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Abstract

Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-
activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line
with the role of MK2 as contributor to inflammation, MK22/2 mice are protected against inflammation in different disease
models. Therefore, MK2 is considered an attractive therapeutic target for the treatment of chronic inflammatory diseases.
This study tested the impact of MK2-deficiency on high-fat diet (HFD)-induced adipose tissue inflammation and insulin
resistance. After feeding MK22/2 and WT control mice a HFD (60% energy from fat) for 24 weeks, body weight was not
different between groups. Also, liver weight and the amount of abdominal fat remained unchanged. However, in MK22/2

mice plasma cholesterol levels were significantly increased. Surprisingly, macrophage infiltration in adipose tissue was not
altered. However, adipose tissue macrophages were more skewed to the inflammatory M1 phenotype in MK22/2 mice. This
differerence in macrophage polarization did however not translate in significantly altered expression levels of Mcp-1, Tnfa
and Il6. Glucose and insulin tolerance tests demonstrated that MK22/2 mice had a significantly reduced glucose tolerance
and increased insulin resistance. Noteworthy, the expression of the insulin-responsive glucose transporter type 4 (GLUT4) in
adipose tissue of MK22/2 mice was reduced by 55% (p,0.05) and 33% (p,0.05) on the mRNA and protein level,
respectively, compared to WT mice. In conclusion, HFD-fed MK22/2 display decreased glucose tolerance and increased
insulin resistance compared to WT controls. Decreased adipose tissue expression of GLUT4 might contribute to this
phenotype. The data obtained in this study indicate that clinical use of MK2 inhibitors has to be evaluated with caution,
taking potential metabolic adverse effects into account.
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Introduction

As a result of the present obesity epidemic, prevalence of insulin

resistance and type 2 diabetes mellitus is increasing rapidly in

developed countries [1]. Inflammation most likely contributes to

the development of insulin resistance. Altough inflammation might

not impact on insulin sensitivity in the onset phase of obesity [2],

inflammation within adipose tissue has been shown to have

deleterious effects on systemic insulin sensitivity in models of

chronic obesity [3–5]. Although many diffent types of immune

cells are present in inflamed adipose tissue, macrophages are the

major cell type associated with adipose tissue inflammation [4].

Interestingly, not only the amount of macrophages present in the

adipose tissue increases with obesity, their phenotype also shifts.

While anti-inflammatory M2 macrophages predominate in lean

adipose tissue, the balance shifts towards more inflammatory M1

macrophages with increasing obesity [6]. Moreover, M1 macro-

phages are reported to negatively impact on insulin sensitivity

compared to macrophages of the M2 phenotype [7]. Amelioration

of adipose tissue inflammation might conceivably improve insulin

sensitivity and thereby lead to a reduction of morbidity and

mortality associated with type 2 diabetes.

A potential candidate pathway suitable for therapeutic inter-

vention is the p38 mitogen-activated protein kinase (p38 MAPK,

p38) pathway. Inhibition of p38 itself has potent anti-inflammatory

effects. However, the wide range of biological effects of this

signaling mediator hampers the clinical use of p38 inhibitors.

Since p38 has numerous down-stream targets, inhibition of one of

these targets might reduce adipose tissue inflammation without

inducing substantial adverse effects. Mitogen-activated protein

kinase-activated protein kinase 2 (Mapkapk2 or MK2) is a direct

target of p38, enhances inflammatory processes and is essential for

sustained activation of NF-kB, a central transcription factor in

inflammation that has been shown to be involved in the

development of insulin resistance [8,9]. Furthermore, MK2
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increases the mRNA stability of key proinflammatory cytokines,

including TNFa, by phosphorylating tristetraprolin (TTP) which

normally binds to the 39-UTR of certain mRNA molecules and

directs their deadenylation. However, upon phosphorylation by

MK2, TTP is unable to recruit the deadenylation machinery,

resulting in decreased mRNA degradation [10], and is replaced in

RNA binding by the mRNA-stabilizing and –translation-stimu-

lating factor HuR [11].

