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Abstract

Systemic drug delivery to solid tumors involving macromolecular therapeutic agents is challenging for many reasons.
Amongst them is their chaotic microvasculature which often leads to inadequate and uneven uptake of the drug. Localized
drug delivery can circumvent such obstacles and convection-enhanced delivery (CED) - controlled infusion of the drug
directly into the tissue - has emerged as a promising delivery method for distributing macromolecules over larger tissue
volumes. In this study, a three-dimensional MR image-based computational porous media transport model accounting for
realistic anatomical geometry and tumor leakiness was developed for predicting the interstitial flow field and distribution of
albumin tracer following CED into the hind-limb tumor (KHT sarcoma) in a mouse. Sensitivity of the model to changes in
infusion flow rate, catheter placement and tissue hydraulic conductivity were investigated. The model predictions suggest
that 1) tracer distribution is asymmetric due to heterogeneous porosity; 2) tracer distribution volume varies linearly with
infusion volume within the whole leg, and exponentially within the tumor reaching a maximum steady-state value; 3)
infusion at the center of the tumor with high flow rates leads to maximum tracer coverage in the tumor with minimal
leakage outside; and 4) increasing the tissue hydraulic conductivity lowers the tumor interstitial fluid pressure and decreases
the tracer distribution volume within the whole leg and tumor. The model thus predicts that the interstitial fluid flow and
drug transport is sensitive to porosity and changes in extracellular space. This image-based model thus serves as a potential
tool for exploring the effects of transport heterogeneity in tumors.
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Introduction

Cancer treatments based on systemic delivery of therapeutic

agents are often hindered due to poor and uneven uptake of drugs

within tumors. The unique characteristics of the tumor microen-

vironment which includes irregular microvasculature and high

interstitial fluid pressure (IFP) are known to affect the efficacy of

anti-cancer treatments such as chemotherapy. The tumor

microvasculature characterized by fenestrated, disorganized ves-

sels, necrotic regions and avascular areas [1–3] leads to

heterogeneous extravasation of therapeutic agents [4], while the

high IFP may cause inefficient uptake due to decreased

transcapillary transport [5].

In recent years, localized drug delivery has emerged as a

plausible alternative to systemic delivery for transporting macro-

molecular therapeutic agents to the tumors [6–11]. By directly

injecting into the tumor, this circumvents previously mentioned

vascular and interstitial barriers and also reduces side-effects

associated with systemic exposure. Amongst the available

techniques, convection-enhanced delivery (CED) appears promis-

ing because at a given time it can achieve larger distribution

volumes than by diffusion alone [12,13]. In CED, an infusion

pump delivers the drug at constant flow rate or pressure thereby

creating extracellular fluid flow in tissue, to deliver and distribute

macromolecules over larger volumes.

Since its advent, CED has been used for delivery of a wide

range of substances including nanoparticles [14], liposomes [6,15],

cytotoxins [16] and viruses [17,18]. Experimental studies on CED

of liposomes into brain tumors (glioma) in rats are encouraging; it

was found that the technique effectively distributed liposomes in

the tumor and the surrounding normal tissue [6]. On the other

hand, a broad heterogeneous distribution was reported to have

resulted from CED of cytotoxins into human gliomas [16]. Such

an asymmetric distribution was also reported by Boucher and his

colleagues in their study with mice involving intratumoral infusion

of Evans blue-albumin into sarcoma HSTS 26T [19]. It should

however be noted that spherically symmetric distributions for

colon adenocarcinoma LS174T were also reported in their study.

Computational modeling of CED has gained attention recently,

with pre-clinical and clinical research suggesting the importance of

optimization of CED [20,21]. Software taking into account
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individual characteristics of a patient’s anatomy and pathophys-

iology for the initial plan of CED is likely to be helpful in deciding

catheter placement for optimum distribution volume [20].

However, many current tumor models assume theoretical tumor

microvasculature (network based) and simplified tumor geometries

[22–27]. Eventhough, such models might have the potential to

incorporate individual capillary vessels, most of current ones are

theoretical and often lack complete transport physics, since

accurately reconstructing the entire capillary network and

numerically solving for flow physics is computationally intensive.

