the ping-pong

reaction (Atkinson et al. 2012a; Skovpen and Palmer

2013). As importantly, eight conserved residues

involved in lysine binding are found in the allosteric

regulatory domain (Fig. 1), whereupon binding of

lysine leads to active site distortion or impaired dimer

formation, resulting in inhibition enzyme activity

(Laskowski et al. 2009). Structural modelling of the

CsDHDPS indicates it forms a tetramer similar to the

A. thaliana DHDPS (Griffin et al. 2012) (Supple-

mental Figure S1).

Characterization of lysine-insensitive CsDHDPS

variants

Previously, it was shown that a mutation in the A.

thalianaDHDPS (W53R) resulted in the complete loss

of feedback inhibition (Vauterin et al. 2000), while a

N80I change in the N. tabacum DHDPS was respon-

sible for lysine over-production (Ghislain et al. 1995).

Similarly, the E84K substitution in the Z. mays

DHDPS abolished its lysine sensitivity (Shaver et al.

1996). Both the C. sativa DHDPS B4 and B6 enzymes

were able to complement the E. coli dapAmutation on

minimal medium in the absence of DAP; however, the

strain expressing DHDPS B6 exhibited more robust

growth suggesting that it was more active. As such,

site-directed mutagenesis was employed to generate

similar mutations separately and in combination in the

allosteric domain of C. sativa DHDPS B6. The three

single amino acid changes were designated as

CsDHDPS mA (W53R), CsDHDPS mB (N80V) and

CsDHDPS mC (E84T) (Fig. 1; Supplemental Fig-

ure S1). Numbering of residues was according to

E. coli DHDPS.

The auxotrophic E. coli dapA- strain carrying only

the pUC18 vector failed to grow on plates with M9

minimum medium in the absence of DAP; however,
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strains harbouring plasmids with the CgDHDPS, the

wild-type (wt) CsDHDPS or any of the modified

CsDHDPS variants grew to varying degrees indicating

the modifications did not result in loss of DHDPS

activity (Supplemental Figure S2). The addition of

DAP restored growth of the dap- pUC18 strain and

improved the growth of the lines carrying the wt

CsDHDPS or variants. Lines carrying the CgDHDPS

or the modified CsDHDPS variants also grew in the

presence of the non-metabolizable lysine analogue

AEC, indicating they were insensitive to feedback

inhibition. Interestingly, AEC failed to completely

inhibit the growth of the strain carrying the wt

CsDHDPS after extended incubation (14 days) sug-

gesting the endogenous plant enzyme may be partially

insensitive to lysine inhibition. The CsDHDPS mA

variant appeared to be least sensitive to AEC amongst

the variants tested in this assay.

An assessment of the impact of the changes on

DHDPS function was conducted by monitoring the

growth of E. coli dap- strains expressing the DHDPS

variants in the presence of AEC. The E. coli dap-

pUC18 strain failed to grow in the absence of DAP

(Fig. 2). The strain expressing the wt CsDHDPS grew

on minimal M9 medium, although faster in the

presence of 100 lM DAP, indicating the CsDHDPS

enzyme is functionally equivalent to that encoded by

the E. coli dapA locus. Growth of this strain was

progressively impaired by increasing AEC concentra-

tions, but was detectable even at the highest

Fig. 1 Conservation between C. sativa and other plant and

microbial DHDPS enzymes. Amino acid sequence alignment of

DHDPSs from A. thaliana (AtDHDPS2, Q9LZX6, 365 aa), C.
sativa CsDHDPS B4 (Csa16g004020, 364 aa) and CsDHDPS

