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Abstract

Mechanisms that generate transcript diversity are of fundamental importance in eukaryotes. Although a large fraction of
human protein-coding genes and lincRNAs produce more than one mRNA isoform each, the regulation of this phenomenon
is still incompletely understood. Much progress has been made in deciphering the role of sequence-specific features as well
as DNA-and RNA-binding proteins in alternative splicing. Recently, however, several experimental studies of individual
genes have revealed a direct involvement of epigenetic factors in alternative splicing and transcription initiation. While
histone modifications are generally correlated with overall gene expression levels, it remains unclear how histone
modification enrichment affects relative isoform abundance. Therefore, we sought to investigate the associations between
histone modifications and transcript diversity levels measured by the rates of transcription start-site switching and
alternative splicing on a genome-wide scale across protein-coding genes and lincRNAs. We found that the relationship
between enrichment levels of epigenetic marks and transcription start-site switching is similar for protein-coding genes and
lincRNAs. Furthermore, we found associations between splicing rates and enrichment levels of H2az, H3K4me1, H3K4me2,
H3K4me3, H3K9ac, H3K9me3, H3K27ac, H3K27me3, H3K36me3, H3K79me2, and H4K20me, marks traditionally associated
with enhancers, transcription initiation, transcriptional repression, and others. These patterns were observed in both normal
and cancer cell lines. Additionally, we developed a novel computational method that identified 840 epigenetically regulated
candidate genes and predicted transcription start-site switching and alternative exon splicing with up to 92% accuracy
based on epigenetic patterning alone. Our results suggest that the epigenetic regulation of transcript isoform diversity may
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be a relatively common genome-wide phenomenon representing an avenue of deregulation in tumor development.
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Introduction

Molecular processes such as alternative splicing and transcrip-
tion start-site switching are primary drivers of transcript diversity.
About 95% of the ~23,000 human genes are estimated to produce
more than one mRNA isoform [1]. Beyond the genes with protein-
coding potential, recent discoveries suggest that the approximately
8,000 large intergenic noncoding RNAs (lincRNAs) found in the
human genome generate on average 2.3 isoforms per lincRNA
locus [2].

The analysis of transcript diversity regulation has traditionally
focused on splicing factors and RNA sequence features such as
splicing enhancers and silencers [3,4]. In recent years, however,
experimental studies have expanded to include other regulatory
factors such as histone modifications, suggesting that epigenetic
features may have the ability not only to determine when and in
which tissues certain genes are expressed, but also to influence how
these transcripts are processed. Genome-wide analyses indicate
that nucleosomes and histone modifications are not randomly
distributed, but often coincide with exon boundaries [5—7]. This
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observation, combined with recent evidence that most events of
alternative splicing in human cells occur co-transcriptionally [8,9],
strongly suggest a regulatory potential of histone marks [2,10].
While the connection of epigenetic regulation with overall gene
expression has largely been elucidated [11-14], it is much less
clear whether and how epigenetic marks determine relative
isoform abundance. Qualitative and quantitative models have
been built to predict expression on the level of genes using histone
modification enrichment information alone [15]. Interestingly, a
quantitative prediction model based on histone modification
enrichment outperforms models based on transcription factor
binding [15]. However, a systematic evaluation of the association
of epigenetic marks with transcription start-site switching and
splicing frequency is still lacking in the literature. Work by Ernst et
al. [16,17], who classified chromatin states to functionally annotate
the genome, identified a combination of histone modifications,
which were associated with transcription start site and spliced
exons. However, since in this work, the histone mark ChIP-seq tag
counts were processed into binary presence and absence calls and
since isoform abundance was not estimated from the expression

June 2014 | Volume 10 | Issue 6 | €1003611

CrossMark

click for updates


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003611&domain=pdf

Author Summary

Traditionally, the regulation of gene expression was
thought to be largely based on DNA and RNA sequence
motifs. However, this dogma has recently been challenged
as other factors, such as epigenetic patterning of the
genome, have become better understood. Sparse but
convincing experimental evidence suggests that the
epigenetic background, in the form of histone modifica-
tions, acts as an additional layer of regulation determining
how transcripts are processed. Here we developed a
computational approach to investigate the genome-wide
prevalence and the level of association between the
enrichment of epigenetic marks and transcript diversity
generated via alternative transcription start sites and
splicing. We found that the role of epigenetic patterning
in alternative transcription start-site switching is likely to
be the same for all genes whereas the role of epigenetic
patterns in splicing is likely gene-specific. Furthermore, we
show that epigenetic data alone can be used to predict the
inclusion pattern of an exon. These findings have
significant implications for a better understanding of the
regulation of transcript diversity in humans as well as the
modifications arising during tumor development.

data, the critical question remains whether different levels of
epigenetic enrichment are associated with the rates of transcription
start-site switching and splicing.

In addition to elucidating the epigenetic regulation of
transcript  diversity, further open questions remain. These
questions pertain for instance to the genome-wide prevalence of
epigenetic regulation of transcript diversity generated via
alternative splicing or transcription start-site switching. Further-
more, it is unclear to what extent the involvement of epigenetic
marks in the regulation of transcript diversity is gene-specific, ie.
whether individual genes respond to different histone marks or
whether there is a “universal” set of marks for alternative
splicing. Several studies aimed at deciphering the association
between histone modifications and alternative splicing on a
genome-wide scale [18-22] but relied solely on gene annotation
for the assignment of alterative splicing events rather than on a
comprehensive transcription analysis [22], or with no more than
three cell lines lacked the breadth of conditions analyzed
[18,19,21]. Finally, the association of epigenetic patterning with
transcript diversity in cancer cells has not been analyzed
methodically in a genome-wide manner; however, understanding
the prevalence of this phenomenon is of particular importance in
cancer where cells are known to undergo vast epigenetic
aberrations [23]. Indeed, epigenetically divergent regions in
cancer cell lines are enriched for cancer-associated genes
(Module S1 in Text S1).

Here, we sought to perform a detailed study investigating the
association between histone modification enrichments and the
processes that influence isoform abundance — transcription start-
site switching and splicing — on a genome-wide level (Fig. 1A
and Table 1). We further developed a novel approach that
identified a set of 840 genes for which transcription start-site
switching and splicing was strongly associated with at least one
epigenetic mark. We also showed that histone modification
enrichment alone can predict exon splicing and transcription
start-site switching with up to 92% accuracy in an independent
sample set. Our work strongly suggests a broad-scale involvement
of epigenetic factors in transcription start-site switching and
alternative splicing.
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Results

Data sets and analyses

We examined RNA-seq data from nine human cell lines
(Gm12878, Hsmm, Huvec, Hepg2, Helas3, K562, Hlhesc, Nhek,
Nhlf) (http://genome.ucsc.edu/ENCODE/), of which six were
normal (Gm12878, Hsmm, Huvec, Hlhesc, Nhek, Nhlf) and three
were cancer cell lines (Hepg2, Helas3, K562). For all nine cell
lines, we obtained information of the genome-wide patterns of the
following twelve histone marks: H3K4mel, H3K4me?2,
H3K4me3, H3K9ac, H3K9mel, H3K9me3, H4K20mel,
H3K27ac, H3K27me3, H3K36me3, H3K79me2, H2az.