MK2 deficiency has been shown to result in a potent reduction

of inflammation in several disease models and, so far, no severe

side effects have been reported. It has for instance been shown that

MK22/2 mice are resistant to endotoxic shock because of reduced

production of TNFa after injection of lipopolysaccharide/D-

galactosamine [12]. Furthermore, it has been demonstrated that

MK22/2 mice have a reduced susceptibility for the development

of collagen-induced rheumatoid arthritis (RA) [12] and that

MK22/2 mice on a Ldlr2/2 background are protected against the

development of atherosclerosis despite a pro-atherogenic lipopro-

tein profile [13]. The atheroprotective effect of MK2-deficiency

observed in this study could be explained in part by a reduced

expression of adhesion molecules and monocyte chemoattractant

protein-1 (Mcp-1), factors that also play key roles in adipose tissue

inflammation.

Therefore, the present study explored the effects of MK2-

deficiency on the development of adipose tissue inflammation and

insulin resistance in high-fat diet (HFD-) fed mice. In contrast to

our hypothesis, no effect was observed in the amount of

macrophages that had infiltrated the adipose tissue. The balance

between M1 and M2 macrophages appeared, however, to be more

skewed towards the M1 phenotype in MK22/2 mice. HFD-fed

MK22/2 mice were more insulin resistant compared to wild-type

(WT) controls. Decreased expression of the glucose transporter

GLUT4 in adipose tissue might contribute to the glucose

intolerant, insulin resistant, phenotype observed in HFD-fed

MK22/2 mice.

Materials and Methods

Animals
Male MK22/2 mice [12] were obtained from the breeding

colony of Hannover Medical School and were backcrossed to the

C57BL/6J genetic background for .10 generations using mice

from Charles River (Sulzfeld, Germany). For the reported

experiments littermate controls were used. All mice were exposed

to a 12 hour light-dark cycle, were housed under climate-

controlled conditions and had free access to food and water. Mice

were fed a hypercaloric high-fat diet (HFD) containing 60%

(energy) fat (AB-diets, Woerden, The Netherlands) for 24 weeks.

After this period, experiments were carried out as indicated below.

All animal experiments were performed according to the national

law on animal welfare, and experimental procedures were

approved by the responsible local ethics committee of the

University of Groningen (Permit Number: 5997).

Plasma lipid and lipoprotein analysis
Blood samples were obtained at the end of the study by cardiac

puncture after 4 h of fasting using heparinized syringes, and were

immediately placed on ice. Blood was centrifuged at 8000 rpm for

10 min at 4uC and plasma was stored at 280uC until further

analysis. Plasma triglycerides, free fatty acids, glycerol, and

cholesterol were determined using commercially available kits

(Roche Diagnostics, Mannheim, Germany and Diagnostic Sys-

tems, Holzheim, Germany). Plasma insulin levels were measured

with an ultrasensitive mouse insulin ELISA kit (Alpco, Salem, NH,

USA). Pooled plasma samples were subjected to fast protein liquid

chromatography (FPLC) gel filtration using a superose 6 column

(GE Healthcare, Uppsala, Sweden) as described [14]. Individual

fractions were assayed for cholesterol and triglyceride concentra-

tions as detailed above.

Analysis of gene expression
Gene expression was analyzed by real-time qPCR. Briefly, RNA

was extracted from tissue samples with Tri-reagent (Sigma, St.

Louis, MO, USA) and quantified with a NanoDrop ND-100 UV-

Vis spectrophotometer (NanoDrop Technologies, Wilmington,

DE, USA). One mg of RNA was reverse transcribed using M-MLV

reverse transcriptase (Sigma) according to the manufacturer’s

instructions. Real-time qPCR analysis was performed on a 7900

HT Fast Real-Time PCR system (Applied Biosystems, Darmstadt,

Germany) using multi-exon spanning primer/probe sets synthe-

sized by Eurogentec (Seraing, Belgium). Gene expression levels

were normalized to cyclophilin and further normalized to the

mean expression level of the control group. Gene expression levels

of the macrophage polarization markers Mgl-1 and Mgl-2 were

normalized to Cd68 to correct for the amount of macrophages

present in the adipose tissue.

Glucose and insulin tolerance tests
Mice were fasted for 4 hours in the morning before the start of

the glucose or insulin tolerance test. For the glucose tolerance test,

mice were intraperitoneally (i.p.) injected with 1.25 g/kg glucose.