B6 (Csa05g092770, 365 aa), N. tabacum (NtDHDPS,

NP_001313049, 359 aa), Z. mays (ZmDHDPS,

NP_001105425.1, 380 aa), Vitis vinifera (VvDHDPS, PDB

3TUU, 346 aa), C. glutamicum (CgDHDPS, X53993, 301 aa)

and E. coli (EcDHDPS, WP_061350668, 292 aa). The

predicated chloroplast transit peptides at the N-terminus in the

plant enzymes are in bold text. Conserved amino acids involved

in catalysis within the catalytic site (C) and those involved in

lysine binding in the allosteric (L) sites are shown. The sites of

the three mutations introduced into CsDHDPS B6 allosteric site

(L and highlighted in yellow) are designated as mA (W53R),

mB (N80V) and mC (E84T) according the numbering associ-

ated with the E. coli DHDPS. Amino acids found in all enzymes

(white letters on black background) or amino acids with

conserved properties (black letters on grey background) are

shown. Alignment performed using the Vector NTI Suite (Life

Technologies)

123

138 Transgenic Res (2022) 31:131–148



Fig. 2 Growth of E. coli lysine auxotrophic (dapA-) strains

harbouring plasmids expressing various DHDPS enzymes.

pUC18 = empty vector control (Panel A), CgDHDPS = C.
glutamicum DHDPS (Panel B), CsDHDPS = wt C. sativa
DHDPS B6 (Panel C), CsDHDPS mA = W53R mutant (Panel

D), CsDHDPS mAB = W53R/N80V double mutant (Panel E),

CsDHDPS mABC = W53R/N80V/E84T triple mutant (Panel

F). Growth medium included M9 minimal medium (M9),

M9 ? 100 lM diaminopimelate (DAP 100) or M9 with various

concentrations (lM) of S-(2-aminoethyl)-L-cysteine (AEC).

Errors bars show standard deviation (n = 3)
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concentration suggesting that CsDHDPS may be

partially insensitive to lysine. Strains expressing the

CsDHDPS mA, mB or mC variants exhibited better

growth than that expressing the wt CsDHDPS with

only a short delay in the onset of the exponential phase

and growth rates similar to that on M9 medium alone

thereafter. The growth of the strain expressing

CgDHDPS was not affected by any of the AEC

concentrations tested. The time required for cultures to

reach the same optical density (OD600 = 0.3) was also

calculated to assess the in vivo sensitivity of modified

DHDPS variants to AEC (Supplemental Table S2.1).

In the absence of AEC and with the inclusion of DAP,

the variants grew normally and reached similar culture

densities (OD600 = 0.3) within 22–28 h. AEC addition

increased the time for the variant cultures to reach the

same density; however, strains expressing the

CgDHDPS or CsDHDPS mA took the least time,

21.5–22 h and 31.5–40 h, respectively, indicating that

these enzymes are the least sensitive to AEC or lysine.

Growth rate during the exponential phase decreased in

the strain carrying the wt CsDHDPS with increasing

AEC concentration; however, growth rates were

similar in the lines carrying the CsDHDPS variants

once the exponential phase had begun (Supplemental

Table S2.2).

In vitro enzyme assays were conducted to compare

the degree to which the CsDHDPS variants were

insensitive to lysine (Fig. 3). The specific activity of

the single mutation mA, mB and mC variants was

higher than that of the wt CsDHDPS and mA was

comparable to that of CgDHDPS. The mAB combi-

nation significantly reduced activity, while the mABC

combination displayed activity comparable to the wt

CsDHDPS enzyme. The wt CsDHDPS was highly

sensitive to lysine with only 20% of the activity

remaining at 25 lM free lysine; the lowest concen-

tration tested. A basal level of activity (ca. 10%)

remained even at higher lysine concentrations which

supports the tenet that the CsDHDPS enzyme may be

partially insensitive to lysine. The mA CsDHDPS

variant was the most insensitive to lysine inhibition

with activity being unaffected even at the highest

concentrations tested, 1000 lM free lysine, suggest-

ing a critical role of theW53R substitution in lowering

the affinity of the allosteric site for lysine. The mB and

mC variants were more sensitive to lysine than the mA

variant with activity diminishing as free lysine con-

centration increased and with less than 20% remaining

at the 1000 lM lysine level. The double mutant

(mAB) and the triple mutant (mABC) were less

sensitive to lysine with the latter being comparable to

the mA variant. The CgDHDPS was insensitive to

lysine at all concentrations tested.