Our analysis of the association between histone enrichment
and transcript diversity utilized two different approaches: (i) a
genome-wide approach, and (ii) an exon-specific approach. The
genome-wide method analyzes each cell line individually and
investigates all exons with a given characteristic (i.e. spliced, not
spliced, transcription start site exon, etc.) at once, irrespective of
the gene of origin. The exon-specific approach, in contrast,
analyzes one exon at a time across multiple cell lines. The latter
approach is able to identify candidate exons or genes with
potential epigenetic regulation of transcription diversity and is
analogous to an experimental setup in which each cell line
represents an experimental condition (i.e. varying levels of
histone modification enrichment) resulting in a particular exon
inclusion or transcription start site outcome. The genome-wide
approach requires a set of assumptions (see Discussion section);
however, due to the large sample size of exons, it may uncover
associations that would otherwise not be significant at a single
gene level. With sufficiently many samples and sequencing
depth, the patterns of associations uncovered by both approach-
es converge.

The splicing exon inclusion rate and transcription start
site inclusion rate

To assess the level of transcript diversity in the human
genome, we analyzed RNA-seq data from nine human cell
lines and quantified the abundance of specific mRNA isoforms
for each protein-coding gene and lincRNA. We mapped and
assembled the transcriptome of each cell line using the
TopHat2 and Cufflinks2 softwares [24,25], respectively, using
merged UCSC reference annotation with lincRNA annotation
from Cabili and colleagues [2] as a set of assembly models (see
Methods). In order to minimize confounding issues, for
instance with the misalignment of RNA-seq reads, we excluded
paralogs that were more than 95% identical on the DNA
sequence level. Exons were grouped into four categories:
transcription start site, internal, transcription end site, or
overlapping exons. Only internal and transcription start site
exons were used for further analysis. The level of expression of
an internal and transcription start site exon was quantified by
calculating the splicing exon inclusion rate (SEIR, ranging
from O to 1) and transcription start site inclusion rate (T'SSIR,
ranging from 0 to 1) respectively, both of which reflect the
proportion of transcripts containing a given exon at a given
gene locus (Fig. 1B). An SEIR of 0 implies that a given exon is
always spliced in all expressed isoforms of a gene, whereas an
SEIR of 1 implies that a given exon is always retained. A
TSSIR of less than 1 signifies that a given exon occasionally
represents the first exon of an expressed isoform, whereas a
TSSIR of 1 indicates that a given exon serves as the
transcription start site for all expressed isoforms. The SEIR
and TSSIR measures therefore identify exons contributing to
transcript diversity of a given gene.
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Figure 1. Analysis workflow and association between histone modification enrichment and transcription start site inclusion rate.
(A) Schematic of the analysis workflow employed in this study. (B) The exon inclusion rate (SEIR and TSSIR) represents the proportion of transcripts of
a given gene stemming from a given exon. In this example, three transcripts representing three different splice forms are generated from a single
gene. The three isoforms are generated via two transcription start sites and one splicing event. Exon 1 is present in two transcripts, and since it is a
transcription start site (TSSIR =0.67). Exon 2 is present in three transcripts and is a transcription start site for one of the isoforms (TSSIR=0.33). Exon 3
is present two transcripts and is spliced out in one isoform (SEIR =0.33). Lastly, exon 4 is a transcription end site and is not considered in our analysis.
(C) and (D) are correlations between transcription start site inclusion rate and enrichment of selected histone modifications in normal cell lines for
protein coding genes and lincRNAs, respectively. Black dots represent median Spearman rank correlations between exon inclusion rate and
H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K27ac, H3K79me2, H3K36me3, and H2az enrichments in normal cell lines. All correlation coefficients were
transformed using a Fisher’s transformation before plotting. Notches were calculated as +1.58 x <%> where /QR stands for inter quartile range

and n for sample size. Distances from exon represent genomic blocks of a given size from exon start (upstream regions) or exon end (downstream

regions).
doi:10.1371/journal.pcbi.1003611.g001

Transcriptome-wide association of histone mark profiles as well as histone modification enrichment for all
enrichment with TSSIR and SEIR annotated exons of protein-coding genes and lincRNAs in the
We hypothesized that, if histone modification enrichment normal cell lines (Methods). Out of the twelve histone marks

patterns play a significant role in transcript diversity, then the examined, seven (H3K4mel, H3K4me2, H3K4me3, H3K.9.3C:
levels of transcription start-site switching and splicing should H3K27ac, H3K79me2, and H2az) showed a strong positive

correlate with the enrichment levels of certain histone modifica- association with transcription start-site switching for both protein-
tions within each cell line analyzed. We therefore investigated the coding genes and lincRNAs (Fig. 1C and 1D). Although the
transcriptome-wide association between histone mark enrichment involvement of H3K4me2 and H3K4me3, H3K9ac, and

and TSSIR and SEIR within each cell line. To address the H3K27ac in transcription initiation was expected given the
possibility that transcript diversity in cancer cell lines is regulated findings of previous studies [16,17], the presence of H3K79me2

differently as compared to that in normal cell lines, we quantified and H2az was not anticipated. These results suggest that the
the level of association in the normal cell lines first and then transcription initiation of both protein-coding genes and
assessed the degree of similarity in this pattern between normal lincRNAs is probably regulated via similar molecular mecha-
and cancer cell lines. To this end, we determined the expression nisms.
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Table 1. Summary of datasets used in this study.

Epigenetic Effect on Transcript Isoform Diversity

Feature Data type Cell type Source
Gene expression RNA-seq Gm12878, Hsmm, Huvec, Hepg2, ENCODE
Helas3, K562, H1hesc, Nhek, Nhif

Histone modification ChlP-seq for H3K4me1, H3K4me2, Gm12878, Hsmm, Huvec, Hepg2, ENCODE

H3K4me3, H3K9ac, H3K9me1, H3K9me3, Helas3, K562, H1hesc, Nhek, Nhif

H4K20me1, H3K27ac, H3K27me3,

H3K36me3, H3K79me2, H2az
lincRNA annotation GTF human genome version hg19 Ref. 2
Gene annotation GTF human genome version hg19 www.genome.ucsc.edu

GTF - gene transfer file format used for human genome annotation.
doi:10.1371/journal.pcbi.1003611.t001

The transcription profiles of the nine cell lines revealed that
many protein-coding genes as well as lincRNAs undergo
alternative splicing. Given the fact that transcription start-site
switching occurs in a similar epigenetic background for protein
coding genes as well as lincRNAs, we then sought to investigate
whether splicing in protein-coding genes and lincRNAs is also
associated with a similar set of histone marks. We found that
splicing in protein-coding genes was most strongly positively
correlated with the enrichment of H3K36me3 and negatively
correlated with H3K4me2 and H3K4me3 (Fig. 2A). H3K36me3
has been previously found to mark actively transcribed regions and
to regulate the splicing of FGFR2 [26], thus confirming our
results. However, splicing of lincRNAs did not reveal any
association with histone mark enrichment (Fig. 2B), suggesting
that splicing of non-coding RNAs is either independent of the
epigenetic  background, involves sequence-specific regulation,
and/or occurs post-transcriptionally.

We then aimed to investigate whether this pattern was
consistent when taking into account exon number per gene, gene
expression patterns, and genomic features such as simple repeats,
microsatellites, and conserved elements. Controlling for these
factors, the correlations between TSSIR and H3K4me?2 as well as
H3K9ac were very robust, varying for instance in the Gm12878
cell line between 0.35<p<<0.37 for H3K4me2 (uncontrolled
correlation p=0.37) and between 0.35<p<<0.38 for H3K9ac
(uncontrolled correlation p=0.37). Similarly, controlling for
H3K9ac enrichment reduced the correlation between TSSIR
and H3K4me2 by only 0.5%, and controlling for H3K4me2
enrichment reduced the correlation between TSSIR and H3K9ac
by only 3.18%. These observations suggest that, while the
interplay between transcript diversity and epigenetics probably
mvolves many other factors, which might occlude the signal, the
association between the SEIR and specific histone marks is
genuine.