Blood glucose levels were assessed by tail bleeding before injection

and at 15, 30, 60 and 120 minutes after injection using a

Onetouch Ultra glucose meter (LifeScan Benelux, Beerse,

Belgium). The procedure for the insulin tolerance test was the

same as described for the glucose tolerance test except that mice

were injected with 0.6 U/kg insulin (i.p.) instead of glucose and

blood glucose levels were measured at 15, 30, 45, 60 and

90 minutes after injection.

Western blot
Adipose tissue samples were homogenized and sodium dodecyl

sulfate (SDS) was added to a final concentration of 2%. Next,

25 mg protein of each sample was loaded onto a polyacrylamide

gel for electrophoresis. Subsequently, semi-dry blotting was

applied to transfer the proteins to a 0.45 mm nitrocellulose

membrane (Schleicher & Schuell). Blocking of the membrane

was performed overnight using 5% BSA in PBS after which the

blot was incubated with an anti-GLUT4 antibody (Ab654,

Abcam, Cambridge, UK) at a 1:1500 dilution in PBS supple-

mented with 2% BSA and 0.1% Tween-20 for 2 h. A horseradish

peroxidase-conjugated secondary goat anti-rabbit antibody

(DAKO, Glostrup, Denmark) was then added at a 1:2000 dilution

for 45 min. Bands were visualized using chemiluminescence (GE

Healthcare, Chalfont St Giles, UK). Band intensity was quantified

using the freely available ImageJ software (http://rsbweb.nih.gov/

ij/).

Statistics
Statistical analyses were performed using the Statistical Package

for Social Sciences (SPSS, SPSS Inc., Chicago, IL). Data are

presented as means 6 SEM. Differences between groups were

compared using the Mann-Whitney U-test. For comparison

between more than two groups, significance of differences was

assessed using the Kruskal-Wallis test and Conover post-hoc
analysis. P values ,0.05 were considered statistically significant.
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Results

MK2-deficiency does not affect body weight, but causes
dyslipidemia in HFD-fed mice

After feeding a HFD for 24 weeks, MK22/2 mice and WT

controls were sacrificed and blood and tissues were collected for

analysis. Body weight of the mice did not differ between the groups

and also liver weight was not different (Table 1). Furthermore,

there was no effect of MK2 deficiency on the abdominal fat

content of the mice (Table 1). However, plasma cholesterol levels

were about 25% higher in MK22/2 mice compared to WT

controls (Table 1). Plasma triglyceride levels tended to be

increased as well in MK22/2 mice albeit this difference did not

reach statistical significance (Table 1). Plasma free fatty acid levels

were slightly decreased in MK22/2 mice (Table 1), whereas

plasma glycerol levels remained unchanged (0.1860.03 vs.

0.1660.02 mmol/l). To identify which lipoproteins were respon-

sible for the elevation of plasma lipids, lipoprotein subclasses were

fractionated using Fast Protein Liquid Chromatography (FPLC).

The cholesterol profile revealed that MK22/2 mice had a

somewhat higher HDL peak. Furthermore, a shoulder was

observed in the profile of MK22/2 mice, likely representing

LDL particles (Fig. S1A). The triglyceride profile confirmed an

increased amount of LDL particles and showed an increase in

VLDL in the MK22/2 mice (Fig. S1B).

Impact of MK2-deficiency on adipose tissue inflammation
Adipose tissue samples from 24 weeks HFD-fed mice were

analyzed to assess the degree of inflammation. Compared to chow-

fed animals, expression levels of macrophage markes (Cd68 and

F4/80) in adipose tissue were increased in both genotype (table

S1), however there was no significant increase in the expression of

macrophage markers between genotypes (Fig. 1A), indicating that

the amount of adipose tissue macrophages was similar in both

groups. Interestingly, the subpopulation of Cd11c-positive macro-

phages, which has been linked to insulin resistance, appeared to be

increased in the adipose tissue of HFD-fed MK22/2 mice

(Fig. 1A). Higher expression of Cd3e in the MK22/2 mice

(Fig. 1A) suggests an increased presence of T cells in the adipose

tissue of those mice. The polarization of adipose tissue macro-

phages appears to be altered in MK22/2 mice. HFD-feeding

induced a shift in macrophage polarization towards the M1

phenotype as suggested by the decreased expression of the

macrophage-specific M2-markers Mgl-1 and Mgl-2 (table S1).

