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Summary
Background Accurate identification of ovarian cancer (OC) is of paramount importance in clinical treatment suc-
cess. Artificial intelligence (AI) is a potentially reliable assistant for the medical imaging recognition. We systemati-
cally review articles on the diagnostic performance of AI in OC from medical imaging for the first time.

Methods The Medline, Embase, IEEE, PubMed, Web of Science, and the Cochrane library databases were searched
for related studies published until August 1, 2022. Inclusion criteria were studies that developed or used AI algo-
rithms in the diagnosis of OC from medical images. The binary diagnostic accuracy data were extracted to derive the
outcomes of interest: sensitivity (SE), specificity (SP), and Area Under the Curve (AUC). The study was registered
with the PROSPERO, CRD42022324611.

Findings Thirty-four eligible studies were identified, of which twenty-eight studies were included in the meta-analysis
with a pooled SE of 88% (95%CI: 85−90%), SP of 85% (82−88%), and AUC of 0.93 (0.91−0.95). Analysis for different
algorithms revealed a pooled SE of 89% (85−92%) and SP of 88% (82−92%) for machine learning; and a pooled SE of
88% (84−91%) and SP of 84% (80−87%) for deep learning. Acceptable diagnostic performance was demonstrated in
subgroup analyses stratified by imaging modalities (Ultrasound, Magnetic Resonance Imaging, or Computed Tomogra-
phy), sample size (≤300 or >300), AI algorithms versus clinicians, year of publication (before or after 2020), geographi-
cal distribution (Asia or non Asia), and the different risk of bias levels (≥3 domain low risk or< 3 domain low risk).

Interpretation AI algorithms exhibited favorable performance for the diagnosis of OC through medical imaging.
More rigorous reporting standards that address specific challenges of AI research could improve future studies.
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Research in context

Evidence before this study

The accurate preoperative differentiation between
benign and malignant masses of the ovary is crucial for
determining the appropriate treatment strategies and
improving the postoperative quality of life. Imaging is
an useful tool in medical science and is invoked in clini-
cal practice to facilitate decision making for the diagno-
sis, staging, and treatment. The advances of artificial
intelligence (AI) might help to bridge the gap between
the intense demand for diagnostic from imaging and
relatively limited healthcare resources. Up to date, there
is a lack of quantitative synthesis to comprehensively
summarize the available evidence of the AI-based meth-
ods on ovarian cancer (OC) detection. The Medline,
Embase, IEEE, Pubmed, Web of Science, and the
Cochrane library were systematically searched for stud-
ies that developed an AI algorithm for the diagnostic
performance of OC from medical imaging, published
until August 1, 2022. Only English language articles
were considered. We performed a systematic review
and meta-analysis of published data on diagnostic per-
formance of AI algorithms and radiomics models for OC
detection.

Added value of this study

To our best knowledge, this is the first systematic review
and meta-analysis specifically dedicated to AI system
performance in the diagnosis of OC. We are strictly in
line with the guidelines for diagnostic reviews, and con-
ducted a comprehensive literature search in both medi-
cal databases and engineering and technology
databases to ensure the rigor of the study. After a care-
ful selection of research on relevant topics, we found
that AI algorithms excelled in the identification of OC
using medical radiography imaging.

Implications of all the available evidence

AI algorithms exhibited favorable performance for the
diagnosis of OC through medical imaging. More rigor-
ous reporting standards that address specific challenges
of AI research could improve future studies.
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Introduction
Ovarian tumors comprise a remarkably heterogeneous
group of benign, borderline, and malignant lesions and
exhibit extensive morphological characteristics.1,2

Among these, ovarian cancer (OC) is the most lethal
gynecological malignancy.3 While malignant ovarian
neoplasms may need a more aggressive surgical
approach, benign masses can either be safely monitored
or undergo simple resection allowing for a fertility- and
ovary-sparing approach.4 Therefore, accurate preopera-
tive differentiation between benign and malignant
masses of the ovary is crucial for determining the appro-
priate treatment strategies and improving the postoper-
ative quality of life.5

