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A steady rise in the number of poly-sensitized patients has increased the demand for effective
prophylactic strategies against multi-sensitivities. Probiotic bacteria have been successfully
used in clinics and experimental models to prevent allergic mono-sensitization. In the present
study, we have investigated whether probiotic bacteria could prevent poly-sensitization by
imprinting on the immune system early in life. We used two recombinant variants of probiotic
Escherichia coli Nissle 1917 (EcN): i) EcN expressing birch and grass pollen, poly-allergen
chimera construct (EcN-Chim), and ii) an “empty” EcN without allergen expression (EcN-Ctrl).
Conventional mice (CV) were treated with either EcN-Chim or EcN-Ctrl in the last week of the
gestation and lactation period. Gnotobiotic mice received one oral dose of either EcN-Chim or
EcN-Ctrl before mating. The offspring from both models underwent systemic allergic poly-
sensitization and intranasal challenge with recombinant birch and grass pollen allergens (rBet
v 1, rPhl p 1, and rPhl p 5). In the CV setting, the colonization of offspring via treatment of
mothers reduced allergic airway inflammation (AAI) in offspring compared to poly-sensitized
controls. Similarly, in a gnotobiotic model, AAI was reduced in EcN-Chim and EcN-Ctrl mono-
colonized offspring. However, allergy prevention wasmore pronounced in the EcN-Ctrl mono-
colonized offspring as compared to EcN-Chim. Mono-colonization with EcN-Ctrl was
associated with a shift toward mixed Th1/Treg immune responses, increased expression of
TLR2 and TLR4 in the lung, and maintained levels of zonulin-1 in lung epithelial cells as
compared to GF poly-sensitized and EcN-Chim mono-colonized mice. This study is the first
one to establish the model of allergic poly-sensitization in gnotobiotic mice. Using two different
settings, gnotobiotic and conventional mice, we demonstrated that an early life intervention
with the EcNwithout expressing an allergen is a powerful strategy to prevent poly-sensitization
later in life.
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INTRODUCTION

The prevalence of allergic poly-sensitization in children has
increased significantly over the last decades (1–6). Nowadays,
it is approximated that 14 to 45% of children suffer from poly-
sensitization (3, 5, 6), which starts as early mono-sensitization to
aeroallergens, such as birch and grass pollen allergens (4, 7–11).
Despite the availabilities of conventional allergen-specific
immunotherapy, based on the injection of increasing doses of
allergen mixtures, the exposure to these allergens could pose a
risk for the development of new sensitizations. There is a
pressing need for the development of novel prophylactic
therapies (12–16); therefore, the induction of immune
tolerance early in life could be an excellent strategy for
preventing poly-sensitization in children.

The priming of the immune system is particularly effective
during the early period of life (17). Early life stages such as
prenatal, perinatal, and early-postnatal period are crucial for
establishing balanced gut microflora, which has been associated
with reduced allergy development (18–22). The importance of
immunological imprinting has been shown by clinical
intervention studies, where early probiotic applications to
mothers prevented allergies in their children (23–25). Using a
mouse model of mono-sensitization to the major birch pollen
allergen Bet v 1, we have previously shown that the perinatal and
neonatal colonization with particular wild type probiotic bacteria
(21, 26) or with recombinant probiotic bacteria expressing Bet v
1 (22) during the gestation and lactation period, reduced the
development of Bet v 1-specific allergy.

Here, we investigated whether Escherichia coli Nissle 1917
(EcN), a probiotic Gram-negative bacterial strain with strong
immunomodulatory properties (27, 28), can prevent the
development of poly-sensitization in mice when applied early
in life. Recently, we engineered a recombinant EcN expressing
either the major birch (Bet v 1) and grass (Phl p 1 and Phl p 5)
(EcN-Chim) pollen allergens or EcN harboring the empty
plasmid (EcN-Ctrl) (7, 28, 29) and showed that the intranasal
pretreatment with EcN-Chim but not EcN-Ctrl reduced allergic
poly-sensitization in adult mice (28).

In the current study, performed in conventional (CV) and
monoxenic mice, we had assessed the impact of EcN-Chim and
EcN-Ctrl (antigen-specific vs. non-antigen-specific tolerance
induction) treatment on the experimental poly-sensitization
model when probiotics were applied in the early phase of life.
In this phase of life, it was of interest to investigate whether
EcN bacteria itself can prevent allergy or if the expression of
the respective allergen by EcN is needed for successful
allergy prevention.