Specifically in the HFD-fed MK22/2 mice, the expression of those

markers was decreased compared to HFD-fed WT mice,

suggestive of an altered macrophages polarization state in the

adipose tissue of those mice. An increased M1/M2 macrophage

balance is reported to result in more inflammation and to

negatively impact insulin sensitivity [7]. The apparent increase in

the M1/M2 balance did however not result in significantly altered

expression levels of pro- as well as anti-inflammatory cytokines

(Fig. 1A and table S1). Adipose tissue histology showed identical

amounts of characteristic crown-like stuctures in the adipose tissue

of the respective mouse models (Fig. 1B). In addition, no major

differences in size distribution of adipocytes was observed

(Fig. 1C). Analysis of liver histology did not reveal any difference

in the degree of steatosis (Fig. S2). In addition, hepatic gene

expression analysis did not show major differences in hepatic

inflammation, although the amount of T cells might be somewhat

higher in MK22/2 mice compared to WT as indicated by the

increased expression of the T cell marker Cd3e.

MK2 deficiency results in impaired glucose tolerance and
insulin resistance

Chow-fed MK22/2 mice displayed a moderately decreased

glucose tolerance compared to WT controls but with identical

fasting glucose levels (Fig. S3A). In the HFD-fed mice, fasting blood

glucose levels were higher in MK2-deficient mice compared to WT

(14.061.0 vs. 11.560.4 mmol/l, p,0.05, Fig. 2A). MK22/2 mice

and WT controls were then injected i.p. with a glucose bolus

(1.25 g/kg) to assess glucose tolerance. As indicated by the higher

glucose levels during the glucose tolerance test, HFD-fed MK22/2

mice have an impaired glucose tolerance compared to WT controls

(Fig. 2A), with significant differences at time points 15 and

30 minutes (both p,0.05). The difference in glucose tolerance

remained significant when corrected for baseline glucose levels (Fig.

S3B). Several days later, the mice were subjected to an insulin

tolerance test to explore whether the impaired glucose tolerance in

MK22/2 mice could be ascribed to insulin resistance. Higher blood

glucose levels during the insulin tolerance test indicated that

MK22/2 mice were indeed insulin resistant (Fig. 2B). Differences

reached significance at time points 15, 30, 45 and 90 minutes (all

p,0.05) and also the area under the curve (DAUC) was 38%

reduced (p,0.01, Fig. 2B insert). Increased fasting plasma insulin

levels in MK22/2 mice (+55%, p,0.05, Fig. 2C) further indicated

that those mice were more insulin resistant compared to WT

controls. Taken together, these data show that HFD-fed MK22/2

mice have a glucose intolerant, insulin resistant phenotype.

Table 1. Basal characteristics of HFD-fed WT and MK22/2 mice.

WT MK22/2

Body weight (g) 46.161.2 45.461.0

Liver weight (g) 2.860.3 2.460.2

Abdominal fat content (g) 4.960.2 4.760.1

Total plasma cholesterol (mM) 3.6560.20 4.5260.18**

Plasma triglycerides (mM) 0.4660.03 0.6860.08

Plasma free fatty acids (mM) 0.4260.03 0.3560.01*

*p,0.05,
**p,0.01 vs. WT controls.
Data are presented as means 6 SEM (n = 8 animals per group).
doi:10.1371/journal.pone.0106300.t001
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GLUT4 expression is reduced in adipose tissue of HFD-
fed MK22/2 mice