Spatial patterns of correlation between histone
enrichment, TSSIR, and SEIR

Recently, a study examining the alternative splicing of CD45
showed that molecular interactions as far as 1 kb downstream of
exon 5 affected its inclusion rate [27]. To investigate how
epigenetic marks at a distance from exons influences transcript
diversity on a genome-wide scale, we analyzed histone enrichment
profiles at distances of 1 kb, 2 kb, and 5 kb immediately upstream
and downstream of the exon locus (Methods). We identified
pronounced differences in spatial patterns of correlation strength
between the previously identified histone marks H3K4mel and
H3K79me2 and the TSSIR of protein-coding genes in normal
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ENCODE - data generated by the ENCODE consortium [8], available at http://genome.ucsc.edu/ENCODE/downloads.html.

cells (Fig. 1C). For example, the correlation between TSSIR and
H3K4mel at the exon locus was very weak (29 i, = 0.09) but rose
to much higher levels as close as 1 kb upstream and downstream
of the spliced exon (z_j,=0.28, z,=0.28); this level of
correlation was also observed for distances of 2 kb and 5 kb
upstream and downstream of the exon (z_j,=0.22,
Z 91 =0.29, 291, =0.33, z54,=0.30). Interestingly, a very
different spatial pattern was observed for the histone mark
H3K79me2, for which the correlation between TSSIR and
histone enrichment upstream and at the exon locus was weak
(z—5 1, =0.03, z_914,=0.07, z_; 11, =0.08, zg,=0.15), but be-
came much stronger at distances of 1-5 kb downstream of the
exon (21 i = 0.26, 20 1, = 0.27, 25 15, = 0.26). The spatial pattern of
correlation between H3K4mel enrichment and TSSIR for
lincRNAs was less pronounced (Fig. 1D), showing lower levels
of correlation at the exon locus compared to up- and downstream
regions (z—5 1, =0.17, z2_914,=0.18, z_; 1, =0.15, z¢ 3, =0.13,
21 kb= 0.19, 29 10, = 0.20, z5 1, = 0.19).

The only spatial pattern evident for an association between
histone enrichment and SEIR was observed for H3K36me3
(Fig. 2A). While the correlation outside the exon boundaries
ranged from 0.30<<z<<0.36, the correlation at the exon locus itself
was slightly diminished to zg g, =0.26. It remains unclear which
factors drive the spatial distribution of H3K36me3; for example,
Luco et al. showed that H3K36me3 interacts with the FGFR2 pre-
mRNA via the MRG15/PTB chromatin-adaptor complex, which
regulates the inclusion rates of alternatively spliced IIIb and Illc
exons [28]. Work by others has further showed that additional
proteins can act as “‘chromatin-adaptors” [29-32]. The question
remains to what extent different chromatin adaptor complexes
regulate splicing and which nucleosomes they interact with. A
possible explanation of why the correlation of H3K36me3 with
SEIR is diminished at the exon locus may lie in the position,
relative to the exon, where different chromatin adaptors assemble
and interact with H3K36me3 to regulate splicing. Further
complicating the situation is a recent report demonstrating
opposite causality, where alternative splicing was shown to
modulate the levels of H3K36me3 enrichment [33,34]. We
observed no obvious spatial patterns between histone enrichment
and splicing for lincRNAs (Fig. 2B).

Opverall, our observations suggest that histone mark enrichment
i1s associated with transcription start site exon inclusion and
splicing and has a strong spatial signature. In addition to these
analyses, we performed several control studies to establish that our
results are genuine. First, our findings were robust even after
controlling for gene expression, exon number, and genomic
features such as simple repeats, microsatellites, and evolutionary
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Figure 2. Comparison of epigenetic association between normal and cancer cell lines. We analyzed (A-C) six normal human cell lines
(Gm12878, Hsmm, Huvec, H1hesc, Nhek, Nhif) and (D) three cancer cell lines (Hepg2, Helas3, K562) for associations between transcription start site
inclusion rate and splicing exon inclusion rate and histone modification enrichment for protein-coding genes (A,C, and D) and lincRNAs (B). Values

represent the average of Fisher transformed Spearman rank correlations
representing increasingly negative and green representing increasingly posit
to a given exon where histone enrichment was measured; 0 kb represents
regions from the exon boundary either upstream (negative) or downstream
doi:10.1371/journal.pcbi.1003611.g002

conservation. Although the overall correlation between both
TSSIR and SEIR and various histone modifications was moderate
transcriptome-wide, the rapid change of correlation over short
distances from exons and consistent patterns across multiple cell
lines suggest an authentic relationship.

TSSIR, SEIR, and histone marks in cancer cells

Since cells accumulate many genetic and epigenetic aberrations
during tumorigenesis [23,35-37], normal and cancer cells may
differ substantially in their epigenetic regulation of transcript
diversity. To investigate this possibility, we studied whether the
association between TSSIR, SEIR and histone modifications in
cancer cell lines followed similar patterns as those observed in the
normal cells. We thus repeated the analyses described above using
the cancer cell line data and tested for significant differences
between the results using normal and cancer cell data for both
protein-coding genes as well as lincRNAs. Remarkably, protein-
coding genes in cancer cell lines displayed very similar patterns of
association between the TSSIR and histone modifications as
normal cell lines; the histone marks H3K4mel, H3K4me?2,

PLOS Computational Biology | www.ploscompbiol.org

to enable direct comparison. Coefficients are color-coded, with red
ive correlation. Distance from exon categories signifies a region relative
region within given exon boundaries, and 1 kb, 2 kb, and 5 kb signify
(positive).

H3K4me3, H3K9ac, H3K27ac, H3K79me2, and H2az, which
we previously found to be highly correlated in normal cell lines,
were also highly correlated with TSSIR in cancer cells (Fig. 2C
and 2D). Their correlation profiles across upstream and
downstream exon regions also did not significantly differ from
those of normal cell lines (T-test, 0.13>p>0.89 across all —5 kb,
—2 kb, —1 kb, 0 kb, 1 kb, 2 kb, and 5 kb regions). Similarly, the
other comparisons between normal and cancer cells, for both
protein-coding genes and lincRNAs, did not show significant
differences either (see Fig. 2, Table S1-S4 in Text S1, and
Figure S5 in Text S1). These findings imply that the same
histone modifications are associated with transcript diversity in
both normal and cancer cells and that perturbation of the
epigenetic environment via experimental manipulation in normal
cells would potentially be informative of cancer cells.