For example, Smith and Humphrey developed a theoretical model

for infusions in a spherical tumor with a necrotic core and showed

that the flow field was very sensitive to the ratio of vascular

conductivity and hydraulic conductivity, and infusion close to the

tumor was retarded by the outward flow [22]. Our group has been

developing image-based computational porous media models

incorporating realistic geometries and spatially-varying transport

properties obtained through MRI, for predicting tracer distribu-

tions in different tissues [28–32]. For tumors in particular, our

group developed a framework which accounts for the realistic

tumor leakiness by using dynamic contrast enhanced (DCE)-MRI

data to estimate the spatial variation of transport properties (rate

transfer constant between plasma and extracellular space, K trans

and porosity, w) which were included in a porous media model to

solve for interstitial fluid flow and tracer transport using

computational fluid dynamics techniques [30–32].

In this study, a DCE-MRI-based computational model was

developed for predicting albumin tracer distribution following

CED in the lower limb of a mouse (C3H) inoculated with murine

sarcoma cells (KHT), as opposed to systemic delivery which was

modeled in our previous studies. Direct injections into the

interstitial space have the potential to greatly alter the interstitial

fluid pressure and velocity fields, and it is the goal of this study to

investigate the role of tissue heterogeneity on CED into tumors.

Such a model could potentially help assess the efficacy of CED in

tumors and provide better understanding of the biophysical IFP

and interstitial fluid velocity (IFV) changes due to CED, which are

otherwise difficult to measure experimentally. Also DCE-MRI is

likely to improve drug efflux estimates of current software models

[33], our model being the first one to use DCE-MRI derived

parameters (K trans and porosity) to predict CED distributions.

Simulations were carried out based on a voxelized modeling

approach developed by our group [28,29,32]. In this approach,

heterogeneous tissue properties (i.e. K trans and porosity) and

anatomical boundaries are assigned from MRI data. These

properties are then incorporated into a porous media transport

model to predict CED of tracers. This methodology has been

previously used by our group to model CED in spinal cord and

brain tissues [28,29] and systemic delivery in tumors [31,32]. It

should however be noted that the physics, governing equations

and resulting physiological flows of the current problem are

different. For example, the tumor microenvironment differs

significantly from that of the brain due to its aforementioned

chaotic vasculature and high IFP. Also porosity dependent

formulations for hydraulic conductivity and tracer diffusivity were

incorporated in this model, which were not present in our previous

studies.

Parameter analysis was performed to study the effects of

infusion flow rate, catheter placement and spatially-varying tissue

hydraulic conductivity on interstitial fluid flow and albumin tracer

transport. This was done to understand the sensitivity of CED

distribution to these variables. The flow rate was varied since the

capillary fluid exchange is pressure dependent. Catheter place-

ment is also known to be important in CED [13]; studies involving

infusions at different locations in the brain have revealed the

presence of a optimal site for achieving maximum distribution

volumes within a targeted region [29,34]. The tissue hydraulic

conductivity, a measure of fluid conductance through the tissue,

was also varied because of its direct influence on tumor IFP and

convective flow fields in intratumoral infusions. Higher values of

hydraulic conductivity are thought to reduce tumor IFP thereby

increasing the filtration of fluids and extravasation of macromol-

ecules [19].

Materials and Methods

Mathematical Model
The model requires two components; first, spatially-varying

transport properties of the KHT murine sarcoma were estimated

using DCE-MRI data following bolus tail vein injection of MR

visible tracer gadolinium-diethylene-triamine penta-acetic acid

(Gd-DTPA, MW &590 Da) in the mice. The MR experimental

data presented in [31] was used in this study. DCE-MRI-derived

data was used to determine Gd-DTPA concentration in tissue, rate

transfer constant (K trans) and porosity (w) maps as in [31]. Briefly,

tracer concentration was calculated based on MR signal

enhancement due to the tracer, and the resulting concentration

was fitted to the following 2-compartment model (plasma and

tissue compartments) to obtain K trans and porosity,

dCMR
t

dt
~K transCp{

K trans

w
CMR

t ð1Þ

where CMR
t is the MR derived tracer concentration in the tissue,

Cp is the tracer concentration in the blood plasma approximated

using an arterial input function (AIF) and t is time. Animal

experiments were performed within the principles of the Guide for

the Care and Use of Laboratory Animals and approved by the

University of Florida Institutional Animal Care and Use Com-

mittee (IACUC).

The second part of the study involves incorporating the above

calculated variable transport properties into a computational

porous media model for predicting extracellular flow and transport

following CED, i.e. direct infusion into the tumor. The CED

technique along with a K trans and w map are shown in Figure 1,

and the modeling methods are summarized in the flow chart

shown in Figure 2.