Therefore, our first aim was to investigate the effects of
EcN-Chim and EcN-Ctrl applied orally to mothers during the
last week of gestation and lactation on the development of
allergy in their offspring in CV conditions. Secondly, we have
used the gnotobiotic mouse model to enable mother-to-
offspring early bacterial mono-colonization to understand
better the EcN-Chim and EcN-Ctrl impact on the prevention
of poly-sensitization.
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MATERIAL AND METHODS

Bacteria and Growth Conditions
Two recombinant strains EcN previously described (28) were
used in the current study: i) EcN-Chim: a clone expressing multi-
allergen chimer Phl p 5-Bet v 1-Phl p 1 along with fluorescent
mCherry; ii) EcN-Ctrl clone expressing only mCherry without
allergen. Both recombinant clones were grown and selected on
Luria-Bertani (LB) agar plates with 20 µg ml−1 chloramphenicol
(CM) at 37°C overnight, as described in Sarate et al., 2019 (28).
In liquid medium, recombinant EcN-Chim and EcN-Ctrl strains
were cultivated at 30°C on 200 RPM overnight in LB-medium
containing 20 µg/ml chloramphenicol (28).

Antigens
Recombinant (r) allergens Bet v 1, Phl p 1, and Phl p 5 were
purchased from Biomay GmbH (Vienna, Austria).

Animals and Ethics Statement
For perinatal study, pregnant conventional BALB/c mice in the
last week of gestation were purchased from Charles River
(Sulzfeld, Germany). The animals were maintained under
controlled conventional housing conditions and provided with
standard diet and water ad libitum. All experiments were
approved by the Animal Experimentation Committee of the
Medical University of Vienna and by the Federal Ministry of
Science and Research (BMWF-66.009/0384-WF/V/3b/2015).

For germ-free (GF) mice studies in neonates, germ-free
female BALB/c mice were kept under sterile conditions in
Trexler-type plastic isolators, and the absence of aerobic and
anaerobic bacteria, molds, and yeast was confirmed every two-
weeks by standard microbiological methodology (31, 32). The
mice were kept in a room with a 12 h light-dark cycle at 22°C, fed
an irradiated sterile diet (Altromin 1414, Altromin, Germany),
and provided sterile autoclaved water ad libitum. The animal
experiments were approved by the Committee for the Protection
and Use of Experimental Animals of the Institute of
Microbiology of the Czech Academy of Sciences (approval ID:
23/2018).
Mouse Model of Poly-Sensitization
Using Recombinant Birch and Grass
Pollen Allergens
Poly-sensitization was done as described previously (28). Briefly,
female BALB/c mice were sensitized with three intraperitoneal
injections (days 10, 24, and 39) of a mixture of 5 µg rBet v 1, 5 µg
rPhl p 1, and 5 µg rPhl p 5 adsorbed to aluminum hydroxide (Al
(OH)3; Serva, Heidelberg, Germany) (0.68 mg/ml). To induce
airway inflammation, one week after the last intraperitoneal
immunization, mice were anesthetized by 2% isoflurane in an
anesthetic induction chamber and challenged intranasally with
30 µl of a mixture of 5 µg rBet v 1, 5 µg rPhl p 1, and 5 µg rPhl p 5
for 3 consecutive days.

Mice were sacrificed 72 h after the last challenge by exposure
to carbon dioxide and blood was collected from the facial vein of
February 2021 | Volume 11 | Article 612775
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mice at the end of the experiment. Sera were collected and stored
at −20°C until used.
The Perinatal Approach in
Conventional Mice
Recombinant EcN-Chim and EcN-Ctrl strains were cultivated at
200 RPM, 30°C overnight in LB medium. Bacterial cells were
collected and washed with ice-cold PBS. For perinatal
application, bacterial cultures were adjusted to 1 x 109 CFU/
300µl of gavage buffer (0.2 M NaHCO3 buffer containing 1%
glucose, pH 8) per mice. Pregnant mice in the last week of
gestation were pretreated orally with either EcN-Chim or EcN-
Ctrl during the gestation (every day) and lactation (every second
day). On day 21, female offspring (n = 6 to 9 mice per group)
derived from these mothers were separated and sensitized
intraperitoneally with 5 µg rBet v 1, 5 µg rPhl p 1, and 5 µg
rPhl p 5 followed by challenge with 5 µg rBet v 1, 5 µg rPhl p 1,
and 5 µg rPhl p 5 as described in the poly-sensitization model
(21). Mice were sacrificed 72 h after the last challenge,
bronchoalveolar lavage (BAL), lung samples and blood were
collected for further analysis. After centrifugation, sera were
collected and stored at −20°C for further analysis.

The Perinatal Approach in GF Mice
Recombinant EcN-Chim and EcN-Ctrl strains were prepared as
described above (in a sterile condition) for the mono-
colonization in GF mice. Eight-week-old GF mice were
colonized with a single dose (2 × 108 CFU/200 µl PBS), either
EcN-Chim or EcN-Ctrl by intragastric gavage and mated 10 days
later. During the experiment, drinking water was supplemented
with chloramphenicol (200 mg/L) to ensure the long‐term
stability of the recombinant EcN strains in vivo. The stability
of colonization was checked by plating of feces on LB agar and
counting after aerobic cultivation for 24 h at 37°C. Colonization
remained stable throughout the experiment and reached levels of
0.8-1.2 x 1010 CFU/g feces (EcN-Chim) and 0.7-1.4 x 1010 CFU/g
feces (EcN-Ctrl).