Gene-specific association of histone mark enrichment
with TSSIR and SEIR

So far, our transcriptome-wide and within-cell line approach
identified an association between TSSIR, SEIR and histone

June 2014 | Volume 10 | Issue 6 | €1003611
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Figure 3. Differential H3K4me2 enrichment near exon 3 of HPS4. The HPS4 gene produces up to 8 isoforms. Three of these isoforms
(isoforms 2, 3, and 8 — TSS exon marked with red dashed line) utilize the 3™ exon as the transcription start site (TSS) and four isoforms (isoforms 4-7,
exons marked with green dashed line) utilize the 3™ exon as an internal exon. Considering the H3K4me2 modification within the exon 3 TSS
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2, 3, and 8) are expressed (EIR=0) and cell lines that express isoforms with TSS at the 3" exon position.

doi:10.1371/journal.pcbi.1003611.9g003

enrichment across all exons but was unable to identify individual
candidate genes with epigenetically regulated transcript diversity.
We thus aimed to complement our investigation with a method
that analyzes each exon individually across multiple cell lines. This
approach is able to determine candidate genes with potential
epigenetic regulation of transcript diversity and is analogous to an
experimental setup where each cell line represents an experimental
condition (i.e. varying levels of histone modification enrichment)
resulting in a particular exon inclusion outcome. For example, the
gene HPS4 (Hermansky-Pudlak syndrome gene 4) is expressed in
all nine cell lines; its 3™ exon is always excluded (SEIR = 0) in all
HPS4 isoforms in Hlhesc, Helas3, Hsmm, Huvec, and Nhlf cells,
but is only occasionally included (0.03<SEIR<C0.15) in Gm12878,
Hepg2, K562, and Nhek cells (Fig. 3). Interestingly, the cell
lines that always exclude this exon do not show a significant
enrichment for H3K4me2 within exon boundaries (Fig. 3),
whereas the remaining cell lines do and the difference between
these two groups is significant (T-test, FDR-corrected p<<0.003,
Methods).
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We thus analyzed all exons across all cell lines in a similar
fashion, first only taking into account histone enrichment at the
exon locus. Given the TSSIR and SEIR values across cell lines,
each exon may be constitutively excluded (TSSIR=0 and
SEIR = 0), occasionally excluded (T'SSIR>0 and SEIR<I), or
retained (T'SSIR =1 and SEIR =1). We then directly compared
the histone modification levels for the inclusion pattern of a given
exon across all available cell lines. The three possible two-way
comparisons are: i) cell lines in which a given exon is always
excluded versus retained (T'SSIR =0 vs. TSSIR =1 or SEIR=0
vs. SEIR = 1), 1i) cell lines in which a given exon is retained versus
occasionally excluded (T'SSIR =0 vs. 0<TSSIR<1 or SEIR=0
vs. O<SEIR<1), and 1) cell lines in which a given exon is
occasionally excluded versus retained (O<TSSIR<1 ws.
TSSIR=1 or O<SEIR<1 vs. SEIR=1). Unfortunately, since
the number of cell lines with available histone modification was
limited, the power of this test was low. Nonetheless, given our
stringent criteria (Methods), we identified 840 genes for which
transcript diversity was significantly associated with histone
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Figure 4. Number of significant genes expected by chance. We
randomly reassigned exon TSSIR and SEIR labels, but left the same
epigenetic background constant, and performed gene-specific analysis
1000 times to obtain a distribution of the number of significantly
associated genes with transcript diversity (in blue). Observing 840
candidate genes in total (red horizontal line) was significantly higher
(p<<0.001) then expected by chance.
doi:10.1371/journal.pcbi.1003611.g004

modification enrichment at the exon locus (Supplementary
Dataset S1). Specifically, 399 and 473 genes displayed a
significant association between splicing and transcription start-site
switching, respectively. Note that a single gene can be significant
for the association between epigenetic patterning and both splicing
and transcription start-site switching. To understand whether
obtaining 840 candidate genes was a result of chance, we
performed 1000 permutations by randomly reassigning exon
labels for TSSIR and SEIR while keeping the epigenetic
background of a gene constant. Observing 840 candidate genes
in total was significantly higher (p<<0.001) as compared to what
was expected by chance (Fig. 4). These 840 genes were enriched
for several GO terms (Table S6 in Text S1) including the
regulation of the response to stimulus and development process.
Thirty three of these genes were cancer-associated genes
(Supplementary Dataset S1) (http://www.sanger.ac.uk/
genetics/ CGP/Census/).

Histone modification enrichment predicts TSSIR and SEIR

We then aimed to predict exon inclusion patterns in an
independent sample set. Specifically, given the histone enrichment
levels and the inclusion pattern in the nine previously studied cell
lines, we sought to determine, in independent cell lines, whether a
given exon was always retained (SEIR=1), always excluded
(SEIR = 0), or occasionally excluded (0<SEIR<1) with regard to
splicing or transcription start-site switching (T'SSIR =1,
TSSIR =0, or O<TSSIR<I, respectively). These predictions
were performed in the Hmec and Monocytes CD14 cell lines,
for which more complete epigenetic information became available
(http://genome.ucsc.edu/ENCODE/downloads.html). We limit-
ed our predictions to the 840 candidate genes identified above,
since the cell lines previously analyzed provided evidence for an
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mvolvement of epigenetic marks in transcript diversity for only 840
candidate genes; attempting to predict exon inclusion based on
epigenetic information for genes that are not epigenetically
regulated would thus not be appropriate.

To illustrate our approach, consider exon 5 of the ETV1 gene
in the Hmec cell line; for this exon, we generated a matrix
containing enrichment values for all histone modifications, which
were significantly associated with SEIR (in this case H3K9ac,
H3K4me3, H3K4me2, and H3K27ac) for the original cell line set
(Gm12878, Hsmm, Huvec, Hepg2, Helas3, K562, Hlhesc, Nhek,
and Nhlf), and identified the SEIR of this exon in each cell line. All
ETVI isoforms in Gm12878 and Hepg?2 cell lines lacked exon 5
(SEIR = 0) whereas some isoforms expressed in Hlhesc, Hsmm,
Huvec, K562, Nhek, and Nhlif cell lines contained exon 5 (SEIR
range 0.43-0.69) (Fig. 5A). The difference in histone enrichment
between these groups was striking: the Gm12878 and Hepg?2 cell
lines completely lacked enrichment in H3K9ac, H3K4me3,
H3K4me2, and H3K27ac while the remaining cell lines were
strongly enriched in those marks (Fig. 5A). We then calculated the
pairwise Euclidean distance between all cell lines and the first
validation line, Hmec, and determined the three nearest-neighbor
cell lines signified by the smallest Euclidean distance (Methods).
Since Hmec was enriched for all four histone marks in exon 5, its
epigenetic profile was closest to that of the Nhlf, K562, and Huvec
cell lines. We therefore predicted that in Hmec, exon 5 of ETV1
was occasionally excluded from some fraction of isoforms (0<
SEIR<1), which was validated by the finding that in this cell line,
SEIR =0.74. When extending this approach to all candidate
genes, we predicted the correct exon inclusion category with an
accuracy of 91.82% and 84.65% for Hmec and Monocytes CD14
cell lines, respectively (Fig. 5B). To establish whether such high
prediction accuracy can be established across all cell lines, we
performed leave-one-out cross-validation following the approach
described above. The accuracies for individual cell lines ranged
from 72.1% in the Helas3 cell line to 91.8% in the Nhek cell line,
with an average accuracy of 87.2% (Fig. 6). We also calculated the
overall accuracy separately for splicing and for transcription start-
site switching, which was 90.16% and 85.81%, respectively.
Although the O0<EIR<1 vs. EIR=1 comparison is the most
frequent (76%), the accuracy for all comparisons consistently were
high, at 90.00%, 95.00%, and 87.28% for EIR =0 vs. 0<EIR<I,
EIR=0 vs. EIR=1, and 0<EIR<I wvs. EIR =1, respectively.
Details regarding the fraction of genes that could be assigned into
comparative groups and the number of significant genes for each
validation step are displayed in Table 87 in Text S1. These
findings suggest that the histone modification enrichment levels
alone can be used to predict the inclusion pattern of an exon.

Discussion

In this study, we analyzed the association between transcription
start-site switching, spliced exon inclusion rates and histone
modification patterns across multiple normal and cancer cell lines
for protein-coding genes and lincRNAs. Unlike previous studies
[8,16,17], which established the relationship between epigenetic
patterning and gene expression levels, we addressed the association
of the epigenetic background of a gene with its transcript isoform
diversity. The main difference between ours and previous
investigations therefore is that our study investigates relative
isoform diversity of expressed genes, and not actual expression
levels.