The tissue continuum was modeled as a porous media and the

governing equations were solved at each voxel after assigning their

respective K trans and w values. For CED, the continuity equation is

given by,

+:(wvf )~
Q

�_inf

At the infusion site ð2aÞ

~
K trans

K trans

JV

V
{Lp,ly

SL

V
(p{p

L
)

At all other sites in tumor and host tissue

ð2bÞ

where vf is the fluid phase velocity (convection velocity in the

porous medium), Q is the CED infusion flow rate of albumin

infusate, �_inf is the volume of the direct infusion voxel, K trans is the

average value of K trans in host and tumor tissue voxels, Lp,ly is

lymphatic vessel permeability, SL=V is the lymphatic vessel

surface area per unit volume, p is the IFP and p
L

is pressure in the
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lymphatic vessels which was set to zero. It should be noted that

functional lymphatics were assumed only for normal host tissue as

tumors lack functional lymphatics (Lp,ly~0) [5]. JV=V is the

filtration rate of plasma per unit volume of tissue into the

interstitial space which is given by Starling’s law as follows [35],

JV

V
~Lp

S

V
(pv{p{s

T
(pv{pi)) ð3Þ

where Lp is the permeability of the microvascular wall, S=V is the

blood vessel surface area per unit volume, pv is the vascular fluid

pressure, s
T

is the osmotic reflection coefficient for plasma

proteins, pv, pi are the osmotic pressures of the plasma and

interstitial fluid, respectively.

In the computational fluid dynamics model, properties are

assigned on a voxel-by-voxel basis. For voxels that are not infused

with albumin infusate, the first term on the right side of the

continuity equation (Equation 3) represents the transvascular fluid

flux across the microvascular wall per unit volume of the tissue.

Assuming similar leakiness patterns for tracer and plasma, this

term was scaled by the normalized K trans (K trans) to account for

leakiness heterogeneity in the model. The second term accounts

for the lymphatic drainage from interstitial space per unit volume

of tissue. It should be noted that the IFV in the model is given by

wvf .

For a porous medium, the momentum equation is given by

Darcy’s law,

wvf ~{K(x)+p ð4Þ

where x is the position vector, and K is the hydraulic conductivity

which is likely to be heterogeneous in tumors and can vary with

local changes in porosity of tissues. The following relation, known

Figure 1. A schematic of the problem along with a sample of the analyzed experimental data. (a) Depiction of baseline CED tumor
simulation of tracer spread in hind limb, (b) infusion sites at the mid-plane used in the sensitivity analysis, (c) spatial maps of K trans (min21) and (d)
porosity at the mid-plane calculated from DCE-MRI data. In (a) the skin boundary is shown in green, tumor boundary in blue, tumor midplane in red
and infusion cannula in magenta. The infusion cannula is shown for illustration purpose only.
doi:10.1371/journal.pone.0089594.g001

Figure 2. Flow diagram depicting various steps involved in the
model.
doi:10.1371/journal.pone.0089594.g002
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to predict porosity-dependent variations in hydraulic conductivity

for agarose gels and articular cartilage [36], was used

K(x)~a
w(x)

1{w(x)

� �m

ð5aÞ

a~ �KK
1{�ww

�ww

� �m

ð5bÞ

where �KK , �ww are the average tissue hydraulic conductivity and

porosity for tumor or host tissues respectively, and m is an

empirical exponent which characterizes the sensitivity of hydraulic

conductivity to porosity. The scaling factor, a in the relation was

calculated based on matching the average tissue hydraulic

conductivity with average porosity as shown in Equation 5b.

Albumin tracer transport during CED was modeled using the

following convection and diffusion equation with no tissue sources

or sinks (w(x) replaced by w for simplicity), with albumin assumed

not to be passively cleared through capillaries within the simulated

time points (up to 1 hr).

L(wCt)

Lt
z+:(wvf Ct){+T : wDeff (x):+Ctð Þ~0 ð6Þ

where Ct is the concentration of tracer in the tissue. The

expression for the effective diffusivity tensor (Deff ) was based on

the following empirical relation for diffusion in porous media [37],

Deff (x)~Dfreewn(x)I ð7Þ

where Dfree is the self-diffusion coefficient of albumin in water, n is

an empirical exponent set to 1 and I is the Kronecker tensor. The

concentration was normalized using the following relation,

ĈC~
Ct

C(t,i)wi

ð8Þ

where C(t,i) and wi are the infusate concentration and porosity at

the infused voxel, respectively. The values of parameters used in

the computational model are listed in Table 1.

MR images also consisted of voxels present outside the mouse

which belong neither to tumor or host tissue, i.e. exterior voxels

corresponding to surrounding air. In these voxels, the source term

for the continuity equation and the diffusivity were set to zero.