On day 21, neonatally colonized female offspring either by
EcN-Chim or EcN-Ctrl, as well as germ-free controls, were
separated from their mothers and divided into two groups.
One group was sensitized intraperitoneally with 5 µg rBet v 1,
5 µg rPhl p 1, and 5 µg rPhl p 5 (Biomay, Austria) emulsified in
100 ml of Al(OH)3 (Serva, Germany) three times at a 14-day
intervals. The other group was colonized but not sensitized and
challenged. One week after the last i.p. immunization, mice were
anesthetized by isoflurane and challenged intranasally with 30 ml
of the mixture of 5 mg rBet v1, 5 mg rPhl p 1, and 5 mg rPhl p 5 for
three consecutive days as described in the poly-sensitized model.
Mice were sacrificed 72 h after the last challenge, and blood, BAL
and lung samples were collected for further analysis.

Characterization of Airway Inflammation
and Allergic Poly-Sensitization
BAL
To evaluate the allergic airway inflammation (AAI), mice were
terminally anesthetized, the tracheas were cannulated, and lungs
Frontiers in Immunology | www.frontiersin.org 3
were lavaged with 2 x 0.5 ml PBS (30, 33). BAL fluids were
centrifuged at 300 x g for 5 min at 4°C and cell-free supernatants
were stored at −20°C for further analysis. Cell pellets were
recovered for cellular analysis. After counting, cytospins were
prepared by spinning cells onto microscope slides (Shandon
Cytospin®, Shandon Southern Instruments, USA) and staining
with H&E (Hemacolor®, Merck, Darmstadt, Germany).
Cytospin preparations were differentiated according to
standard morphologic criteria by counting 200 cells via light
microscopy. Collected supernatants were then analyzed for IL-5
and IL-13 response in BAL fluids. Macrophages, lymphocytes,
eosinophils, and neutrophils per slide were counted under the
light microscope (Nikon Eclipse; 100x magnification) (200 cells
per count). Results represent the absolute numbers of cells.

Lung Histology
Small lung tissues were excised and fixed with 7.5% formaldehyde-
PBS, followed by paraffin-embedding. Lung sections (5 µm thick)
were stained with periodic acid-Schiff (PAS) stain. Lung histological
pathology was evaluated using light microscopy. Numbers of PAS-
positive, mucus-producing Goblet cells in the bronchial epithelium
were counted by an investigator blinded to the experimental setting.
Results are given as the mean number of goblet cells per millimeter
of the basement membrane (34).

Allergen-Specific Antibodies in Serum
Allergen-specific antibody levels in mouse sera (IgE, IgG1, and
IgG2a) were determined by ELISA as previously described (35).
Briefly, microtiter plates (Nunc, Roskilde, Denmark) were coated
with each of the recombinant allergens Bet v 1, Phl p 1, or Phl p 5
(2 mg/ml) and incubated with mouse sera. Antibody detection
was performed using rat anti-mouse IgE, IgG1, IgG2a, followed
by peroxidase-conjugated mouse anti-rat IgG. Results show the
optical density (OD) values after subtraction of baseline levels
from pre-immune sera.

The determination of the allergenic antibody serum activity
was performed as previously described (30). Briefly, RBL-2H3
cells were passively sensitized by incubation with serum samples
of the respective experimental groups and their degranulation
was induced by addition of recombinant allergens rBet v 1, rPhl p
1 and rPhl p 5 (0.3µg/ml) diluted in Thyrode's buffer.
Supernatants were analysed for b-hexosaminidase activity.
Results are reported as percentages of total b-hexosaminidase
release after adding 1% Triton X-100 and are shown after
subtraction of baseline release levels obtained with pre-
immune sera.

Allergen-Specific Cytokine Detection in BAL
BAL supernatants collected during sacrifice were analyzed for IL-
5 and IL-13 levels by using an ELISA specific for murine
cytokines (Ready-Set-Go ELISA Kit eBioscience, USA)
according to the manufacturer’s instructions.

Quantification of mRNA Expression by Real-Time
(RT)-PCR
Total RNA was extracted from lung samples of mice from all
treatment and controls group at the end of the experiment. RNA
February 2021 | Volume 11 | Article 612775
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quantification was performed using ND-1000 Spectrophotometer
(Nanodrop Technologies Inc., Wilmington, USA) and cDNA was
obtained using reverse-transcriptase kit (BIO-RAD, Vienna,
Austria). Expression of IL-10, Foxp3, and IFNg mRNA was
measured by RT-PCR as described previously (30). The
housekeeping gene Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) and b-actin (Universal Probe Library probe #64;
Roche) were used as a control to standardize the amount of
sample cDNA. Data are presented as the ratio of the target genes
expression to GAPDH and b-actin expression.

