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Ionic liquid-assisted electrochemical exfoliation of carbon dots
of different size for fluorescent imaging of bacteria by tuning
the water fraction in electrolyte
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Abstract An electrochemical approach is introduced for syn-
thesis of carbon dots (CDs) by exfoliating graphite rods at a
voltage of 15 V in an electrolyte consisting of a mixture of
water and two ionic liquids. It is found that the size of the CDs
can be tuned by varying the fraction of water in the mixed
electrolyte; CDs in sizes of 4.9, 4.1 and 3.1 nm are obtained if
the electrolyte contains water in fractions of 24, 38 and 56 %,
respectively. The CDs have a quantum yield of almost 10 %
and display the typical excitation wavelength-dependent max-
ima of photoluminescence, strongest at excitation/emission
wavelengths of 360/440 nm. Fourier transform infrared and
X-ray photoelectron spectroscopy show the CDs to have ox-
ygen functional groups on their surface which strongly im-
prove solubility. The CDs were applied to image cells of the
electricity-producing bacteria Shewanellaoneidensis MR-1.
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Introduction

Carbon dots (CDs) have attracted considerable research in-
terest due to their fascinating optical properties, excellent

biocompatibility and water solubility [1]. Owing to these
unique and novel properties, they have been successfully
used for fluorescent probes, photovoltaic devices,
photocatalysis, and bioimaging [2–5]. Various approaches
have been adopted to synthesize CDs, such as microwave
synthesis, ultrasonic treatment, carbon soot, reverse micelles,
hydrothermal treatment [6–8]. However, most of these ap-
proaches were complex and rigorous processing, which may
cause adverse effects to products, such as redundant post-
treatment, poorly crystalline impurities and inadequate per-
formance. Electrochemical synthesis of CDs has become
popular due to well controllable synthesis at room tempera-
ture. Herein, we introduce a method that the ionic liquids
(ILs) mixed with different fraction of water was chose as
electrolyte and graphite rods were used as electrode and also
as carbon source.

ILs have been considered as Bgreen^ alternatives to con-
ventionally inorganic solvent due to negligible vapor pressure,
wide electrochemical potential window, high ion conductivity,
good thermal stabilities [9]. These unique properties render
ILs a very useful solvent for electrochemistry electrolyte.
The ILs was mixed with different fraction of water as electro-
lyte. The added water in the electrolyte not only will disrupt
the internal organization of ILs and will change the liquid
structure by forming hydrogen-boned network, but also will
be dissociated into hydroxyl radicals by applying bias voltage.
Thus, the content of water in mixed electrolyte may be a key
factor to shape and behaviors of the obtained CDs. To the best
of our knowledge, there were few related reports on this topic.
Hence, the influence of different fraction of water in mixed
electrolyte on CDs was investigated and the results were
discussed. The clear phenomenon of dependent excitation-
wavelength in photoluminescence (PL) spectra was also ob-
served from CDs, and the forming and PL mechanisms of
CDs were discussed. Existing bacterial imaging was usually
indirect detection of bacterially-secreted metabolites or visu-
alization of bacterial colonies [10, 11]. There is still need of an
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approach that can directly detect and provide morphological
details. As one of pioneers for bacteria bioimaging [12, 13],
the exfoliated CDs have been successfully used to label a kind
of bacteria of Shewanellaoneidensis MR-1.

Experimental

Materials and chemicals

ILs of 1-butyl-3-methylimidazolium tetrafluoroborate
([BMIm][BF4]) and 1-butyl-3-methylimidazolium
hexafluorophosphate ([BMIm][PF6]) were purchased from
Suzhou Highfine Biotech Co.,Ltd (Suzhou, China, http://
highfine.cn.china.cn/) and used without any further
purification. The graphite rods were obtained from
Sinopharm Chemical Reagent Co.,Ltd (Shanghai, China,
http://www.sinoreagent.com/).