Computational Method
The computational method is identical to the one presented in

[32]. Briefly, the continuity, momentum and albumin tracer

transport equations were solved using the computational fluid

dynamics software package, FLUENT (version 12.0.16, ANSYS,

Inc., Canonsburg, PA). For the 3D computational tissue model, a

rectangular volume (2061069 mm3) enclosing the tumor was

created and meshed with quadrilateral elements (voxels) of size

equal to the MRI resolution (0.10460.10461 mm3) using the

meshing software (GAMBIT, Fluent, Lebanon, NH) with one-to-

one mapping between the computational fluid dynamics mesh and

MR data. Infusion was carried out at the center of the tumor with

a tissue hydraulic conductivity parameter, m~2 at a flow rate of

0.3 mL/min (baseline case). The value of m~2 is the baseline

value that was used for both tumor and normal tissue. This value

was chosen to closely resemble the Carman-Kozeny equation [38]

which has been earlier used to describe the hydraulic permeability

in tumors [39]. Although the same value of m was used for both

the tumor and normal tissue, it should be noted that the constant a
in the relation is different and chosen based on the values reported

in literature [31].

Parameter Analysis
The effects of changing the baseline simulation variables (flow

rate, catheter placement and value of m) on interstitial flow field

and tracer transport were studied separately. The simulation was

carried out with two additional flow rates (1 and 3 mL/min) and

infusion sites : 1) tumor-host tissue interface and 2) anterior end of

the tumor (Figure 1b). The reason for choosing a site at the tumor-

host tissue interface was because of the presence of higher

convective currents in that region due to the steep decreases in IFP

which could result in higher convective velocity. The choice of an

infusion site at the anterior end and center of the tumor was to

study the distribution at various positions inside the tumor. The

effect of changing the tissue hydraulic conductivity was achieved

by varying its sensitivity to heterogeneous porosity using the

empirical exponent (m). Two additional values of m = 5 and 10

Table 1. Tissue and vascular parameters used in simulations.

Variable Description Value References

Lp (m/Pa.s) Vessel permeability 2610211t; 3610212n; [31]

S/V (m21) Microvascular surface area per unit volume 20000t; 7000n [49]

Lp,lySL/V (Pa21s21) Lymphatic filtration coefficient 161027 [31]

K0 (m2/Pa.s) Baseline hydraulic conductivity 1.9610212t; 3.8610213n [31]

7.7610215e

pv (Pa) Microvascular pressure 2300 [31]

pi (Pa) Osmotic pressure in interstitial space 3230t;1330n [31]

pv (Pa) Osmotic pressure in microvasculature 2670 [31]

sT (Pa) Average osmotic reflection coefficient for plasma 0.82t; 0.91n [31]

Dfree (m2/s) Self diffusion coefficient of albumin 5.8610211 [50]

t- tumor,
n- normal tissue,
e- exterior.
doi:10.1371/journal.pone.0089594.t001
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were used to simulate the effect of increased tissue hydaulic

conductivity. Vessel permeability and diffusivity (varying n) were

not included in the sensitivity analysis based on the results of our

previous study on transport in tumors [31], where variations in

these parameters did not greatly influence tracer transport.

Infusion simulations were carried out up to t = 1 hr and the

interstitial distribution of albumin tracer was quantified at

intermittent time points, t = 15 and 60 mins. Initial conditions

for tracer transport assumed no tracer in the tissue, ĈC~0, except

at the infusion site which is one voxel (0.10460.10461 mm3). At

this site it was set to a normalized value of 1 at all the times during

the transport simulation through an user-defined function. The

distribution volume was calculated as the volume occupied by

voxels having an albumin concentration greater than 15% of the

maximum concentration (ĈCw0:15). A zero fluid pressure condi-

tion, p~0, was applied along the cut ends of the tissue volume,

and the remaining outer boundaries of the geometry were assigned

as a wall boundary, flux = 0. The impermeability condition along

the skin boundary was achieved by assigning hydraulic conduc-

tivity two orders of magnitude lower than the normal tissue, in the

exterior voxels. The assignment of low hydraulic conductivity

creates a material that is less penetrable and resistant to fluid

motion. For the chosen value of hydraulic conductivity at the

exterior voxels, the maximum mean velocity at the skin boundary

for all the simulations was calculated to be close to zero

(0.02 mm/s).

Results

Baseline case
The predicted IFP inside the tumor was elevated independent of

CED as shown in [32]. With CED at 0.3 mL/min, the pressure at

the infusion site was increased by approximately 0.33 kPa (<21%

increase) in addition to the overall elevation inside the tumor as

shown in the contour plot (Figure 3a). CED created additional

pressure gradients (<0.65 kPa/mm along the infusion plane)

around the infusion site which were absent with systemic delivery.