Immunohistochemical Identification of TLR2, TLR4,
and Zonulin-1 (ZO-1) in Lung Tissue of Mono-
Colonized Mice
For TLR2 and TLR4 analysis, the 3 mm lung sections were
deparaffinized and antigens were retrieved in 0.01 M citrate
buffer (pH 6) using a microwave vessel for 10 min. After cooling
down and washing by PBS, endogenous peroxidase was blocked
with 3% hydrogen peroxide in PBS for 15 min. Non-specific
adsorption was eliminated by incubation of the sections in 10%
normal rabbit serum in PBS for 1 h. Samples were incubated
overnight with polyclonal goat anti-TLR2 (4 mg/ml) or anti-
TLR4 (4 mg/ml) (Santa Cruz Biotechnology, Dallas, Texas, USA)
at 4°C. After washing in PBS, sections were incubated with rabbit
anti-goat IgG conjugated with horseradish peroxidase (1:200 in
PBS) (Jackson, ImmunoLabs., West Grove, PA, USA) for 1 h and
stained with DAB (3,3′-Diaminobenzidine) (Dako, Carpinteria,
CA, USA) for 3 min. The counterstain was carried out with
hematoxylin, samples were mounted by the Paramount Aqueous
Mounting medium (Dako, Carpinteria, CA, USA) and viewed
under an Olympus BX 40 microscope with 40x objective,
equipped with and Olympus DP 70 digital camera.

ZO-1 analysis was done as previously described (36). Briefly,
the 3 mm lung sections were deparaffinized, antigens were
retrieved by protease from Streptomyces griseus (1 mg/ml, type
XIV, Sigma-Aldrich, St. Luis, MO, USA) at 37°C for 8 min,
washed with PBS and endogenous peroxidase was blocked with
3% hydrogen peroxide in PBS for 15 min. Non-specific
adsorption was eliminated by incubation of the sections in
10% normal goat serum in PBS for 1 h. Samples were
incubated overnight with polyclonal rabbit anti-ZO-1 (5 mg/ml,
Santa Cruz Biotechnology, Dallas, Texas, USA) at 4°C. After
washing in PBS, sections were incubated with goat anti-rabbit
IgG conjugated with horseradish peroxidase (1:200 in PBS)
(Jackson, ImmunoLabs., West Grove, PA, USA) for 1 h and
stained with DAB (3,3′-Diaminobenzidine) (Dako, Carpinteria,
CA, USA) for 1 min.

Quantification of TLR2, TLR4 and ZO-1 immunohistochemistry
was done bymeasuring the optical density (OD). The OD analysis of
the TLR4, TLR2 and Zonulin-1 images was evaluated using ImageJ
(Fijiv2.0.0; National Institutes of Health, Bethesda, MD). Briefly, 8-
bit RGB DAB-stained images were processed through color
deconvolution (37), and threshold settings and mean gray value
was assessed in the selected area of bronchus/bronchiolar epithelial
layer in DAB-extracted images. OD was estimated by the following
formula: OD = log (max intensity/mean gray value intensity), where
Frontiers in Immunology | www.frontiersin.org 4
max intensity = 255 (38). OD of background (field without any
tissue) was subtracted from OD of epithelial cell layer. Results from
two to five bronchi/bronchiole from individual mouse were pooled
and five mice per each group were evaluated (37, 38).
Statistical Analysis
Statistical analysis was conducted using GraphPrism, ver. 6. For
comparison of more groups the One-Way ANOVA was applied
followed by the Bonferroni’s Multiple Comparison Test unless
otherwise specified. All data are shown as mean ± SEM.
Significant differences were considered at P < 0.05 (*), P < 0.01
(**), P < 0.001 (***).
RESULTS

Conventional Mouse Model
Offspring of Mothers Treated With EcN-Ctrl
Exhibited Reduced Allergic Airway
Inflammation (AAI)
To assess the effects of perinatal interventions with probiotic
bacteria on poly-sensitization, mice were treated orally with
either EcN-Chim or EcN-Ctrl during the gestation and
lactation period, and their offspring were sensitized and
challenged with rBet v 1, rPhl p 1, and rPhl p 5 (Figure 1A).
The offspring colonized perinatally with EcN-Ctrl exhibited
reduction in BAL eosinophils (P < 0.001), IL-5 (P < 0.05), and
IL-13 (P < 0.01) levels as compared to poly-sensitized offspring
(Figures 1B–E). Offspring colonized with EcN-Chim exhibited
reduced IL-13 (P < 0.05) as well as eosinophil level (P < 0.05) in
BAL compared to poly-sensitized animals. Lung histology
revealed reduced mucus production in the lung of offspring
colonized with either EcN-Chim or EcN-Ctrl as compared to
poly-sensitized controls (Figure 1F). Besides, perinatal
colonization with EcN-Ctrl induced a reduction in Bet v 1-
specific serum IgE as compared to poly-sensitized controls (P <
0.01) (Figure 1G).