We used two approaches to address this issue. The first
approach correlated transcriptome-wide (ie “within cell line”)
transcription start site inclusion rates and spliced exon inclusion
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Figure 5. Prediction of ETV1 exon 5 inclusion in the Hmec cell line and overall prediction accuracy. (A) Exon 5 of ETV1 is present in
isoforms 9 and 11, but it is spliced in isoforms 10, 12, and 13. Comparing the enrichment of H3K9ac, cell lines from which exon 5 was constitutively
spliced (Gm12878 and HepG2) displayed an absence of H3K%ac, whereas the remaining cell lines, including Hmec, showed varying levels of H3K9ac
enrichment. Since the Hmec cell line H3K9ac enrichment resembles that of the cell lines in which the 5™ exon was not constitutively spliced out, we
predicted that exon 5 in Hmec would only occasionally be excluded. (B) The numbers of exons for which the inclusion pattern was correctly vs.

incorrectly predicted in Hmec and Monocytes CD14 cell lines.
doi:10.1371/journal.pcbi.1003611.g005

rates with histone enrichment levels. The second approach
investigated gene-specific associations between transcription start
site inclusion rates, spliced exon inclusion rates and histone
enrichment levels. The shortcomings and assumptions made by
each method are discussed below. Overall, our study led to four
main findings. (i) The role of epigenetic patterning in transcription
start-site switching is likely to be common across the genome for
both protein-coding genes as well as lincRNAs. (ii) The role of
epigenetic patterns in splicing is likely gene-specific, with the
exception of H3K36me3 (discussed below). (ii1) Our gene-specific
approach led to the identification of 840 candidate genes whose
exon inclusion rates for transcription start-site switching and
splicing were strongly associated with patterns of histone
modifications. (iv) Lastly, histone modification data alone can be
used to predict the inclusion pattern of an exon.

Our first and second findings are based on the observation that
both transcriptome-wide and gene-specific approaches identified a
common set of histone marks that were associated with
transcription  start-site  switching (H3K4mel, H3K4me2,
H3K4me3, H3K9ac, H3K27ac, and H2az), whereas the results
of these two methods differed for the case of splicing.
Transcriptome-wide analysis for splicing showed a pronounced
association of splicing inclusion rates with H3K36me3 whereas the
gene-specific approach identified H2az, H3K4mel, H3K4me2,
H3K4me3, H3K9ac, H3K9me3, H3K27ac, H3K27me3,
H3K36me3, H3K79me2, and H4K20mel as significantly associ-
ated marks. This discrepancy is likely a result of a bias by the
transcriptome-wide approach to detect common genome-wide
trends and the gene-specific approach to identify unique
relationships for each exon.
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Observing both common and gene-specific histone marks
associated with splicing is in line with the proposed models of
epigenetic regulation of splicing: the kinetic model and the
chromatin-adaptor model [38]. According to the kinetic model,
chromatin structure affects the elongation rate of RNA polymer-
ase, which in turn influences the competition between weak and
strong splice sites for the recruitment of splicing factors [38]. The
chromatin-adaptor model, on the other hand, describes an
interaction between specific histone marks and pre-mRNA
molecules through a chromatin-adaptor complex, which aids in
the recruitment of splicing factors to pre-mRNA splicing sites
[26,30,39]. Since these two models are not mutually exclusive, one
can imagine H3K36me3, known to be associated with transcrip-
tion elongation [16,17], to act as a common factor in splicing
genome-wide, while other histone marks can act in a gene-specific
manner. Interestingly, histone marks traditionally associated with
transcription initiation and transcription repression, such as
H3K4me3 and H3K9me3, respectively, were also found in our
study to be associated with splicing gene-specifically. This
observation is in line with experimental studies describing splicing
chromatin-adaptor complex for H3K4me3 [40] and for
H3K9me3 [41]. Further extending the realm of epigenetic
regulation of transcript diversity is a recent work by Mercer and
colleagues, which presented evidence for the role of 3-dimensional
DNA conformation in splicing [42]. According to this study, exons
sensitive to DNase I are spatially located close to transcription
factories near promoter regions containing initiating Pol II as well
as other general transcription and splicing factors.

Interestingly, a large fraction of alternatively spliced exons are
DNase I sensitive [42]. This finding suggests that the epigenetic
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Figure 6. Prediction accuracy. (A) Prediction accuracy of exon inclusion categories from leave-one-out cross-validation by cell line being
predicted. (B) Prediction accuracy by exon inclusion category comparison. (C) Prediction accuracy of exon inclusion categories for splicing
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doi:10.1371/journal.pcbi.1003611.g006

background of an exon cannot only interact with splicing factors
via chromatin adaptor complexes, but potentially also induce 3-
dimensional DNA conformation changes that enhance the
likelihood of interactions with general transcription factors, and
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Figure 7. Frequency of histone modification marks found
significantly associated with transcription start-site switching
(marked red) and splicing (marked green). Our gene-specific
approach identified 840 candidate genes for which transcript diversity
significantly associated with histone modification enrichment. Note that
transcription start-site switching and splicing of a single gene can be
associated with multiple histone marks.
doi:10.1371/journal.pcbi.1003611.g007

PLOS Computational Biology | www.ploscompbiol.org

perhaps thus influence the splicing frequency. This 3-dimensional
conformation is likely enhanced via particular sets of histone
modifications. Interestingly, our second analysis, testing individual
exon across all cell lines, revealed that alternatively spliced exons
were frequently associated with different enrichment levels of
histone marks well known to be associated with promoters and
enhancers, such as H3K4mel, H3K4me2, H3K4me3, H3K27ac,
and H3K9ac [16,17] (Fig. 7). Accounting for such a 3-
dimensional model could further strengthen the association found
between histone modification enrichment and transcription start-
site switching and splicing,

There are however shortcomings to both approaches. The
transcriptome-wide method makes two assumptions that may be
violated in cells. First, correlating transcription start site inclusion
rates and spliced exon inclusion rates with histone mark
enrichment assumes that (i) transcript diversity of all genes is
associated with their epigenetic background, and additionally (ii)
these rates are associated with the same histone modification.
Likely, it is for these reasons that the correlations between exon
inclusion rates and histone mark enrichment are rather moderate.
As mentioned above, however, because of the rapid change of
these correlations over short distances from exons and the
consistent patterns across multiple cell lines, these associations
suggest a genuine relationship. The shortcoming of the gene-
specific approach lies in the low statistical power of eleven cell lines
analyzed and the natural tendency to miss tissue specific exon
behavior. This is particularly the case for lincRNAs, of which
30%, according to recent estimates, have tissue specific expression

(2].
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Since a large body of experimental data indicates that aberrant
splicing of gene transcripts significantly contributes to many areas
of cancer biology, including metabolism, apoptosis, cell cycle
control, invasion and metastasis [43-45], it is imperative to
further our understanding of the regulatory and/or potentially
disruptive role of epigenetic patterning in alternative splicing and
transcription start site selection in tumorigenesis. Significant effort
has been devoted to the discovery of DNA aberrations that drive
cancer progression [35-37,46]; surprisingly, however, there is
only a small number of recurrent genomic changes within and
across cancer types, with few prominent exceptions [47-49].
While the identification of affected pathways rather than
individual genes affected by DNA mutations might lead to more
informative results, the possibility remains that aberrant pheno-
types in cancer are largely driven by the epigenetic component of
gene expression and transcript deregulation [23,50,51]. Our
study identified several histone modifications (H3K4mel,
H3K4me2, H3K4me3, H3K9ac, H4K27ac, H3K36me3, and
H3K79me2) that are strongly associated with transcript diversity
across multiple independent cell types as well as 840 candidate
genes for which there is evidence of epigenetic co-regulation of
transcript  diversity. Our work represents a step towards
identifying the functional consequences of histone modifications
on transcript diversity and suggests a rational methodology for
the analysis of modern, large-scale datasets, which can be applied
to any sample sets.