Fig. 3 Sensitivity of various DHDPS enzymes to lysine

feedback inhibition. Panel A: Specific activity of protein

extracts from E. coli lysine auxotrophic (dapA-) strains

harbouring plasmids expressing various DHDPS enzymes. C.
sativa DHDPS B6 (Cs), CsDHDPS W53R mutant (mA),

CsDHDPS N80V mutant (mB), CsDHDPS E84T mutant

(mC), CsDHDPS W53R/N80V double mutant (mAB),

CsDHDPS W53R/N80V/E84T triple mutant (mABC), C.
glutamicum DHDPS (Cg). Panel B: DHDPS activity relative

to activity in the absence of lysine. Lysine concentrations are in

lM. Values that were significantly different from the control (0

lysine) within each group are indicated by an asterisk (*,

P B 0.05) or pound sign (#, P B 0.10) according to Dunnett’s

test. Error bars indicate standard deviation (n = 3)
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Evaluation of transgenic C. sativa lines expressing

CgDHDPS or CsDHDPS mA

The most active and lysine-insensitive DHDPS

enzymes (CgDHDPS and CsDHDPS mA) based on

the in vitro and in vivo assays were selected for

expression in C. sativa seeds. Three independent

homozygous single-transgene lines expressing

CgDHDPS and four expressing CsDHDPS mA

(Fig. 4) were used to evaluate phenotypic changes

and amino acid content.

The PAP85 promoter is active during seed matu-

ration and the early phase of seedling establishment

(Rozwadowski et al. 2008). We confirmed that the

CgDHDPS and CsDHDPS mA enzymes were active

during this time by germinating seeds and growing the

seedlings in the presence of AEC (Fig. 4). In the wt

DH55 line, radicles initially emerged from the seed,

but further growth was suspended and seedlings

became chlorotic after 7 days and necrotic (brown)

after 10 days. In contrast, transgenic seedlings

expressing CgDHDPS or CsDHDPS mA were much

lesser sensitive to AEC.

Some alterations in plant growth and seed charac-

teristics were noted when the CgDHDPS and

CsDHDPS mA lines were grown in soil under

controlled conditions. Seedlings of some of the

transgenic lines were smaller and slower to establish

relative to DH55 (Supplemental Figure S3), but only

minor variations in plant height and flowering time

were observed among the independent transgenic lines

(Fig. 5). The CgDHDPS Cg-7 line was delayed in

flowering (37.25 d), whereas the CsDHDPSmA-4 line

flowered earlier (31.75 d) compared to DH55 (34.3 d).

Pod maturation was not significantly delayed in the

transgenic lines, except for the CgDHDPS Cg-2 line

(Fig. 5). Total seed weight (yield) was reduced in all

three CgDHDPS lines with total production only

42–71% of the DH55 control. Seed production was

less affected in the CsDHDSP mA lines, which

showed yields ranging from 70–98% that of DH55

(Fig. 5) and only one (mA-6) had significantly

reduced total seed yield. None of the lines exhibited

significantly different hundred seed weight compared

to the DH55 control.

Alteration of lysine and other amino acids in seed

Meal amino acid profile is governed mainly by the

seed protein fraction, while free amino acids account

for only 1–10% of the total amino acid pool. There-

fore, the total (free and protein-associated) amino acid

profiles were determined in the transgenic seed. All of

the lines expressing CgDHDPS had significantly

higher levels of lysine (5.84–6.3%) than the DH55

control (5.14 ± 0.06%; 26.74 ± 0.22 mg per g dry

defatted meal), while three of the four lines expressing

CsDHDPS mA lines had significantly greater levels of

lysine (5.57–5.82%) (Supplemental Table S3). This

represented a 13.6 to 22.6% increase in lysine with

CgDHDPS and 7.6 to 13.2% increase with CsDHDPS

mA compared to the DH55 control. Interestingly, lines

that accumulated lysine at 13% or more above the

DH55 level (CgDHDPS-2, -3, -7; CsDHDPS mA-6)

also had reduced total seed yield (Fig. 5).