Gnotobiotic Mouse Model
Perinatal and Neonatal Mono-Colonization With
Either EcN-Chim or EcN-Ctrl Prevented AAI
In a gnotobiotic mouse model, perinatal/neonatal mono-
colonization of offspring via their mothers with either EcN-
Chim or EcN-Ctrl (Figure 2A) significantly reduced AAI as
compared to GF poly-sensitized controls (Figures 2B–F). This
was reflected by reduced recruitment of eosinophils (EcN-Chim,
P < 0.0001; EcN-Ctrl, P < 0.001), as well levels of IL-5 (EcN-
Chim, P < 0.01; EcN-Ctrl, P< 0.05), and IL-13 (EcN-Chim, P <
0.0001; EcN-Ctrl, P < 0.001) in BAL samples compared to GF
poly-sensitized controls (Figures 2B–E). Histological analysis
revealed reduced mucus production by airway-lining goblet cells
in the lungs of the groups colonized with either EcN-Chim (P <
0.0001) or EcN-Ctrl (P < 0.0001) compared to GF poly-sensitized
control (Figures 2F, G).
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FIGURE 1 | Perinatal application of Escherichia coli Nissle 1917 (EcN)-Chim and EcN-Ctrl in conventional mice reduced airway inflammation. (A) Schematic
representation of the perinatal application of recombinant EcN expressing birch-grass pollen chimera (EcN-Chim) and EcN expressing empty plasmid (EcN-Ctrl)
in a conventional mouse model of poly-sensitization. Female BALB/c mice were given either EcN-Chim or EcN-Ctrl orally during the gestation and lactation. On
day 21, female offspring derived from these mothers were separated and were then sensitized and challenged with 5 µg Bet v 1, 5 µg Phl p 1, and 5 µg Phl p 5
as described in poly-sensitization model. Mice were sacrificed 72 h after the last challenge. (B) Absolute numbers of macrophages, lymphocytes, eosinophils,
and neutrophils in bronchoalveolar lavage (BAL) and (C) Representative cytospins of BAL of one mouse per group stained with hematoxylin and eosin (H&E;
100x magnification). (D) IL-5 and (E) IL-13 cytokines in BAL. (F) Representative lung tissue sections of one mouse per group stained with Periodic Acid Schiff
(PAS) (Red; 10 x magnification; scale bars 100 µm). (G) Levels of Bet v 1-specific serum IgE. (B, D, E, G) represents the mean ± SEM from two experiments
(total n = 6 to 9 mice per group). Error bars show mean ± SEM. *P < 0.05, **P < 0.01, ****P < 0.0001 by the One-way ANOVA followed by the Bonferroni’s
Multiple Comparison Test.
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FIGURE 2 | Perinatal and neonatal mono-colonization of Escherichia coli Nissle 1917 (EcN)-Chim and EcN-Ctrl in germ-free (GF) mice reduced airway inflammation.
(A) Schematic representation of the neonatal colonization of GF mice with recombinant EcN expressing EcN-Chim and EcN-Ctrl in a gnotobiotic mouse model of
poly-sensitization. Eight-week-old GF mice were colonized with a single dose of either EcN-Chim or EcN-Ctrl by intragastric gavage and mated 10 days later. On day
21, all mono-colonized female offspring were separated from their mothers and divided into two groups. One group was sensitized and challenged with 5 µg rBet v
1, 5 µg rPhl p 1, and 5 µg rPhl p 5 and other not. Mice were sacrificed 72 h after the last challenge (B) Absolute numbers of macrophages, lymphocytes,
eosinophils, and neutrophils in bronchoalveolar lavage (BAL). (C) Representative cytospins of BAL of one mouse per group stained with H&E 100x magnification).
(D) IL-5 and (E) IL-13 cytokines in BAL. (F) Quantification of mucus-producing goblet cells. (G) Representative lung tissue sections of one mouse per group stained
with Periodic Acid Schiff (PAS) (Red; 10x magnification; scale bars 100 µm); arrows indicate cell infiltration. (B, D–F) represents mean ± SEM from two experiments
(total n = 7 to 10 mice per group). Error bars show mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by the One-way ANOVA followed by the
Bonferroni’s Multiple Comparison Test.
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Perinatal and Neonatal Mono-Colonization With
Either EcN-Chim or EcN-Ctrl Inhibits the
Development of Th2-Type Allergen-Specific
Immune Response
Mono-colonization with EcN-Chim and EcN-Ctrl significantly
reduced Phl p 5-specific IgG1 levels (EcN-Chim, P < 0.05; EcN-
Ctrl, P < 0.001) in sera (Figure 3A). Perinatal/neonatal mono-
Frontiers in Immunology | www.frontiersin.org 7
colonization with EcN-Ctrl led to a substantial increase of Bet v 1
(P < 0.01) and Phl p 5-specific (P < 0.0001) IgG2a antibody levels
in serum in comparison with GF poly-sensitized control mice
(Figure 3B). Mono-colonization with EcN-Chim led to
increased IgG2a against Phl p 5 (P < 0.0001) compared to GF
poly-sensitized control (Figure 3B). By measuring the IgE-
dependent basophil degranulation, we have shown that cells
A