To explore the underlying basis for the decreased glucose

tolerance and increased insulin resistance in the MK22/2 mice,

expression of the insulin-responsive glucose transporter GLUT4

was determined in the tissues that account for the major part of

glucose disposal within the body, namely muscle and adipose

tissue. Whereas no difference was found for expression of Glut4 in

muscle (data not shown), Glut4 mRNA expression was 55% (p,

0.05) lower in adipose tissue of MK22/2 mice (Fig. 3A). Also,

Figure 1. Impact of MK2-deficiency on adipose tissue inflam-
mation. Abdominal fat was excised from mice that were fed a high-fat
diet (HFD) for 24 weeks (n = 8 mice per group). Real-time qPCR was
performed to measure mRNA expression of inflammation-related genes
in adipose tissue (A). Formalin-fixed paraffin-embedded tissue sections
were stained with hematoxyline and eosine to assess infiltration of
immune cells in adipose tissue and sections from 5 randomly selected
animals of each group were used to quantify the amount of crown-like
structures. At least 300 adipocytes were counted per animal (B).
Adipocyte size distribution was assessed by measuring the surface of
,100 adipocytes per animal using freely available ImageJ software
(imagej.nih.gov) and sections from 5 randomly selected animals of each
group were used for quantification of adipocyte size (C).
doi:10.1371/journal.pone.0106300.g001

Figure 2. High-fat diet-fed MK22/2 mice are insulin resistant.
High-fat diet (HFD) fed wild-type (WT) and MK22/2 mice were injected
intraperitoneally (i.p.) with glucose (1.25 g/kg) and blood glucose levels
were measured at the indicated time points (A). Several days later, mice
were injected i.p. with insulin (0.6 U/kg) and blood glucose levels were
determined at the indicated time points. Blood glucose levels during
the insulin tolerance test (ITT) are depicted as percentage of initial
blood glucose levels (B). DArea under the curve was calculated by
subtracting the area under the curve of an individual mouse by the area
under a hypothetical curve that remained at 100% throughout the
duration of the test (B, insert). Fasting insulin levels were determined
using an ultra-sensitive mouse insulin ELISA (C). *p,0.05, **p,0.01
compared to WT mice (n = 8 mice per group).
doi:10.1371/journal.pone.0106300.g002
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GLUT4 protein expression was reduced in the adipose tissue of

MK22/2 mice compared to WT controls (233%, P,0.05, Fig. 3B

and C). Decreased expression of GLUT4 in adipose tissue might

therefore represent a contributing factor to the glucose intolerant,

insulin resistant phenotype of HFD-fed MK22/2 mice.

Discussion

This study demonstrates that HFD-fed MK22/2 mice are more

glucose intolerant and insulin resistant compared to the respective

WT controls. Although these results were unexpected considering

the important role of MK2 in various animal models of

inflammatory disease, MK22/2 mice were found to have

decreased adipose tissue expression of the insulin-responsive

glucose transporter GLUT4, which might contribute to the

observed glucose intolerant, insulin resistant, phenotype in these

mice.

Since the observation that TNFa production is increased in

adipose tissue of obese individuals [15], the contribution of adipose

tissue inflammation to systemic insulin resistance gained substan-

tial interest. Subsequently, macrophages have been identified as

major effector cells of adipose tissue inflammation. Obesity is

associated with an increased infiltration of macrophages into

adipose tissue [4,5,16,17] and an inverse correlation between the

number of macrophages present in the adipose tissue and insulin

sensitivity was shown [18–20]. Intracellular signal transduction

plays a decisive role in inflammatory responses and MAPKs are

central in many of these signal transduction pathways. p38 belongs

to the MAPK superfamily and has important functions in

apoptosis as well as transcriptional regulation, but is also a key

mediator of inflammatory signaling [21]. p38 can be activated by

inflammatory cytokines but, interestingly, also by free fatty acids

and high concentrations of glucose [22], factors that are usually

elevated in patients with type 2 diabetes. As p38 has many down-

stream targets, its activity affects a wide range of biological

processes, which is exemplified by the fact that p38a2/2 mice die

in utero [23]. Furthermore, hepatotoxicity has been demonstrated

for many p38-inhibitors [24], hampering the clinical use of such

compounds. Inhibiting more downstream mediators in the p38

signaling cascade is likely to increase the specificity of the effects

and is therefore considered a more attractive therapeutic option

[25]. MK2 is a direct target of p38 and is essential for sustained

NF-kB activation [26]. Of note, in contrast to p38a2/2 mice,

MK22/2 mice are viable and do not display any obvious health

problems [12]. MK22/2 mice are resistant to LPS-induced

endotoxic shock [12] and studies using these mice have indicated

that MK2 inhibition might be a good treatment option for a

variety of chronic inflammatory diseases [13,26,27]. Using a

mouse model of collagen-induced RA, it was shown that MK22/2

mice were protected against disease development [27]. In another

study, we previously demonstrated that MK22/2 mice on the

Ldlr2/2 background were protected against atherosclerosis when

fed an atherogenic diet [13]. Decreased foam cell formation but

also a reduction of macrophage recruitment were identified as

mechanisms accountable for the anti-atherogenic phenotype [13].