Methods

Data sets analyzed

Cell lines. We analyzed RNA-seq data from nine human cell
lines (Gm12878, Hsmm, Huvec, Hepg2, Helas3, K562, Hlhesc,
Nhek, Nhlf) (http://genome.ucsc.edu/ENCODE/), of which six
were normal (Gm12878, Hsmm, Huvec, Hlhesc, Nhek, Nhlf) and
three were cancer cell lines (Hepg2, Helas3, K562). For all nine
cell lines, we obtained information of the genome-wide patterns of
the following twelve histone marks: H3K4mel, H3K4me?2,

H3K4me3, H3K9ac, H3K9mel, H3K9me3, H4K20mel,
H3K27ac, H3K27me3, H3K36me3, H3K79me2, H2az
(Table 1).

RNA-seq data. RNA-seq data (paired-end 75 nt reads) from
nine human cell lines (Gm12878, Hsmm, Huvec, Hepg?2, Helas3,
K562, Hlhesc, Nhek, Nhlf) was downloaded from the UCSC
ENCODE  database  (http://genome.ucsc.edu/ENCODE/
downloads.html) and used to calculate relative exon expression.
Prior to mapping reads to the human genome (hgl9), each fastq
file was processed in the following way: quality score statistics at all
nucleotide positions for all fastq files were obtained using a python
script [52] from GALAXY (https://main.g2.bx.psu.edu/). All
reads in each fastq file were trimmed at the same position, at
which the second lowest quartile quality score dropped below 20.
This procedure resulted in read lengths of about 50-70 bp,
depending on the quality of the sequencing run. Multiple
replicates were pooled and analyzed together. Read alignment
was performed using the TopHat software package [24], which is
an alignment tool optimized for mapping reads across exon-exon
junctions. During the alignment step, we allowed for one
mismatch between the read and the genome and used UCSC
gene annotation (hgl9) as a guiding gene model set to
accommodate for lower quality bias toward the 3’ read end but
also to maintain a nearly identical match to the genome. The
TopHat output was then further processed with Cufflinks software
[25], which assembles transcript isoforms and quantifies isoform
expression. Cufflinks was run with the option of assembling only
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those transcript isoforms that are strictly supported by a given gene
annotation (UCSC hgl9).

ChIP-seq data. In order to assess the level of histone
modifications across all exons, we analyzed pre-computed bam
files from ENCODE ChIP-seq experiments [17,53] for 12 histone
marks (H3K4mel, H3K4me2, H3K4me3, H3K9ac, H3K9mel,
H3K9me3, H4K20mel, H3K27ac, H3K27me3, H3K36me3,
H3K79me2, H2az). Since the genomic regions of interest had
known boundaries (i.e. exon coordinates), we directly counted the
number of overlapping reads with a given genomic region to attain
the raw signal. The minimum overlap between a read and a
genomic location was set to one nucleotide.

Determination of the exon inclusion rate

Exons were grouped into four categories: transcription start site,
internal, transcription end site, or overlapping exons. We then
quantified the presence of each exon type. Only internal and
transcription start site exons were used for further analysis. The
relative presence of transcription start site exons (I'SSIR —
transcription start site inclusion rate) and spliced exons (SEIR —
splicing exon inclusion rate) was calculated from the Cufflinks .gtf
output file and reflects the fraction of all isoforms from a given

gene that contain a given exon. The inclusion rates therefore have
ranges of 0<TSSIR=1 and 0=SEIR=1.

Determination of histone modification enrichment

Using raw signal read counts of histone marks and reference
samples (input DNA) for each cell line, we calculated the presence
of histone mark enrichment using a Fisher’s test statistic and
considered enrichment significant [17] if p<<0.0001. The level of
RP KMsamp/e .
RP KMinput‘ RPEM is
defined as RPKM r(R'-10%)-(L-10%), where r represents the
number of reads mapped to a given exon, R is the total number
of reads mapped, and L defines the length of a given exon. RPRKM
therefore denotes the number of reads per kilobase of exon per
million reads mapped.

enrichment was calculated as E=In

Association between histone modifications and SEIR as
well as TSSIR

Prior to further analysis, we filtered our exon set to contain
only internal exons and exons of genes that express more than
one isoform in at least one normal or cancer cell line. In order
to avoid potential problems with mapping RNAseq reads to
closely related genes, we further excluded genes with paralogs
more than 95% identical on the DNA level to generate the
final curated exon dataset. We then calculated the Spearman
rank correlation (which is more robust for asymmetrical
distributions of T'SSIR and SEIR and a large fraction of ties
than Pearson’s correlation) between TSSIR and SEIR and
histone enrichment values, excluding all exons for which
Fisher’s test for histone enrichment was not significant (p>

0.0001).

Spatial patterns of correlations

To assess the spatial patterns of correlation between histone
modifications and SEIR as well as TSSIR, we calculated the
extent of histone enrichment inside 1 kb, 2 kb, and 5 kb blocks
immediately upstream or downstream of exons. The upstream
1 kb, 2 kb, and 5 kb regions extended from the upstream exon
coordinate a given distance whereas the downstream 1 kb, 2 kb,
and 5 kb regions extended from the downstream exon coordinate
for a given distance. The Spearman rank correlation was then
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determined between each upstream or downstream block and the
corresponding exon TSSIR or SEIR.

Fisher transformation of correlation coefficients

To allow for direct comparisons between correlation coefficients
of different cell lines and histone modifications, we transformed
the Spearman p using the Fisher transformation formula,
z= lln (ﬂ) .

2 1—p

Identification of candidate genes with epigenetically
regulated transcript diversity

To identify genes with epigenetically regulated transcript
diversity, we analyzed each exon in the context of the nine cell
lines (Gm12878, Hsmm, Huvec, Hepg?2, Helas3, K562, H1lhesc,
Nhek, Nhlf). We categorized the exon inclusion rate into three
groups: SEIR =0, 0<SEIR<1, and SEIR=1. We followed the
same approach for TSSIR. Next, we tested whether any histone
modification displayed a statistically significant difference in its
enrichment in any possible two-group comparison, given an exon’s
SEIR values across the nine cell lines. For example, if the pattern
of SEIR values for a given exon allowed us to separate the nine cell
lines into two groups that showed either SEIR =0 or SEIR =1, we
used T-test to determine whether the respective histone modifi-
cation enrichment among the two groups of cell lines was
statistically different. All p-values were corrected for false discovery
rate (FDR) [54]. To discover cell-specific events, we allowed for
comparisons where only one cell line versus many could be
assigned to an SEIR or TSSIR group. Naturally, given the lower
power of this test, most of these did not pass our 5% FDR cutoff.
This approach identified 840 genes, for which at least one exon
showed a statistically significant association between SEIR and at
least one histone modification (ie. statistically significant difference
in histone modification enrichment between two SEIR groups for
a given exon).