B

C

FIGURE 3 | Perinatal and neonatal mono-colonization with Escherichia coli Nissle 1917 (EcN)-Chim and EcN-Ctrl inhibits the development of Th2-type allergen-
specific immune response. Mice were treated as indicated in Figure 2A. Serum samples were obtained from mice on sacrifice day. Allergen-specific antibody levels
in mouse sera were determined by ELISA and RBL. The figure represents levels of Bet v 1, Phl p 1, Phl p 5-specific serum (A) IgG1 (B) IgG2a, and (C) IgE. Data
represent mean ± SEM from two experiments (total n = 7 to 10 mice per group). Error bars show mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
by the One-way ANOVA followed by the Bonferroni’s Multiple Comparison Test.
February 2021 | Volume 11 | Article 612775

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sarate et al. EcN Prevents Allergic Poly-Sensitization in Mice
derived from EcN-Chim and EcN-Ctrl-colonized mice and
stimulated with rBet v 1 (P < 0.01) and rPhl p 5 (P < 0.01)
exhibited reduced antigen-specific b-hexosaminidase release
compared to the sera of GF poly-sensitized controls (Figure
3C). No significant difference was observed for Phl p 1-specific
IgG2a, IgG1, and b-hexosaminidase release in EcN-Chim and
EcN-Ctrl mice in comparison with GF poly-sensitized controls
(Figures 3A–C).

Perinatal and Neonatal Mono-Colonization With
EcN-Ctrl but Not EcN-Chim Induced IL-10, Foxp3,
and IFNg mRNA Expression in the Lung
Expression of IL-10, Foxp3, and IFNg mRNA in lungs were
analyzed with two reference genes GAPDH (Figures 4A–C) and
b-actin (Figures 4D–F). Although mono-colonization with both
EcN-Ctrl and EcN-Chim reduced allergy in poly-sensitized mice,
only the mono-colonization with EcN-Ctrl triggered the
increased expression of IL-10 (P < 0.01), Foxp3 (P < 0.001),
and IFNg (P < 0.0001) mRNA in the lung as compared to GF
poly-sensitized control (Figures 4A–C, E, F). Mono-
colonization with EcN-Chim did not influence the levels of IL-
Frontiers in Immunology | www.frontiersin.org 8
10, Foxp3, and IFNg mRNA expression in the lung in
comparison with GF poly-sensitized mice. EcN-Ctrl showed
significantly higher expression of IL-10 (P < 0.05), Foxp3 (P <
0.01), and IFNg (P < 0.01) compared to EcN-Chim (Figures 4A–
C, F).

Perinatal and Neonatal Mono-Colonization With
EcN-Chim and EcN-Ctrl Increased Expression of
TLR2 and TLR4 as Well as Maintained Epithelial
Barrier Integrity in the Lung by ZO-1 Expression
Immunochemical staining of the lungs showed increased TLR2
(Figure 5A) and TLR4 (Figure 5B) expression in the lungs of
mono-colonized mice. This increase was confirmed by
quantification of TLR2 and TLR4 using ImageJ software.
Quantification data showed moderate increase in TLR2
(Figure 5C) and strong stimulation of TLR4 (Figure 5D)
expression in the lung of mice mono-colonized with either
EcN-Chim or EcN-Ctrl compared to and poly-sensitized controls.

Lung immunohistochemistry showed maintained levels of
ZO-1 in bronchial epithelial cells, in both EcN-Chim and EcN-
Ctrl mono-colonized mice as compared to GF polysensitized
A B C