There was also significant pressure gradients at the anterior edge

of the tumor-host tissue interface (<0.67 kPa/mm) which was also

observed without CED [32]. It should be noted that the pressure

gradient outside the skin does not contribute to the extracellular

fluid flow due to the very low hydraulic conductivity assigned in

those voxels.

The convective velocity is shown in Figure 3b. The predicted

velocity field was heterogeneous with maximum velocity near the

infusion site (35 mm/s). There were also significant outwardly-

directed flows at the tumor-host tissue interface especially near the

anterior end of the tumor (<0.45–3.2 mm/s) which was also

observed with systemic delivery [32]. Thus CED has resulted in

alterations of endogenous flows closer to the infusion site to a far

larger magnitude.

Contours of normalized albumin concentration at various time

points following CED infusion are shown in Figures 4a & 4b.

Albumin distribution around the infusion site was asymmetric for

all the times simulated with high concentration inside the tumor.

This is in contrast to systemic delivery [31,32] where the tracer

distribution was heterogeneous with high concentration regions

outside the tumor. The effect of the skin boundary near the tumor

on the distribution pattern was evident at later time points, with

gradually increasing tracer accumulation along the skin boundary.

Iso-surfaces of the distribution volume at intermittent time points,

shown in Figures 4c & 4d, depict the evolution of the

concentration profile with time. They show the non-uniform

nature of the distribution and the tangential flux of albumin tracer

along the skin boundary near the tumor. For the chosen threshold

value, albumin was distributed to approximately 48% of the tumor

volume after one hour of infusion at 0.3 mL/min. The variation of

distribution volume (Vd ) with infusion volume (Vi) within the

whole leg and tumor, in particular is shown in Figure 5. As

expected, plots show a linear relationship between distribution

volume and infusion volume for the whole leg; however, a more

exponential variation was observed within the tumor and the

resultant distribution volume reached a maximum steady-state

value in this targeted tumor region (<48%).

Parameter Analysis
With higher infusion flow rates of 1 and 3 mL/min, IFP close to

the infusion site increased by approximately 58% and 226% from

the baseline value, respectively (Figures 6a & 6b). With increasing

flow rates, convective velocity became orders of magnitude higher

inside the tumor than outside (Figures 6c & 6d). The peak fluid

velocity values predicted close to the infusion site increased by

approximately 228% and 900% from the baseline for infusion flow

rates of 1 and 3 mL/min, respectively. These changes were

reflected in the predicted tracer distribution in the tissue shown as

isosurfaces in Figures 6e & 6f. Increasing the flow rate tended to

confine the tracer more within the tumor and reduced spread into

adjacent normal tissue. It also reduced the tangential flux of the

tracer along the skin boundary close to the tumor. As expected, the

distribution volume within the whole leg increased linearly with

the infusion volume. However for a given infusion volume, the

distribution volume within the whole leg decreased with increasing

flow rates (Figure 7a). Within the tumor, higher flow rates resulted

in more coverage (Figure 7b) with 85% of the tumor being covered

by the tracer infused at a rate of 1 mL/min, and 87% with 3 mL/

min for the same amount of infusion volume.

The effect of catheter placement on albumin distribution is

shown in Figures 8a & 8b. Asymmetric distributions were observed

Figure 3. Predicted flow field with local infusion (0.3 mL/min) at the center of the tumor. The interstitial fluid pressure (IFP) and convective
fluid velocity within the plane of infusion is shown by its contours (a & b respecively). Tumor and skin boundaries are overlaid on the contours; the
infusion site is shown by a plus sign.
doi:10.1371/journal.pone.0089594.g003
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for infusions at different locations: tumor-host tissue interface and

anterior end of the tumor. Infusion at the interface and anterior

end of the leg tended to distribute albumin dorsally and anteriorly

within the leg, respectively. For the whole leg, tracer spread again

exhibited a linear relation between Vd and Vi, with highest

distribution volume for infusion at the tumor center (Figure 8c).

Within the tumor, the Vd variation with Vi was also approx-

imately exponential with infusion at the tumor center covering the

maximum volume (<48%) while infusion at the anterior end

covered less of the tumor, approximately 11% (Figure 8d).