Most monogastric animals are unable to synthesize

histidine, isoleucine, leucine, lysine, methionine,

phenylalanine, threonine, tryptophan and valine, and

Fig. 4 Characterization of transgenic C. sativa lines expressing
genes encoding C. glutamicumDHDPS or the C. sativa DHDPS
W53R mutant mA. Panel A: Gene expression as determined by

RT-PCR in C. sativa DH55 (untransformed control) and several

independent, single transgene insert, homozygous lines express-

ing CgDHDPS or CsDHDPS mA. Expression of C. sativa 18S

ribosomal RNAwas used as a control for total RNA input. Panel

B: Growth of seedlings on 0.5 9 MS-sucrose plates with

1.5 mM AEC
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Fig. 5 Comparison of growth (Panels A, C, E) and seed

characteristics (Panels B, D, F) of C. sativa DH55 (untrans-

formed control) to several independent, single transgene insert,

homozygous lines expressing genes encoding C. glutamicum
DHDPS (Cg) or the C. sativa W53R DHDPS mutant mA. Plant

height was measured at 62 days, flowering time was recorded

when first flower opened, pod maturation was determined at

77 days. Values that were significantly different from the

control (DH55) are indicated by a single (P B 0.05) or double

(P B 0.01) asterisk (one-way ANOVA and Tukey HST test).

Error bars indicate standard deviation (n = 3)
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must acquire them from their diets, hence these are

referred to as essential amino acids. As such, the

impact of increasing lysine content on the levels of

these and other amino acids was also evaluated in the

meal. In addition to lysine, histidine levels also

increased in the transgenic seed by 3.7–6%, while

the level of the non-essential amino acid alanine

increased in CgDHDPS-2 (4%) and CgDHDPS-7

(3%), and the CsDHDPS mA-4 (2.8%) lines (Supple-

mental Table S3). In contrast, significant decreases

were noted in tryptophan in CgDHDPS-3 (13.6%),

CsDHDPS-mA-5 (12%) and CsDHDPS-mA-6 (12%).

Reductions in tryptophan in other lines exceeded 7%,

but were not considered statistically different from

DH55. The sulphur-containing cysteic acid was sig-

nificantly reduced in the CgDHDPS-3 (10.6%),

CgDHDPS-7 (10%), CsDHDPS mA-4 (13.6%),

CsDHDPS-mA-5 (10.9%) and CsDHDPS mA-4

(10.9%) lines. Arginine was also significantly

reduced, but to a more moderate extent in

CgDHDPS-3 (8%), CsDHDPS-mA-4 (3%),

CsDHDPS-mA-5 (5%), CsDHDPS-mA-6 (6%) and

CsDHDPS-mA-8 (6%). Lastly, a reduction in glu-

tamic acid content was observed in CgDHDPS-2

(3.4%), but not in other transgenic lines.

Discussion

Cold pressing of camelina seed results in a meal that is

rich in protein and residual oil. Similar to other

Brassicaceae, the meal contains anti-nutritional/anti-

palative compounds such as glucosinolates, phytic

acid and sinapine; however, it has been subjected to

comparatively limited breeding efforts to address

reducing these seed constituents. Even in its current

form, camelina meal can be included in poultry

(Kakani et al. 2012), swine (Kahindi et al. 2014), beef

(Cappellozza et al. 2012; Colombini et al. 2014) and

aquaculture (Hixon and Parish 2014; Hixon et al.

2014, Hixon et al. 2016a, 2016b) diets. Most plant-

based diets are limiting in one or more essential amino

acids, such as methionine and lysine (Zubr 2003;

Galili et al. 2016), although camelina meal has a

somewhat better constitution. In this study, a bacterial

and an engineered isoform of C. sativa DHDPS were

used to enhance lysine levels incorporated into protein

in camelina meal.