D E F

FIGURE 4 | Perinatal and neonatal mono-colonization with Escherichia coli Nissle 1917 (EcN)-Ctrl led to increased IL-10, Foxp3, and IFNg mRNA expression in the
lung. Mice were treated as indicated in Figure 2A. After sacrifice, lung samples were collected and expression of IL-10, Foxp3 and IFNg mRNA was measured by
real-time (RT)-PCR. The figure represents the ratio of the target genes: (A) IL-10, (B) Foxp3, and (C) IFNg to the GAPDH reference gene and (D) IL-10, (E) Foxp3,
and (F) IFNg to the b-actin reference gene. Data represents mean ± SEM from two experiments (total n = 7 to 10 mice per group) analyzed by the One-way ANOVA
followed by the Bonferroni’s Multiple Comparison Test. Error bars show mean ± SEM. Data represents mean ± SEM from two experiments (total n = 7 to 10 mice
per group). Error bars show mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by the One-way ANOVA followed by the Bonferroni’s Multiple
Comparison Test.
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mice (Figure 5E). Quantification of ZO-1 showed significant
decrease in ZO-1 in GF polysensitized mice as compared to both
mono-colonized mice (Figure 5F). An apparent reduction in
epithelial ZO-1 levels was observed in GF poly-sensitized
controls as compared to GF naïve group (Figure 5F).
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DISCUSSION

The constant increase in birch and grass pollen poly-sensitization
and the lack of appropriate therapy are raising a considerable
demand for a robust prophylactic intervention (5, 6, 39–41). It has
A

B

C

E

F

D

FIGURE 5 | Perinatal and neonatal mono-colonization of either EcN-Chim or EcN-Ctrl activated both TLR2 and TLR4 expression and maintained ZO-1 levels in the
lung. Mice were treated as indicated in Figure 2A. For immunohistochemistry analysis, lung sections were processed and stained as described in Material and
Methods using antibodies against TLR2, TLR4, and ZO-1 followed by 3,3′-Diaminobenzidine (DAB) staining. Samples were analyzed under a light microscope with a
40x objective. Immunohistochemistry staining for TLR2 (A), TLR4 (B), and ZO-1 (E) is represented by a brown color (indicated by arrows). Quantification of TLR2
(C), TLR4 (D), and ZO-1 (F) expression was performed by optical density analysis (OD) of bronchial epithelial cell layer using ImageJ software. (C, D, F) represents
mean ± SEM from two experiments (five mice per group were tested). Error bars show mean ± SEM. *P < 0.05, **P < 0.01, ****P < 0.0001 by the One-way ANOVA
followed by the Bonferroni’s Multiple Comparison Test.
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been suggested that the immune response generated during the
early phase of life to various environmental factors and antigens
may be decisive for the immune response to different allergic
diseases later in life (19, 20, 42–44). In this study, we have
demonstrated that the perinatal and neonatal mono-colonization
of mice with EcN expressing either birch-grass pollen multi-
allergen, EcN-Chim, or an empty vector, EcN-Ctrl, prevented
the development of poly-sensitization.

Evidence-based studies have revealed that interventions with
probiotic bacteria prevent the development of allergy (45, 46). EcN
is a probiotic strain with strong immunomodulatory properties and
has also been used as an antigen delivery system (47–50). We have
previously shown that the EcN-Ctrl was not potent enough to
reduce allergic multi-sensitivities in fully-grown mice with
established microflora. Therefore, we constructed a recombinant
EcN strain, expressing birch and grass pollen allergens chimera,
EcN-Chim, which prevented allergen-specific multi-sensitivities in
adult mice after intranasal application (28). In the current study, by
performing experiments in the perinatal and neonatal phase and
taking advantage of early interventions, we have demonstrated that
mothers-to-offspring mono-colonization not only with the EcN-
Chim but also EcN-Ctrl strain, which does not express the tolerizing
allergens, was sufficient to prevent allergy development.

It has been shown that various factors such as reduced infections,
delivery by Cesarean section, antibiotic treatment, and microbial
dysbiosis during the early age of life can influence the development
of the immune system leading to an increased risk of allergic multi-
sensitization, particularly in infancy (19, 51–55). The maturation of
human immune system occurs early in life in parallel to the
establishment of the gut microflora, i.e., approximately from the
conception to the end of the second year of childhood (56, 57).
Numerous clinical mono-sensitization studies have demonstrated
that the early phase of life represents a “window of opportunity”
where the immune system can be modulated by the application of
certain probiotic bacteria (23–25, 56). In line with other studies, we
have previously shown that early intervention with probiotic
bacterial strains can prevent birch pollen allergy in mice (21, 22).
In the current study, we have demonstrated that the immune system
can be modulated by using allergen-specific and allergen-non-
specific immunomodulators during the gestation and lactation
period to prevent the development of poly-sensitization.

Our group has shown that the route of probiotic application is
essential for the outcome of probiotic interventions in animal
models of mono- and poly-sensitization (28, 35, 58). In
conventional adult mice with fully established gut microflora,
we have previously demonstrated that the intranasal route
possesses advantages over the oral route of application in
reaching the beneficial effects of treatment (28). In the current
study in neonates, a single oral application of probiotic bacteria
in germ-free mothers was sufficient to induce a local as well as
systemic protective immune response against poly-sensitization.
This finding has tremendous practical implications since the oral
route of application is more convenient and the preferred route
for the induction of mucosal tolerance in children against various
food- and airborne-triggered allergic diseases (44, 59–61). The
oral application to mothers led to the colonization of either EcN-
Frontiers in Immunology | www.frontiersin.org 10
Chim or EcN-Ctrl in offspring (data are not shown). Despite
having rich commensal microflora, the EcN strain managed to
colonize in the guts of CV offspring during the neonatal period
and had a pronounced effect on poly-sensitization. However, it is
still unclear how the colonization establishes in offspring. We can
assume that this colonization occurs via contact with mothers
feces and/or feeding on mothers milk. Several clinical studies
demonstrated colonization with probiotic bacteria from mother
to offspring via breast milk (62, 63).