Since diet-induced obesity as well as insulin resistance coincide

with chronic inflammation, and macrophage recruitment to

adipose tissue is a critical step in the development of insulin

resistance [28,29], we tested whether MK2-deficiency would

ameliorate diet-induced adipose tissue inflammation and would

thereby improve insulin sensitivity. Surprisingly, adipose tissue

expression of inflammatory cytokines was not markedly different

between HFD-fed MK22/2 and WT mice. Also, the amount of

adipose tissue macrophages remained unchanged. However, the

subpopulation of Cd11c macrophages, reported to be recruited to

adipose tissue in obesity and to have deleterious effects on insulin

sensitivity [30], appeared to be increased in the adipose tissue of

MK22/2. In adition, the M1/M2 balance seems to be more

skewed towards the M1 phenotype in those mice. Expression levels

of the polarization markers were normalized to Cd68 rather than

cyclophilin to correct for the number of macrophages present in

the adipose tissue. This is justifiable because expression of Mgl-1
and Mgl-2 is barely detectable in adipocytes (data not shown). The

altered characteristics of adipose tissue macrophages could

contribute to the glucose intolerant, insulin resistant phenotype

in MK22/2 mice. However, the analysis of macrophage

polarization was limited to mRNA expression in the current

study. As bone marrow-derived MK22/2 macrophages did not

show differences in macrophage polarization (unpublished obser-

vations), the results of this study indicate that the specific

environment of adipose tissue impacts on macrophage skewing.

Additional information could be obtained by studying the

characteristics of macrophages isolated from adipose tissue. In

addition, adipose tissue contains a wide variety of immune cells

that were not quantified in this study. Detailed analysis of all

immune cells present in the adipose tissue, e.g. using flow

cytometry, could further increase our knowledge regarding the

impact of MK2-deficiency on adipose tissue inflammation.

Interestingly, glucose tolerance tests revealed that HFD-fed

MK22/2 mice had impaired glucose tolerance compared to WT

controls. In addition, the response during the insulin tolerance test

indicated that HFD-fed MK22/2 mice were significantly more

Figure 3. High-fat diet-fed MK22/2 mice have reduced adipose tissue expression of the insulin-responsive glucose transporter
GLUT4. Adipose tissue Glut4 mRNA expression (n = 8 mice per group) was measured by real-time qPCR (A). Western blot was performed (n = 5 mice
per group) to determine GLUT4 protein expression in adipose tissue; GAPDH served as loading control (B); band intensities were quantified using
ImageJ software and normalized to the mean intensity of the wild-type (WT) control mice (C). *p,0.05 compared to WT control mice.
doi:10.1371/journal.pone.0106300.g003
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insulin resistant. Fasting hyperglycemia and more than 50%