Plant DHDPS enzymes are generally highly sensi-

tive to lysine feedback-inhibition; however, isoforms

from A. thaliana (Vauterin et al. 2000), N. tabacum

(Ghislain et al. 1995) and Z. mays (Shaver et al. 1996)

have been identified in which single point mutations

greatly alter sensitivity to lysine. When engineered

into C. sativa DHDPS, each of these mutations

rendered the enzymes less sensitive to lysine feedback

inhibition to varying degrees. W53 is present in the

allosteric site and is conserved among plants, but not

bacterial, DHDPS enzymes. It functions in the posi-

tioning of helix a2 similar to H53 in E. coli DHDPS

(Blickling et al. 1997b). In the current study, intro-

duction of a W53R mutation in C. sativa DHDPS

resulted in a near complete loss of feedback inhibition

while coincidently increasing its specific activity. In

fact, this mutation resulted in a level of lysine

insensitivity similar to that of the C. glutamicum

DHDPS.

Feedback inhibition of DHDPS is mediated by the

interaction of lysine with moieties within an allosteric

site, which subsequently alters the conformation of the

active site. The C. glutamicum DHDPS is impervious

to lysine-feedback inhibition (Rice et al. 2008), while

the E. coli DHDPS is partially insensitive to lysine,

although the precise differences responsible for this

are not fully understood (Geng et al. 2013). Compar-

ison of lysine-bound and lysine-free grape vine

DHDPS structures revealed a conformational shift

within the allosteric site (Trp78) and important

catalytic residues within the active site (Tyr131,

Tyr132) upon lysine binding (Atkinson et al. 2013).

Molecular dynamic simulations suggested the rotation

of Tyr132 could attenuate proton relay through the

catalytic triad in the presence of lysine. There was

some indication of molecular or structural interplay

between residues within the C. sativa DHDPS

allosteric site as coupling of the W53R mutation with

the N80V mutation decreased lysine sensitivity com-

pared to N80V alone, but not to the level observed with

the W53R mutation alone. However, when the E84T

mutation was introduced into this double mutant to

create a triple mutant, lysine sensitivity was similar

to the W53R mutation alone or C. glutamicum

DHDPS.

Each of the mutations increased lysine insensitiv-

ity, but also affected the activity of the enzyme when

introduced alone. The same observation was made

with C. glutamicum DHDPS isoforms in which the

123

Transgenic Res (2022) 31:131–148 143



allosteric site had been altered to resemble that of

E. coli (Geng et al. 2013) indicating even in the

absence of lysine, residues within the allosteric site

and their interaction impact the conformation of the

active site. In support of this notion was the observa-

tion the specific activity of the CsDHDPS double

mutant (W53R/N80V) was reduced relative to the wild

type enzyme; however, activity was restored in the

triple mutant (W53R/N80V/E84T). This is in agreement

with structural studies indicating N80 is connected to

R138 in the active site, therefore, any perturbation

could have an immediate and profound impact on

activity (Blickling et al. 1997a, 1997b).

In this study, the introduction of feedback-insensi-

tive isoforms of DHDPS resulted in an increase in total

seed lysine. While strategies to deregulate lysine

biosynthesis or prevent its degradation lead to large

increases in free lysine in seeds, this does not

necessarily translate to equivalent increases in total

lysine (free and incorporated into protein). For exam-

ple, expression of CordapA in B. napus seeds led to a

100-fold increase in free lysine, but only a two-fold

(100%) increase in total lysine (Falco et al. 1995)

which is more than, but at least comparable to, that

observed in the current study with C. sativa (22.6%).

Furthermore, the amount of any free amino acid is

very low compared to that incorporated into protein;

therefore, reporting only increases in the free form can

be misleading. Incorporation of free lysine into protein

is dependent on the availability of uncharged lysyl-

transfer RNAs and mRNAwith corresponding codons.

As such, further increases in total lysine accumulation

could be achieved through the introduction of high-

lysine sink proteins (Yu et al. 2005; Chang et al. 2015;

Liu et al. 2016; Jiang et al. 2016) or the manipulation

of seed protein composition (Kohno-Murase et al.