Synthesis of CDs

According to classical two-electrode configuration, two
graphite rods were employed as working electrode and coun-
ter electrode, respectively, but also as the carbon source of
CDs for electrochemical exfoliation. The rods (10 cm in
length and 0.6 cm in diameter) were successively rinsed in
ethanol and distilled water via ultrasonic treatment for half
an hour. After that, the rods were vertically inserted in elec-
trolyte with a parallel separation of 2 cm. The electrolyte
consisted of the same volume ILs and different volume of
distilled water, in which the ILs consisting of 4 mL 1-butyl-
3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) and
4 mL 1-butyl-3-methylimidazolium hexafluorophosphate
([BMIm][PF6]) were mixed with different fraction of water
of 2.5, 5 and 10 mL, respectively. The electrochemical exfo-
liation was carried out by applying static potential of 15 Von
the graphite electrodes, supplied by a direct current (DC) pow-
er. Throughout the course of experiment, the electrolyte was
continuously stirred by a magnetic stirrer to accelerate reac-
tion. After applying potential, distilled water of electrolyte
was moderately dissociated into hydrogen and oxygen, releas-
ing in type of bubbles from electrode. The colorless electrolyte
gradually changed to yellow, to brown and finally to dark
brown (shown in Fig. 1b–d). The obtained dark brown dense
electrolyte contained a large number of CDs,which were need-
ed to be extracted from the electrolyte. The electrolyte was
mixed with some distilled water. Then it was treated using
ultrasonic wave for 30 min to partly transfer the CDs in the
electrolyte into water. At last, it was centrifuged at 10000 rpm
(7000 g) for the separation of supernatant from ILs. The ob-
tained supernatant contained many CDs and were denoted as
CDs-W-2.5, CDs-W-5, and CDs-W-10, respectively, accord-
ing to the different fraction of water in electrolyte.

Characterization

Transmission electron microscopy (TEM) and high-resolution
TEM (HRTEM) images were taken using a JEM-
2100transmission electron microscope (Jeol, Japan). The nor-
mal TEM samples were prepared by dropping the aqueous
solution of CDs onto copper grids and then dried under drying
lamp. The statistical size distribution of CDs was obtained
using the software of Nano Measurer 1.2 on the basis of
TEM images (counting more than 200 dots for each sample
in different images). Fourier transform infrared spectroscopy
(FTIR) patterns were measured in range of 400–4000 cm−1 on
a Nicolet 5700 FTIR spectrophotometer(Nicolet, USA). The
X-ray photoelectron spectra (XPS) were recorded on a PHI
5000 Versa Probe electron energy spectrometer (UIVAC-PHI,
Japan). Light absorption properties were obtained using ultra-
violet–visible (UV–vis) spectrophotometer (UV-3600,
Shimadzu, Japan). The measurement of PL was carried out
on a Fluoromax-4 fluorescence spectrophotometer (Horiba,
Japan). Fluorescence lifetime was measured with a time-
resolved spectroscope FluoroLog 3-TCSPC (Horbia, Japan).
The fluorescence microscope images were taken with a Leica
TCS SP5 confocal microscope (Leica Microsystems,
Germany).

Quantum yield (QY) measurement

The quantum yield of CDs was achieved by using a compar-
ative method (quinine sulfate as standard sample) using the
following equation19:

(f) 

(a) 

(b) (c) (d) (e) 

Fig. 1 a The schematic illustration of the exfoliation process of CDs; b–
d the photographs of the process of exfoliation; e the photograph of the
exfoliated graphite rods; f The photographs of CDs in aqueous solutions
under visible (left) and UV (right) light at wavelength of 365 nm
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ϕ ¼ ϕq � I
Iq
� Aq

A � n2

n2q
where, the subscript q denotes qui-

nine sulfate, Φ stands for the QY, I designates the integrated
emission intensity, n and A are the refractive index and optical
absorbance, respectively. Quinine sulfate (QY: 54% excited at
360 nm) was dissolvssed in 0.1 M H2SO4 with refractive
index of 1.33 and aqueous solution of CDs has the same value
of refractive index. In order to minimize interference, both
individual absorbance of quinine sulfate and CDs were adjust-
ed down to 5 % at the excitation wavelength of 360 nm.

Bacteria imaging experiments

The bacteria of Shewanellaoneidensis MR-1 were seeded and
incubated in medium that contained 10 g⋅L−1 NaCl, 10 g⋅L−1

Casein Tryptone and 5 g⋅L−1 Yeast extract at room tempera-
ture for 2 days. After extracting the bacteria using centrifugal
machine and then rinsing with phosphate buffer, the bacteria
were further cultured in 10 mL fresh LB containing aqueous
solution of CDs at room temperature for 5 days. Finally, the
bacteria were washed and then imaged using a Leica TCS SP5
confocal microscope.