For varying hydraulic conductivity sensitivity (m = 5 and 10), the

model predicted elevated IFP patterns inside the tumor similar to

the baseline results albeit with different peak pressure values

(Figures 9a & 9b). The simulation results indicated a 50 and 89%

reduction in the peak IFP from the baseline value for m = 5 and

10, respectively. The convection velocity became more heteroge-

neous with increasing m (Figures 9c & 9d). The increase in m

advected fluid away from the tumor particularly through the

anterior end.

Changes in the tracer distribution over time at different values

of m are shown in Figures 9e & 9f. Convective effects influenced

the distribution pattern with tracer being transported away from

the tumor, particularly towards the anterior cut end of the hind

limb. This was more apparent for higher values of m. The

distribution volume varied linearly with the infusion volume for

the whole leg, and exponentially within the tumor for both the

values of m (Figure 10). With larger values of m, there was also a

reduction in the final distribution volume from baseline values

(approximately by 2.5 and 2.15% with m~5, and 9 and 37% with

m~10 for the whole leg and tumor, respectively) due to exit of

tracer at cut ends. Within the tumor, the distribution volume

tended to reach a steady-state value more rapidly with increasing

values of m (Figure 10b). One hour of infusion at 0.3 mL/min and

m~5 resulted in coverage of approximately 47% of the tumor

volume. Whereas for m~10, approximately 30% of the tumor

volume was covered.

Figure 4. Concentration profile following CED of albumin infusate (0.3 mL/min) at the center of the tumor. (a & b) Normalized albumin
tracer concentration contours within the infusion plane at t = 15 and 60 min respectively. Tumor and skin boundaries are overlaid on the contours;
the infusion site is designated by a plus sign. (c & d) Predicted 3D distributed volume at t = 15 and 60 min respectively, shown by an iso-surface of the

distribution volume (threshold, ĈC~0:15). Visible boundaries are for tumor (blue), skin (green) and distribution volume (red).
doi:10.1371/journal.pone.0089594.g004

Figure 5. Tracer distribution volumes in tissue for varying
infusion volume within the whole leg (tumor and surrounding
tissue) and tumor only, following CED at 0.3 mL/min. Distribution
volume dependence on infusion volume was fit to linear (whole leg)
and exponential (tumor only) models.
doi:10.1371/journal.pone.0089594.g005

Computational Model of Tracer Transport in Tumors
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Figure 6. Flow field and tracer distribution following CED of albumin tracer at the center of the tumor for two different flow rates:
1 mL/min and 3 mL/min. (a & b) Interstitial fluid pressure (IFP) contours for Q~1&3 mL=min respectively, and (c & d) convective fluid velocity
contours at the infusion plane for Q~1&3 mL=min respectively. Tumor and skin boundaries are overlaid on the contours; the infusion site is
designated by a plus sign. (e & f) Predicted 3D tracer distribution volume at the end of infusion (1 hr) shown by an iso-surface of the distribution

volume threshold (ĈC~0:15) for Q~1&3 mL=min respectively. Visible boundaries are for tumor (blue), skin (green) and distribution volume (red).
doi:10.1371/journal.pone.0089594.g006

Figure 7. Variation of tracer distribution volumes in tissue with infusion volume for the whole leg and tumor following CED at
center of the tumor for three different flow rates (0.3, 1 and 3 mL/min). Distribution volume dependence on infusion volume was fit to (a)
linear (whole leg) and (b) exponential (tumor only) models.
doi:10.1371/journal.pone.0089594.g007

Computational Model of Tracer Transport in Tumors
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Discussion

A MR image-based computational model (voxelized model) for

predicting distribution of a macro-molecular protein tracer

following CED in a mouse tumor was developed. The key

advancement and contribution is that our model incorporates

vasculature as a realistic and heterogeneous entity, which is novel

to CED models. By non-invasively probing the vasculature of the

tumor and surrounding area, and incorporating heterogeneous

transport into our model we have made some interesting

discoveries. 1) Penetration of tracer/drug into surrounding tissue

was found to be highly dependent on flow rate, tissue boundaries,

vascular leakiness and tissue lymphatic clearance which slowed

interstitial flows. The predicted tracer distribution was asymmet-

ric, and increasingly confined within the tumor with increasing

infusion flow rate. Such distributions can not be captured with

spherical tumor models; 2) Our results also make clear and stress

the interconnectivity between hydraulic conductivity, vascular

leakiness, and tumor interstitial fluid pressure, the delicate

balancing act of treatments that target these mechanisms, and

the consequences of doing so in relation to CED. The model

predicts lower tumor interstitial fluid pressure and tracer

distribution volume for increasing the tissue hydraulic conductiv-

ity. Thus, if CED is to be used in conjunction with a therapy

aimed at lowering IFP, then it may be best to do so after the CED

procedure to ensure a large distribution volume of CED-

administered drug. Since these results may vary with varying

patient-specific pressure patterns; the model results suggest the

importance of conducting CED with a priori knowledge of the

interstitial pressure patterns. They can be potentially derived from

MRI-based computational modeling methods such as those

created by our group [31].