Prediction of exon exclusion or retention with histone
modification enrichment

We limited our predictions of exon exclusion or retention in
the Hmec and Monocytes CD14 cell lines to the 840 candidate
genes that showed significant association between the TSSIR
or SEIR and histone modification enrichment in the original
set of nine human cell lines (Gm12878, Hsmm, Huvec, Hepg2,
Helas3, K562, Hlhesc, Nhek, Nhlf). For a given exon, we
constructed a Euclidean distance matrix with the formerly
identified set of histone modifications for all cell lines,
including Hmec and Monocytes CD14. Next, we determined
the three closest neighbors of Hmec and Monocytes CD14
from among the original set of nine cell lines (Gm12878,
Hsmm, Huvec, Hepg2, Helas3, K562, Hlhesc, Nhek, and
Nhlf). Because the exon inclusion rates for a given exon were
known in the original set of nine cell lines, we separated these
cell lines into three comparison groups: i) cell lines in which a
given exon was always excluded versus retained (SEIR =0 vs.
SEIR =1), ii) cell lines in which a given exon was retained
versus occasionally excluded (SEIR=0 vs. 0<SEIR<1), and
iii) cell lines in which a given exon was occasionally excluded
versus retained (0<SEIR<1 vs. SEIR=1). The inclusion
status - retained, occasionally excluded, or always excluded -
of a given exon in the Hmec or Monocytes CD14 cell lines was
then determined based on what comparison group the majority
of the three closest neighbors belonged to. For example, if the
majority of Hmec’s three closest neighbors (based on the
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Euclidian distance matrix) belonged to the group SEIR =1,
then we would predict that particular exon in the Hmec cell
line was always retained, ie. a given gene was expressing only
those isoforms that included our exon of interest. We applied
the same approach to transcription start site exons and their
respective T'SSIR values.

Identification of epigenetically conserved and divergent
regions in cancer

Epigenetic conservation. Cancer cells often undergo dra-
matic epigenetic reprogramming [23,51]; we therefore aimed to
identify genes residing in epigenetically aberrant regions as well as
the positional effect of a gene on its splicing patterns. We divided
the genome into 100 kb non-overlapping blocks; we excluded all
100 kb blocks spanning across UCSC coordinates of centromeric
or telomeric regions, and obtained a total of 32,433 blocks. We
then determined the extent of epigenetic conservation of each
block and each histone modification in the following way: since
conserved regions are expected to have very similar histone
enrichment levels across multiple cell lines, for each 100 kb block,

V,
we calculated an index of dispersion, iod =?E, where Vg

represents the histone enrichment variance across normal cell
lines, and £ is the enrichment mean of normal cell lines
(Gm12878, Hsmm, Huvec, H1lhesc, Nhek, Nhlf). Regions lacking
any enrichment were excluded from the subsequent quantile
analysis. We identified those 100 kb blocks with the lowest quartile
index of dispersion (i0d) as epigenetically conserved regions. Next,
we compared these epigenetically conserved regions in normal cell
lines to each of the cancer cell lines (Helas3, Hepg2, K562) and
calculated a Z statistic. In a given cancer cell line, genomic regions
with the lowest quartile absolute value Z score were deemed
“conserved” whereas regions with the highest quartile absolute
value Z score were identified as “divergent”. This approach
identified between 11,285 and 22,506 conserved and between 616
and 1410 divergent regions given a particular histone modifica-
tion.

Gene enrichment analysis. To assess whether epigenetical-
ly perturbed regions in cancer cell lines harbored cancer-
associated genes, we performed a gene enrichment analysis. We
utilized the cancer gene census (COSMIC) maintained by the
Welcome Trust Sanger Institute (http://www.sanger.ac.uk/
genetics/ CGP/Census/) for a curated list of known cancer
associated genes. For each cancer cell line and histone modifica-
tion, we then performed a hypergeometric test on the enrichment
of cancer-associated genes in epigenetically divergent regions.
Taking into consideration all cancer-related genes classified in the
COSMIC database, we found that regions with a significant
enrichment of H3K4me3 and H3K79me2 displayed an enrich-
ment for cancer-associated genes. For example, regions that were
aberrant in H3K4me3 in cancer cells as compared to normal cells
were enriched for cancer-associated genes in the Helas3 and K562
cell lines (hypergeometric test, p =0.023 and p = 0.009 respectively,
Table S8 in Text S1). Similarly, aberrant regions for
H3K79me2 were enriched for cancer-associated genes in the
Hepg?2 and K562 cell lines (p =0.040 and p<<0.001, respectively).

Supporting Information

Dataset S1 This workbook contains 11 sheets with leave-one-
out cross-validation candidate genes and 1 sheet with a union of all
840 candidate genes from leave-one-out cross-validations. Indi-
vidual cross-validation candidate gene data is named after the cell
line analyzed. P-values are corrected for multiple testing using
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FDR. Comparison categories 0 vs 1, 0 vs >0, and 1 vs <1
represent combinations tested given the scenario, where each exon
may be constitutively excluded (T'SSIR=0 and SEIR =0),
occasionally excluded (T'SSIR>0 and SEIR<I), or retained
(TSSIR =1 and SEIR=1). The “SplicingOrTsss” column then
differentiates whether a given comparison category corresponds to
transcription start site switching or splicing. Note that column
“Statistic” frequently contains value “-Inf”; this refers to the case
for comparisons where one of the groups has an enrichment of 0,
ie. no histone mark enrichment.

(XLSX)

Text S1 Supporting Materials. Includes: Module S1 in Text S1.
Epigenetically aberrant regions in three cancer cell lines are
enriched for oncogenes; Table S1 in Text S1. Association between
the transcription start site inclusion rate (T'SSIR) of lincRNAs and
histone modification enrichment in normal cell lines; Table S2 in
Text S1. Association between splicing exon inclusion rate (SEIR)
of protein coding genes and histone modifications in cancer cell

References
1. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of

alternative splicing complexity in the human transcriptome by high-throughput
sequencing. Nature genetics 40: 1413-1415.

2. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, et al. (2011)
Integrative annotation of human large intergenic noncoding RNAs reveals
global properties and specific subclasses. Genes Dev 25: 1915-1927.

3. Chasin LA (2007) Searching for splicing motifs. Advances in experimental
medicine and biology 623: 85-106.

4. Ghigna C, Valacca C, Biamonti G (2008) Alternative splicing and tumor
progression. Current genomics 9: 556-570.

5. Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon-
intron structure. Nature structural & molecular biology 16: 990-995.

6. Tilgner H, Nikolaou C, Althammer S, Sammeth M, Beato M, et al. (2009)
Nucleosome positioning as a determinant of exon recognition. Nature structural
& molecular biology 16: 996-1001.

7. Kolasinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, et al. (2009)
Differential chromatin marking of introns and expressed exons by H3K36me3.
Nature genetics 41: 376-381.

8. Consortium EP, Bernstein BE, Birney E, Dunham I, Green ED, et al. (2012) An
integrated encyclopedia of DNA elements in the human genome. Nature 489:
57-74.

9. Dijebali S, Davis CA, Merkel A, Dobin A, Lassmann T, et al. (2012) Landscape
of transcription in human cells. Nature 489: 101-108.

10. Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon-
intron structure. Nature structural & molecular biology 16: 990-995.

11. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, et al. (2008)
Combinatorial patterns of histone acetylations and methylations in the human
genome. Nature genetics 40: 897-903.

12. Hon G, Wang W, Ren B (2009) Discovery and annotation of functional
chromatin signatures in the human genome. PLoS Comput Biol 5: ¢1000566.

13. Mikkelsen T'S, Ku M, Jaffe DB, Issac B, Liecberman E, et al. (2007) Genome-
wide maps of chromatin state in pluripotent and lineage-committed cells. Nature
448: 553-560.

14. Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M (2010) Histone
modification levels are predictive for gene expression. Proc Natl Acad Sci U S A
107: 2926-2931.

15. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, et al. (2012)
Architecture of the human regulatory network derived from ENCODE data.
Nature 489: 91-100.