Results and discussion

Figure 2a, b and c show the TEM images of CDs-W-2.5, CDs-
W-5 and CDs-W-10, respectively. The statistical analyses
about the sizes of CDs give a fitting Gaussian distribution
were also shown in corresponding insets. It can be easily
found that these CDs were monodispersed and quasi-spheres
in shape, well agreed with previous reports [14, 15].
Interestingly, from the center values of all fitting Gaussian
curves as shown in insets, it can be identified that the sizes
of CDs-W-2.5, CDs-W-5 and CDs-W-10 decreased as the
increasing volume of water, with the size of 4.9, 4.1 and
3.1 nm, respectively. The CDs with different sizes have been
successfully fabricated. For example, Hu et al. accomplished
size tailoring of CDs by changing the laser pulse widths in
laser synthesis [16]. Rhee et al. have synthesized CDs with
size tunability by tuning water-surfactant molar ration,
employing reverse micelles as nanoreactors in carbonization
of sugar [17]. Comparing with these methods, our approach
was not so stringent experimental conditions and was easy to
implement. The HRTEM image of CDs-W-2.5was selected as
a typical representative of all HRTEM images and shown in
Fig. 2d. It was clearly observed that CDs possessed distinct
crystal lattice with lattice spacing around 0.21 nm, agreeing
well with the (100) lattice plane of graphite [18–20], which
showed an sufficient evidence that the CDs were carbon genic
materials.

Mechanistically, the process of CDs’ exfoliation from
graphite rods can be illustrated by Fig. 1a. After applying bias

voltage beyond decomposition voltage, water in the electro-
lyte was firstly decomposed into hydroxyl (−OH) and oxygen
(−O) on the electrode. Imidazaolium cations ([R1R3Im]

+) and
anions of BF4

− and PF6
− also separately moved toward cath-

ode and anode in electric field, respectively. All of these
charged ions were able to attack and disrupt electrode, leading
to corrosion on the surface of the rods. Moreover, due to
capturing free electron from DC power supply, the
imidazolium cations of ILs were reduced into imidazolium
free radicals at the electrode. This reduction process may part-
ly occur in the corrosion of disrupted surface. Thus, these
bigger imidazolium free radicals can be created in interlayer
of graphite and be inserted into π bonds of graphite plane.
Subsequently, due to oxidation and hydroxylation by these
radicals and corrosion from attacking of charged ion near
electrode, defects of sites and boundaries in the graphite rods
opened up initially. Then, the bigger ones can intercalate into
interlayer of graphite from this opening up place. Two kinds of
bigger radicals containing imidazaolium radicals and depolar-
ization of anions mainly finished this process, leading to ex-
pansion of interlayer distance of graphite and the exfoliation
of CDs from graphite rods. Based on above analysis, it is
reasonably speculated that, during the process of exfoliation,
more water in electrolyte means more time will be consumed
for decomposition, lead to more charged ions attacking to
bigger nanoparticles or CDs exfoliated from rods. These big-
ger ones were further split into smaller CDs due to suffering
frommore attacking. Hence, more water existed in electrolyte,
more smaller CDs would appear in the obtained solution.

As the most important property of CDs, the PL emission
spectra of CDs excited at different excitation wavelengths
were recorded and shown in Fig. 3. The obvious excitation-
dependent red-shift PL behaviors for emissionmaximumwere
observed from PL spectra of CDs. As the excitation wave-
length increased from 320 to 500 nm, the emission band max-
imum shifted to longer wavelength from 414 (violet) to 548
(green) nm,whichwas well in agreement with previous reports
[1, 21, 22]. The solution of CDs showed the strongest emis-
sion peak locating at 439 nm excited by 360 nm and had
strong intensity in range of 375 to 525 nm. These results were
enough evidence of an interesting and common dependence
on the excitation wavelength for the CDs. Moreover, bright
blue PL emission of the solution CDs was strong enough to be
easily observed with bare eye, (shown in photograph of
Fig. 1f), upon the irradiation of 365 nm by handy UV lamp.
By selecting quinine sulfate as standard reference and 360 nm
as excitation wavelength, the QYof CDs were measured and
calculated to be nearly 10 %. Up to date, the exact origin of
excitation-dependent PL behaviors are still not fully under-
stood, which has been probably due to differently sized nano-
particles, different emissive trap states on the surface of CDs
or other unresolved mechanisms. In order to further investi-
gate the PL property, we compared PL behaviors of CDs with
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different sizes on the same excitation wavelength, and it did
not show the size-dependent red-shift (shown in supporting
information, Fig. S1). The size-dependent red-shift is common
behavior for quantum dots (QDs) and has been widely accept-
ed to be results of quantum size effect. The size-independent
phenomenon of CDs proves that the quantum size effect is not
the main derivation of PL behavior for the CDs.