Without CED, the predicted IFP reflected previous experimen-

tal findings which have shown elevated relatively uniform

pressures inside the tumor [40–44]. With CED, the infusion

induced an additional local pressure gradient thereby conveying

the advantage convection gives in distributing molecules to larger

tissue volumes with infusion. Except for near the infusion site, the

pressure was relatively uniform inside the tumor and dropped

steeply at the periphery which is in agreement with previous

experimental findings [5]. Outside the tumor, the tissue boundary

condition played a critical role in determining IFP. The close

proximity of the tumor to the impermeable skin boundary

increased the IFP near its surface approximately by a factor of

two (for the baseline case), than at the skin boundary farther from

the tumor.

The model predicted heterogeneous convective velocity due to

spatially varying pressure gradients induced by CED, porosity and

K trans induced by CED. The resulting flow directions reflected the

IFP gradient field. High velocities at the infusion site and the

anterior end were due to the pressure gradients created due to

infusion, and higher leakiness in the region exhibited as increased

K trans (Figure 1c). Overall, CED altered the extracellular fluid

flows inside the tumor especially in the vicinity of the infusion site.

The model was also able to predict asymmetric distribution of

tracer conforming with the previous experimental findings

[16,19,45]. The distribution pattern was closely interlinked with

the predicted flow field with high concentration at the infusion site,

and gradual spread into the adjacent normal tissue. Such a focal

CED distribution of the tracer is in contrast with the one obtained

Figure 8. Tracer distribution following CED of albumin (0.3 mL/min) at the tumor-host tissue interface and anterior end of tumor. (a
& b) Normalized tracer concentration contours in the infusion plane at the end of infusion (1 hr) in the tumor-host tissue interface and anterior end of
tumor respectively. Tumor and skin boundaries are overlaid on the contours, and the infusion site is shown by a plus sign. Variation of tracer
distribution volumes in tissue with infusion volume for the (c) whole leg and (d) tumor. Distribution volume dependence on infusion volume was fit
to linear (whole leg) and exponential (tumor only) models.
doi:10.1371/journal.pone.0089594.g008
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systemically [31], thus making CED delivery a possible alternative

to systemic routes. The tracer spread along the skin boundary is

due to the close proximity of tumor with the skin. The distribution

volume plots (Figure 5) show that the tumor was not entirely

covered by the tracer even with longer infusion times. Such a low

tumor coverage by the tracer was due to the relatively uniform IFP

within the tumor except in the region close to the infusion site

(Figure 3a) which restricted the resulting convective velocity

(Figure 3b) and tracer filtration within the tumor and directed

transport outwards.

Increases in infusion flow rate had profound effects on the tracer

distribution as convective velocity outside the tumor was greatly

reduced compared to flows enhanced inside the tumor. This was

because increasing the flow rate mainly affected the fluid flows

Figure 9. Flow field and tracer distribution following CED of albumin (0.3 mL/min) at the center of the tumor for varying values of
the hydraulic conductivity parameter, m. (a & b) Interstitial fluid pressure (IFP) contours for m = 5 & 10 respectively; (c & d) Convective fluid
velocity contours for m = 5 & 10 respectively; (e & f) Normalized tracer concentration contours at the end of infusion (1 hr) for m = 5 & 10 respectively.
All contours are for the plane of infusion with the infusion site designated by a plus sign.
doi:10.1371/journal.pone.0089594.g009

Figure 10. Variation of tracer distribution volumes in tissue with infusion volume for the whole leg and tumor following CED
(0.3 mL/min) at the center of the tumor for varying values of the hydraulic conductivity parameter, m. Distribution volume dependence
on infusion volume was fit to (a) linear (whole leg) and (b) exponential (tumor only) models.
doi:10.1371/journal.pone.0089594.g010
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locally close to the infusion site. Although the convective velocity is

uniform inside the tumor, it dropped steeply at the tumor

periphery (Figure 6d) due to greater lymphatic uptake of interstitial

fluid in the normal tissue. Thus the tracer could be expected to be

convectively transported well inside the tumor but mainly diffusely

at the boundary. This combined with the lack of lymphatics inside

the tumor caused more tracer to distribute within the tumor than

outside, and this effect became more pronounced at higher flow

rates. For the same amount of infusion volume, the tumor was

almost fully covered by the tracer at a flow rate of 3 mL/min. The

challenge regarding using high infusion rates experimentally is

backflow, which our model did not account for. Specially designed

cannulas may allow for such infusions at higher flow rates (up to

50 mL/min) without backflow [46,47].