1995; Kim et al. 2013; Schmidt et al. 2016) to favour

accumulation of protein with higher lysine contents. It

should be noted that lysine, aspartate, glutamine and

glutamate constitute a central regulatory metabolic

network in plant amino acid metabolism (Lam et al.

1995; Zhu and Galili 2003); therefore, directing

metabolic flux toward lysine synthesis may impact

other pathways. Moreover, glutamate is a major

product of the lysine catabolism pathway (Galili

et al. 2001) and its homeostasis is strictly regulated

because of its vital role in signaling (Forde and Lea

2007). In the current study, the elevated lysine level in

the transgenic C. sativa seeds expressing CgDHDPS

was correlated with lower levels of glutamate,

although no significant effect on aspartate was

observed. A similar observation was made in A.

thaliana seeds where lysine over-accumulation was

positively correlated with glutamine and asparagine,

but negatively correlated with aspartate and glutamate

(Zhu and Galili 2004). Hence, in any effort to enhance

the level of lysine or other essential amino acid it is

important to evaluate the overall impact on amino acid

composition to ensure that it remains balanced and

suitable for the desired application.

Increased accumulation of lysine in C. sativa seeds

impacted seed production. In plants, lysine synthesis

and catabolism are highly regulated, which is in

keeping with the important role of lysine in maintain-

ing proper growth and development (Galili 1995;

Azevedo and Lea 2001). High levels of free lysine in

N. tobacum are associated with loss of apical domi-

nance, delayed flowering and senescence, partial

sterility and abnormal leaf appearance (Frankard

et al. 1992; Shaul and Galili 1993). In A. thaliana,

constitutively expressing a bacterial DHDPS with the

CaMV 35S promoter in an lkr/sdh mutant background

caused a dwarf phenotype (Zhu and Galili 2004).

Deficiencies of several TCA cyclemetabolites, such as

fumarate and citrate, leading to energy stress may be

responsible for impaired seed germination in this line

(Galili 2011; Angelovici et al. 2011). These deleteri-

ous effects may be alleviated using a seed-specific

promoter to direct expression of theDHDPS transgene

(Falco et al. 1995). In light of this, the PAP85

promoter was used in the current study as it is active

only during seed maturation and the early phase of

seedling growth (Rozwadowski et al. 2008). For the

most part, seed germination and early seedling devel-

opment were not impacted in most of the transgenic

lines. However, seed yield was reduced; more so in

lines expressing CgDHDPS and less so in lines

expressing CsDHDPS mA. The CgDHDPS lines also

exhibited higher levels of total seed lysine accumula-

tion and it is possible that this had a deleterious effect

on seed development via one or more of the mecha-

nisms described above. The impact on seed yield has

not been reported in other similar studies; however,

wrinkled seed appearance and poor germination were

correlated with higher levels of lysine in soybean lines

expressing CgDHDPS (Falco et al. 1995). This

suggests that there may be practical limits to which

lysine levels can be increased in seeds. Based on the
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range of lysine levels in the transgenic lines and the

correlation with the degree of negative impact on

growth and development, the practical limit for lysine

accumulation in C. sativa seed is about a 10% increase

above that in the DH55 line (26.74 ± 0.22 mg per g

dry defatted meal) used in these experiments. How-

ever, it should be noted that we measured total (free

and protein-incorporated) lysine as this is an accurate

measure of lysine availability. If the negative effects

are associated with elevated levels of free lysine, it is

possible that inclusion of a more subsuming sink (e.g.

a high lysine protein) may alleviate some of these.

In summary, this study demonstrated it is possible

to engineer lysine feedback-inhibition insensitive

isoforms of C. sativa DHDPS resulting in an increase

in protein-incorporated lysine in seed. Notably, this

study also revealed that individual mutations and

combinations of mutations must be examined within

the context of the enzyme under study to generate

variants that are not only insensitive to lysine, but

remain highly active. With the ability to edit genes

directly within the C. sativa genome (Lyzenga et al.

2019), it may be possible to re-engineer one or more of

the endogenous CsDHDPS paralogues to confer these

properties.
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