The UV–vis absorption spectra of CDs were measured and
shown in supporting information (Fig. S2). These curves of
absorption showed three obvious features: with similar shapes
in range of 250–800 nm, two shoulder peaks centering around
270 and 320 nm [23] and a broad tail extending over visible
range. The similarity in absorption shape may be attributed to

similar structure and surface state of CDs. The peak appearing
nearly at 270 nm is ascribed to the π-π* transition of C = C
[24], while the latter indicated the n-π* transition of C =O
bond [25].

In order to understand components and chemical structures
of CDs, FTIR spectra and XPS spectra were characterized and
the results were shown in Fig. 4. These FTIR spectra of the
CDs (Fig. 4a) with different sizes exhibited a similar shape as
well as peak positions, suggesting all samples with similar
chemical composition and structure. The typical peak at
3458 cm−1 was associated with the stretching vibration and
in-plane bending vibration of –OH [21, 26], and the hydroxyl
came from the decomposition of water in electrolyte. The
band of 1637 cm−1 was present evidence of aromatic C = C
[27]. The most distinct and the strongest intensity in all peaks
were the characteristic absorption bands of hydroxyl. The
peaks in spectra corresponding to oxygen-containing groups
and other functional groups indicated successful oxidation of
graphite and the formation of functional groups.

The XPS spectra of CDs was measured and shown in
Fig. 4b–d. The XPS survey spectrum showed two predomi-
nant peaks of C1s centered at 285 eV and O1s centered at
531 eV, respectively, indicating that the CDs mainly contain
carbon and oxygen elements. There were also some weaker P
2p, B, N 1 s and F peaks, which may be attributed to the
residuals of ILs on CDs. The C1s core level peak, as shown
in Fig. 4c, can be resolved into three components centered at
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Fig. 3 PL spectra of the CDs-W-2.5 excited at different wavelengths
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Fig. 2 TEM images of CDs synthesized by electrochemical exfoliation
at different fraction of water: CDs-W-2.5, CDs-W-5 and CDs-W-10
corresponding to (a) (b) and (c), respectively. The insets showed

corresponding size distribution and fitted Gaussian curves. HRTEM
image of CDs-W-2.5 synthesized was shown in (d)
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284.5, 285.5 and 287.4 eV, respectively, corresponding to
C = C, C-OH and C =O bonds [28], which was also evidenced
by FTIR. These -OH and C =O bonds may originate from the
binding of dangling carbon bond on surface of exfoliated car-
bon fragments and hydroxyl radicals from decomposition of
water. As the other major element, high-resolution spectrum
of O1s was recorded and shown in Fig. 4d. The fitted curves
was deconvoluted into two peaks at 530.5 and 532 eV, which
can be assigned to C =O and C–OH, respectively [29].

The time-resolved fluorescence decay curves of CDs were
measured by single photon counting method at 360 nm exci-
tation and 440 nm emission (as shown in Fig. S3). The three
curves with similar shape showed a few differences on radian
in range of 10 to 25 ns. These decay lifetimes can bewell fitted
to a triple-exponential function with average lifetimes of 8.0,
7.0, and 5.9 ns corresponding to CDs-W-2.5, CDs-W-5 and
CDs-W-10, respectively. The diverse fluorophores or energy
levels presented in CDs may be responsible for these multiple
lifetimes.

Although a large number of approaches have been devel-
oped to synthesize CDs relevant to PL emission and much
progress have been made to improve its property of PL, there
are still not widely accepted consensus on origins of PL from
CDs. Several mechanisms have been hypothesized for expla-
nation of PL from CDs mainly including quantum size effect
and defect traps (surface energy traps) [30, 31]. The size-
independent PL behavior (as shown in Fig. S1) revealed that
the quantum size effect played no or a small role in PL mech-
anism. However, based on results of FTIR and XPS, it has
been verified that a large amount of functional groups had
been attached to the CDs by binding dangling bond or other
effect. Comparing to graphite bulk, these functional groups

can be considered as defect traps. These defects can increase
opportunity of facilitating the trapping of photoinduced elec-
trons and holes, more like to the surface energy trap. The PL
emission of the CDs may be a result of this kind radiative
recombination of electrons and holes trapped by these surface
energy traps [32]. Besides, the very small size (probably sub-
5 nm) can create large surface-to-volume ratio, also leading to
increase of surface energy traps [1]. It has been evidenced that
a lot of -OH groups attached on surface of CDs from results of
FTIR and XPS. Hydroxyl has been regarded as a kind of
electron donator in CDs [33], which are of great benefits to
increase the opportunity of recombination of electrons and
holes.