elevated plasma fasting insulin levels further substantiated the

conclusion that these mice were insulin resistant. This unexpected

phenotype suggests that MK2 not only plays a role in inflamma-

tion, but also is a mediator of metabolism. We identified decreased

expression of the insulin-responsive glucose transporter GLUT4 in

adipose tissue as a mechanism likely contributing to the glucose

intolerant, insulin resistant phenotype. With respect to human

pathophysiology, GLUT4 expression was found to be decreased in

adipose tissue, but importantly not in muscle, of obese individuals

and in insulin resistant and type 2 diabetic patients [31,32]. In

addition, the pivotal role of adipose tissue GLUT4 in maintaining

insulin sensitivity is emphasized by the fact that adipose tissue-

specific Glut42/2 mice develop insulin resistance [33] whereas

mice overexpressing GLUT4 specifically in the adipose tissue have

enhanced glucose tolerance and reduced fed insulin levels,

indicative of improved insulin sensitivity [34]. Furthermore,

overexpression of GLUT4 in adipose tissue of mice that lack

GLUT4 expression in muscle corrected the insulin resistant

phenotype in those mice [35]. Combined these studies identify

adipose tissue GLUT4 expression as a central mediator of whole

body glucose tolerance. Accordingly, decreased adipose tissue

expression of GLUT4 in MK22/2 mice conceivably offers an

explanation for the glucose intolerant, insulin resistant phenotype

observed in our present study. However, as decreased expression

of GLUT4 in adipose tissue likely leads to insulin resistance in

other organs, insulin signaling and uptake of 2-deoxyglucose in

multiple tissues, including muscle and liver, could be assessed in

future studies. Furthermore, it remains to be explored how MK2-

deficiency leads to decreased adipose tissue GLUT4 expression. In

that respect, it is important to point out that only total body MK2-

deficient mice were used in the current study. More mechanistic

insights might be gained from tissue-specific knock-out mice and/

or bone marrow transplantation studies.

The fact that plasma cholesterol levels were increased in

MK22/2 mice further indicates that, in addition to its role in

inflammation, MK2 also impacts metabolism. The more dyslipi-

demic phenotype observed in the HFD-fed MK22/2 mice in our

study is in accordance with our previous data obtained in Western

diet-fed MK22/2 Ldlr2/2 mice that had increased plasma levels of

apoB-containing lipoproteins [13]. The mechanistic basis under-

lying the decreased circulating free fatty acids in the HFD-fed

MK22/2 mice remains to be elucidated. As the phenotype of

adipose tissue macrophages seems to be different in MK22/2

mice, it is tempting to speculate that they might have an altered

capacity to buffer excess circulating lipids. This property of

adipose tissue macrophages was recently described [36]. More-

over, it has been demonstrated that p38, the MAPK that activates

MK2, has ample effects on glucose and lipid metabolism [22,37].

Part of these effects might be mediated via MK2, however, the

effects of MK2 on metabolic pathways have thus far barely been

explored and warrant more detailed investigation.

In conclusion, HFD-fed MK22/2 mice have increased plasma

triglyceride and cholesterol levels and display a glucose intolerant,

insulin resistant phenotype. Decreased adipose tissue expression of

GLUT4 and an altered macrophage polarization balance in

adipose tissue might contribute to this unfavorable metabolic

profile. These data indicate that the clinical use of MK2 inhibitors

for the treatment of chronic inflammatory diseases has to be

evaluated with caution, taking potential metabolic adverse effects

into account.

Supporting Information

Figure S1 High-fat diet-fed MK22/2 mice have increased

apoB-containing lipoproteins. Blood was collected at time of

sacrifice after 4 hours of fasting and pooled plasma fractions (n = 8

mice per group) were subjected to fast protein liquid chromatog-

raphy (FPLC) gel filtration using a Superose 6 column as detailed

in materials and methods. Subsequently, individual fractions were

assayed for cholesterol (A) and triglyceride (B) content. The black

line represents the wild-type (WT) mice and the dashed line the

MK22/2 mice.

(PDF)

Figure S2 Liver histology of high-fat diet-fed MK2-KO mice

and controls shows no obvious difference in steatosis. Formalin-

fixed paraffin-embedded sections were stained with hematoxylin

and eosin and images were aquired using the Aperio scanning

system. Four representative images are shown out of n = 8 mice

per group.

(PDF)

Figure S3 Tendency towards decreased glucose tolerance in

chow-fed MK22/2 mice. Chow-fed wild-type (WT) and MK22/2

mice were injected intraperitoneally (i.p.) with glucose (1.25 g/kg)

and blood glucose levels were measured at the indicated time

points (A). Baseline-substracted calculation of the area under the

curve (AUC) of the glucose levels during the glucose tolerance test

(B). *p,0.05 vs WT control.

(PDF)

Table S1 Expression of inflammation-related genes in chow-

and high-fat diet-fed MK2-KO mice and controls.

(PDF)

Table S2 Hepatic expression of inflammation-related genes in

High-fat diet-fed MK2-KO mice and controls.

(PDF)
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