To investigate the mechanism of tolerance induction by the
EcN-Chim and EcN-Ctrl strains against poly-sensitization, we
took advantage of a gnotobiotic mouse model. We found that
both strains reduced allergic multi-sensitization and AAI. Mice
mono-colonized with EcN-Ctrl exhibited increased Th1/Treg
responses in the lung. The shift toward Th1/Treg cellular
responses in the EcN-Ctrl group was associated with reduced
Bet v 1- and Phl p 5-specific IgE measured by rat basophil
leukemia (RBL) cells degranulation assay as the level of b-
hexaminidase, and increased levels of allergen-specific IgG2a.
We did not observe any difference in Phl p 1-specific b-
hexaminidase release and IgG2a levels, which might be
associated with the high allergenic properties of Phl p 1 (64–
66). These results are in line with previous studies suggesting that
anti-allergic properties of the EcN are related to the induction of
specific Th1/Treg response via the induction of Foxp3, IL-10,
and IgG2a (28, 50, 67). It is known that Foxp3 and IL-10 play a
key role in allergy suppression and maintaining immune
tolerance (68–70). Our data indicate that perinatal and
neonatal mono-colonization with the EcN-Ctrl precludes poly-
sensitization development by polarizing the Th1/Treg response
in the lung.

It has been suggested that mucosal TLR2 and TLR4
orchestrate the tolerance in the gastrointestinal and respiratory
tract (50, 67, 71). It was further demonstrated that the
amelioration of dextran sulfate sodium-induced colitis by EcN
is mediated via TLR-2- and TLR-4-dependent pathways (72, 73).
In our current study, the lung from mice mono-colonized with
the EcN-Chim and EcN-Ctrl showed increased expression of
both TLR2 and TLR4 compared with GF poly-sensitized and GF
naive controls. These findings support our previous in vitro data,
demonstrating that the EcN can activate both TLR2 and TLR4
expressed in HEK293 cells (28).

Apart from being an important site to initiate the immune
response, airway epithelial mucosa plays a vital role in protecting
the body from the environment and maintaining the inner
homeostasis in the lung (74, 75). Often in allergy, the structure
and functions of airway epithelial barriers are markedly impaired
by the lung inflammation (76) and this can lead to a more
pronounced sensitization (77). To investigate the impact of the
EcN-Chim and EcN-Ctrl on barrier functions, we evaluated ZO-
1 levels in lung tissue samples. The ZO-1 is the protein expressed
in tight junctions that regulates the epithelial barrier function by
preventing the entry of different pathogens and antigens (78). The
EcN strain has been used previously in premature and full-term
infants to enhance postnatal immune competence against
necrotizing enterocolitis by improving gut barrier function (79).
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In its outer cell membrane, EcN expresses a unique
lipopolysaccharide, enabling EcN to exhibit immunomodulating
properties without showing immunotoxic effects (27, 80). It was
demonstrated that EcN interacts with the intestinal epithelial cells,
which fortifies the epithelial cell barrier. It is also suggested that EcN
triggers the stimulation of epithelial defensin production, which
helps restore the enterocytes’ tight junctions (81). Our current study
shows that poly-sensitization in the gnotobiotic mouse model led to
reduced ZO-1 levels compared to GF naïve mice. However, the
neonatal application of both the EcN-Chim and EcN-Ctrl
maintained the ZO-1 levels in the airways after poly-sensitization
at a similar level as in GF naïve mice.

In conclusion, we provide evidence that interventions with
probiotic bacteria early in life could present a promising
prophylactic tool to imprint the immune system toward
preventing the development of poly-sensitization. Contrary to the
adult setting, where the mucosal tolerance was induced only in the
presence of tolerizing allergen (EcN-Chim) (28), the interventions
during peri- and neonatal period of life led to allergy prevention in
mice with the probiotic strain without expressed allergen (EcN-
Ctrl). In other words, it was possible to induce tolerance avoiding a
potential sensitization with “a foreign” antigen. Therefore, we
suggest that the application of wild type probiotic bacteria during
the “window of opportunity” is a safe approach. Our work builds
the foundation for development of personalized strategies for a
prophylactic and therapeutic treatment of poly-sensitization.
Further studies in mice and humans are needed to evaluate the
full potential of our approach.
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