The sensitivity analysis was also used to study tracer distribution

at different catheter positions, in an attempt to find a suitable

placement which could maximize distribution volume in the target

site. For the set of baseline parameters, we found that infusion at

the center of the tumor produced the maximum distribution

volume within the tumor. Infusion at the tumor-host tissue

interface tended to distribute the drug outside the tumor due to

enhanced convective effects at the tumor boundary. It should be

noted that, the outward flow of albumin from the tumor for

infusions at the anterior end of the tumor is also partially due to an

unphysical artifact, which is the proximity of the infusion site to

the cut ends of the tumor (due to limited field of view) where a zero

pressure boundary condition was specified. A similar pattern can

be expected for infusions at the posterior end of the tumor. In the

future, this approach can be automated to solve infusion in every

voxel to determine the optimal infusion site thereby helping with

surgical planning on a case-by-case basis.

The possibility of reducing the tumor IFP by increasing the

sensitivity of tissue hydraulic conductivity to tissue porosity was

also investigated. This analysis was done to partially account for

soft tissue swelling and resulted in increased heterogeneous

transport. Also several studies have explored the idea of reducing

the tumor IFP as a way to overcome the drug delivery barriers [5].

For example, compounds such as VEGF inhibitors, hyaluronidase,

mannitol among others have been used to disrupt the heteroge-

neous tumor microvasculature in an attempt to lower tumor IFP

and improve drug delivery [5,48]. By doing so, the underlying

tissue hydraulic conductivity may also change [19] and it might be

important to study how this affects the drug distribution.

Mathematically, this was implemented by varying the empirical

parameter m in the expression for tissue hydraulic conductivity

(Equation 5a). The parameter m could be thought of as a variable

to either amplify or reduce the fluid flows in the heterogeneous

pathways in the whole leg determined by the 2-compartmental

model. Increasing m caused more interstitial fluid to leak away

from the tumor periphery and reduced the tumor IFP as shown in

Figure 9. Increasing the hydraulic conductivity has been

previously shown to reduce IFP and thus increase extravasation

of macromolecules [19]. The results of this sensitivity analysis

indicated reduction in peak tumor IFP compared to baseline

simulation, however the resulting CED tracer distribution volumes

were also reduced. This was because of increase in convective

velocity heterogeneity resulting from very high reduction in the

tumor IFP, which directed the interstitial fluid and albumin tracer

away from the tumor into adjacent normal tissue. The amplified

hydraulic conductivity in the whole tissue volume opened up

various low resistant fluid pathways through which the tracer got

transported away from the tumor. High interstitial velocity at the

anterior cut end compared to the posterior side is due to the high

K trans described in the earlier paragraph. These results demon-

strate the importance of transport heterogeneity and measuring

extracellular transport, especially changes in extracellular space for

a given tumor, in order to achieve improved understanding of

spatial drug distribution within the tumor.

In this study, an image-based tumor model was developed

which incorporates realisitic tumor vascular leakiness with

anatomical geometries, and used to predict heterogeneous/

asymmetric drug distribution following direct infusions. Although

the results discussed in this study are restricted to the mouse hind

limb tumor under study, it should be noted that the applicability of

such a voxelized model to a wide range of tumors is possible. With

further experimental validation and measure of tissue properties,

this model could be potentially applied towards patient-specific

treatments and to more accurately investigate effects of flow

patterns on heterogeneous tumor drug delivery. The model

however has some limitations at present: 1) model parameter

values such as average hydraulic conductivity, diffusivity, scaling

factor for the leakiness term (
JV

V
) obtained from literature varies

across tumors and needs to be determined experimentally for a

given tumor; 2) modeling heterogeneous tumor microvasculature

based on fluid exchange between blood plasma and tissue

compartments is only approximate since one assumption is that

each MR voxel consists of tissue and blood vessels. Hence at a

sufficiently high MR resolution, model predictions could be

erroneous in bigger blood vessels, highly vascularized and necrotic

regions; and 3) tracer backflow along the infusion needle has not

been accounted for. However, even with these limitations, the

model is still able to capture major characteristics of heterogeneity

and provide important insights into CED tracer transport in

tumors.
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