To clarify this hypothesis, the experiments of CDs oxidized
by NaClO3 (donated as) were implemented. The comparison
of PL and FTIR spectra of them were shown in Fig. 5. The PL
emission compared spectra of CDs and CDs + NaClO3 are
shown in the Fig. 5a, whose excitation wavelength increased
from 320 to 420 nm with the increment of 20 nm. It was
obviously observed that PL intensities of CDs + NaClO3 have
increased to some degree at each excitation wavelength.
However, the position of each emission peaks remained sta-
ble, indicating that both of them possessed similar PL mech-
anism. In FTIR comparison of CDs and CDs + NaClO3

(shown in Fig. 5b), the most distinct change was the enhance-
ment of absorption band at 1118 cm−1 corresponding to the
stretching vibration bands of C-O attributed to the oxidation of
NaClO3 [34]. During this oxidation process, CDs + NaClO3

were further added more king of defects on surface of CDs +
NaClO3 due to the appearance of C-O, which favored to trap
more electrons and holes. The nearly coincident time-resolved
fluorescence decay curves of CDs and CDs + NaClO3 fit a
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triple-exponential function with similar average lifetimes of
8.0 and 8.1 ns, respectively (shown in Fig. S4). This indicates
that both of them have similar decay mechanism or emission
mechanism. Based on above analysis, it can be concluded that
the oxidation of CDs by NaClO3 increased the amount of
defect traps which facilitated more radiative recombination
of electron and holes, leading to the enhancement of PL in-
tensity. However, this process only enhanced the intensity of
PL spectra, and it did not change the position of PL emission
peaks and mechanism.

As the most important application, CDs have been widely
investigated and utilized in the bioimaging or biological label-
ing. However, to the best of our knowledge, most of
bioimaging experiments were carried out using various cancer
cells, and there are few studies using bacteria as labeled spec-
imen [3, 35]. Existing bacterial imaging was usually indirect
detection of bacterially-secreted metabolites or visualization
of bacterial colonies. There is still need of an approach that
can directly detect and provide morphological details.
Shewanellaoneidensis MR-1, which is a kind of bacteria with
ability of reducing metal to generate electricity, was firstly
selected for bioimaging under in vitro conditions. Figure 6
shows the bright field and laser confocal microscopy images
of Shewanellaoneidensis MR-1 labeled with CDs excited at
405 nm. It is readily seen that the Shewanellaoneidensis MR-1
incubated with CDs became bright excited at 405 nm, whereas
the controlled bacteria shown nearly no visible fluorescence
detected under the same conditions. Besides, we also took

images at other wavelength of excitation of 488 and 638 nm
and obtained green (542 nm) and red (658 nm) images (shown
in Fig. S5), respectively. Exciting at three different wave-
lengths, the bacteria incubated with CDs showed three differ-
ent colors, which was an evidence of eliminating autofluores-
cence. There was obvious and bright difference between bac-
teria and background in the higher resolution images with
single bacteria. These evidenced that the CDs have been in-
ternalized by the bacteria. Based on the above analysis, it can
be easily concluded that CDs may be used for not only cell
labeling but bacteria labeling in vitro conditions. There is still
a limitation that the CDs have a relatively low QY, which
influence the brightness of bacterial images (as shown in
Fig. 6 and Fig. S5). A lot of work was needed to be done for
improvement of brightness.

Conclusions

In summary, size-decrease CDs were synthesized by increas-
ing fraction of water in electrolyte using an electrochemical
exfoliation from graphite rods. The analysis of components
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Fig. 6 Bright field (a) and fluorescence microscope images (b) of
Shewanellaoneidensis MR-1 incubated with the solution of CDs
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and chemical structures of CDs have proved that a large num-
ber of functional groups appeared on surface of CDs. These
groups added more defects on surface of CDs leading to more
recombination of electrons and holes. Based on these results,
the origin of PL may be attributed to the radiative recombina-
tion of surface-trapped electrons and holes. CDs oxidized by
NaClO3 showed enhanced PL intensity due to the increase of
groups. The CDs can be successfully used to label bacteria
from luminescence bioimaging in Shewanellaoneidensis MR-
1. There is still a main limitation that the CDs have relatively
low QYof 10 %, which must be enhanced in the future work.
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