16. Ernst J, Kellis M (2010) Discovery and characterization of chromatin states for
systematic annotation of the human genome. Nature biotechnology 28: 817—
825.

17. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, et al. (2011)
Mapping and analysis of chromatin state dynamics in nine human cell types.
Nature 473: 43-49.

18. Dhami P, Saffrey P, Bruce AW, Dillon SC, Chiang K, et al. (2010) Complex
exon-intron marking by histone modifications is not determined solely by
nucleosome distribution. PLoS One 5: ¢12339.

19. Enroth S, Bornelov S, Wadelius C, Komorowski J (2012) Combinations of
histone modifications mark exon inclusion levels. PLoS One 7: ¢29911.

20. Pan Q, Shai O, Lee L], Frey BJ, Blencowe BJ (2008) Deep surveying of
alternative splicing complexity in the human transcriptome by high-throughput
sequencing. Nature genetics 40: 1413-1415.

21. Shindo Y, Nozaki T, Saito R, Tomita M (2013) Computational analysis of
associations between alternative splicing and histone modifications. FEBS Lett
587: 516-521.

PLOS Computational Biology | www.ploscompbiol.org

Epigenetic Effect on Transcript Isoform Diversity

lines; Table S3 in Text S1. Association between transcription start
site inclusion rate (T'SSIR) of lincRNAs and histone modification
enrichment in cancer cell lines; Table S4 in Text S1. Association
between splicing exon inclusion rate (SEIR) of lincRNAs and
histone modifications in cancer cell lines; Table S5 in Text SI.
Association between histone modification enrichment and tran-
scription start site inclusion rate; Table S6 in Text S1. Top 20
ontology categories enriched among 840 candidate genes that
showed a significant association between splicing exon inclusion
rates and histone modification enrichment; Table S7 in Text S1.
Leave-one-out cross validation summary statistics.

(DOC)

Author Contributions

Conceived and designed the experiments: OP SD MG FM. Performed the
experiments: OP SD MG FM. Analyzed the data: OP SD MG FM.
Contributed reagents/materials/analysis tools: FM. Wrote the paper: OP
FM.

22. Zhou Y, Lu Y, Tian W (2012) Epigenetic features are significantly associated
with alternative splicing. BMC Genomics 13: 123.

23. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some
human cancers from their normal counterparts. Nature 301: 89-92.

24. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics 25: 1105-1111.

25. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, et al. (2012) Differential gene
and transcript expression analysis of RNA-seq experiments with TopHat and
Cufflinks. Nature protocols 7: 562-578.

26. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Percira-Smith OM, et al. (2010)
Regulation of alternative splicing by histone modifications. Science (New York,
NY) 327: 996-1000.

27. Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, et al. (2011)
CTCF-promoted RNA polymerase II pausing links DNA methylation to
splicing. Nature 479: 74-79.

28. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Percira-Smith OM, et al. (2010)
Regulation of alternative splicing by histone modifications. Science 327: 996
1000.

29. Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, et al. (2010)
The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and
guides DNA methylation. The Journal of biological chemistry 285: 26114
26120.

30. Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA (2012) Psip1/
Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes
to the regulation of alternative splicing. PLoS genetics 8: ¢1002717.

31. Vermeulen M, Eberl HC, Matarese I, Marks H, Denissov S, et al. (2010)
Quantitative interaction proteomics and genome-wide profiling of epigenetic
histone marks and their readers. Cell 142: 967-980.

32. Vezzoli A, Bonadies N, Allen MD, Freund SMV, Santiveri CM, et al. (2010)
Molecular basis of histone H3K36me3 recognition by the PWWP domain of
Brpfl. Nature structural & molecular biology 17: 617-619.

33. de Almeida SF, Grosso AR, Koch F, Fenouil R, Carvalho S, et al. (2011)
Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methyl-
ation of histone H3 Lys36. Nature structural & molecular biology 18: 977-983.

34. Kim S, Kim H, Fong N, Erickson B, Bentley DL (2011) Pre-mRNA splicing is a
determinant of histone H3K36 methylation. Proceedings of the National
Academy of Sciences of the United States of America 108: 13564-13569.

35. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, et al. (2011) The
genomic complexity of primary human prostate cancer. Nature 470: 214-220.

36. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, et al. (2010) The
landscape of somatic copy-number alteration across human cancers. Nature 463:
899-905.

37. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, et al. (2011)
Initial genome sequencing and analysis of multiple myeloma. Nature 471: 467—
472.

38. Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T (2011) Epigenetics in
alternative pre-mRNA splicing. Cell 144: 16-26.

39. Ameyar-Zazoua M, Rachez C, Souidi M, Robin P, Fritsch L, et al. (2012)
Argonaute proteins couple chromatin silencing to alternative splicing. Nature
structural & molecular biology 19: 998-1004.

40. Sims R]J, 3rd, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, et al.
(2007) Recognition of trimethylated histone H3 lysine 4 facilitates the
recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol
Cell 28: 665-676.

41. Piacentini L, Fanti L, Negri R, Del Vescovo V, Fatica A, et al. (2009)
Heterochromatin protein 1 (HPla) positively regulates euchromatic gene

June 2014 | Volume 10 | Issue 6 | €1003611



42.

43.

44.

46.

47.

expression through RNA transcript association and interaction with hnRNPs in
Drosophila. PLoS Genet 5: ¢1000670.

Mercer TR, Edwards SL, Clark MB, Neph SJ, Wang H, et al. (2013) DNase I-
hypersensitive exons colocalize with promoters and distal regulatory elements.
Nat Genet 45: 852-859.

Venables JP (2004) Aberrant and alternative splicing in cancer. Cancer research
64: 7647-7654.

David CJ, Manley JL (2010) Alternative pre-mRNA splicing regulation in
cancer: pathways and programs unhinged. Genes & development 24: 2343
2364.

. Ghigna C, Valacca C, Biamonti G (2008) Alternative splicing and tumor

progression. Current genomics 9: 556-570.

Fudenberg G, Getz G, Meyerson M, Mirny LA (2011) High order chromatin
architecture shapes the landscape of chromosomal alterations in cancer. Nature
biotechnology 29: 1109-1113.

Scheble V], Braun M, Beroukhim R, Mermel CH, Ruiz C, et al. (2010) ERG
rearrangement is specific to prostate cancer and does not occur in any other
common tumor. Modern pathology: an official journal of the United States and
Canadian Academy of Pathology, Inc 23: 1061-1067.

PLOS Computational Biology | www.ploscompbiol.org

13

48.

49.

50.

51.

52.

o
)

Epigenetic Effect on Transcript Isoform Diversity

Shtivelman E, Lifshitz B, Gale RP, Canaani E (1985) Fused transcript of abl and
ber genes in chronic myelogenous leukaemia. Nature 315: 550-554.

Network TCGAR (2011) Integrated genomic analyses of ovarian carcinoma.
Nature 474: 609-615.

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, et al. (2012) Landscape
of transcription in human cells. Nature 489: 101-108.

Feinberg AP, Ohlsson R, Henikof' S (2006) The epigenetic progenitor origin of
human cancer. Nature reviews Genetics 7: 21-33.

Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, et al. (2010)
Manipulation of FASTQ data with Galaxy. Bioinformatics (Oxford, England)
26: 1783-1785.

. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Licberman E, et al. (2007) Genome-

wide maps of chromatin state in pluripotent and lineage-committed cells. Nature
448: 553-560.

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical
Society, Series B (Methodological) 57: 289-300.

June 2014 | Volume 10 | Issue 6 | €1003611