Imaging is a useful tool in medical science and is
invoked in clinical practice to facilitate decision making
for the diagnosis, staging, and treatment.6,7 The ultra-
sound (US) is commonly used to recognize the presence
of an ovarian mass and to determine between benign
and malignant lesions.8 Magnetic resonance imaging
(MRI) plays a significant role in characterizing ovarian
tumors due to its high soft-tissue resolution, and it is
recommended in assessing the need for surgery for an
adnexal mass.9 Computed tomography (CT) may be
helpful for judging the gross extent of hematogenous,
peritoneal, and lymphatic spread of OC: because of its
ability to evaluate the liver, paraaortic region, omentum,
and mesentery.10 While studies have reported the utility
of PET CT in diagnosing ovarian tumors, its cost-effec-
tiveness for this purpose remains unproven. Currently,
US and MRI are the most commonly used imaging
modalities for the diagnosis and characterization of
ovarian tumors.11 Of note, the diagnosis of OC has been
conventionally dependent on the subjective assessment
of radiologists or gynecologists who use their clinical
practice experience to scrutinize imaging features and
examine ovarian tumors with high heterogeneity.12,13

Owing to the intricacy generated by inadequate or
absent radiology in resource-poor health regions and
the influence of wide disparity in the human rater
expertise, making a proper and immediate diagnosis
from medical imaging is challenging.14,15

The advances of artificial intelligence (AI) might
help to bridge the gap between the intense demand for
diagnostic from imaging and relatively limited health-
care resources.16 Meanwhile, as an interesting research
hotspot, radiomics is described as a new ’data-driven’
approach for extracting large sets of quantitative signa-
tures from radiological images.17 These data can be sub-
sequently analyzed using conventional biostatistics or
AI methods.18 With sophisticated image processing
methods, all medical images are transferred to mineable
high-throughput image features, which thereafter can
be used to correlate these processed feature signatures
with pathology diagnoses or treatment responses.19

Radiomics models and AI algorithms have shown
promising results in integrating medical images for the
detection of OC.20 For example, aramedia-vidaurreta et
al.21 emphasized that a machine learning (ML) algo-
rithm based on US images achieved a diagnostic accu-
racy of 0.98 in one hundred and forty-five patients.
Additionally, a deep learning (DL) model was used to
automatically discriminate between benign and malig-
nant ovarian tumor images, with high accuracy of
87.6%.22 Even though, researchers have still tried differ-
ent ways, including but not limited to improving image
quality, expanding sample sizes, and optimizing algo-
rithms, to raise diagnostic accuracy.23
www.thelancet.com Vol 53 November, 2022
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Up to date, there is a lack of quantitative synthesis to
comprehensively summarize the available evidence of
the AI-based methods on OC detection. Therefore, the
purpose of this study is to first perform a systematic
review and meta-analysis of published data on the diag-
nostic performance of AI algorithms and radiomics
models for OC detection.
Methods

Protocol registration and study design
The study was registered in the PROSPERO
(CRD42022324611). The meta-analysis was conducted
following the PRISMA,24 MOOSE,25 and CHARMS26

reporting guidelines.
Search strategy and eligibility criteria
The Medline, Embase, IEEE, Pubmed, Web of Science,
and the Cochrane library were systematically searched
for studies that developed an AI algorithm for the diag-
nostic performance of OC from medical imaging, pub-
lished until August 1, 2022. Only English-language
articles were considered. Supplementary Note 1 summa-
rizes the search strategy used in each database.

Eligible studies reported the AI technologies for
the diagnosis of OC from medical radiology images
with diagnostic outcomes, such as sensitivity (SE),
and specificity (SP), or detailed information on 2£2
contingency tables. The following studies were
excluded: duplicate publications; reviews; editorials;
non-human samples; histopathology images; combin-
ing non-image information; no classification task;
and no AI model. Two reviewers (H-LX and F-HL)
independently screened the titles and abstracts
according to these eligibility criteria, and relevant
articles for full text were downloaded and reviewed.
Disagreement was discussed with a third author
(Q-JW) and subsequently resolved via consensus.
Data extraction
Two reviewers (H-LX and H-YC) extracted study charac-
teristics and diagnostic performance independently
using a standardized data extraction sheet. Disagree-
ments were resolved by discussion or a third investiga-
tor (F-HL) was consulted.

The diagnostic accuracy data including true-positive
(TP), false-positive (FP), true-negative (TN), and false-
negative (FN) were extracted directly into contingency
tables, and were used to calculate SE and SP. If a study
provided multiple contingency tables for the same or
different AI algorithms, we assumed that they were
independent of each other. Supplementary Table 1 sum-
marizes the contingency tables extracted from included
studies.
www.thelancet.com Vol 53 November, 2022
Study quality assessment
All selected studies were assessed for quality with the
use of quality assessment of diagnostic accuracy stud-
ies-AI (QUADAS-AI) criteria27 by two independent
reviewers (H-LX and T-TG). The details are listed in
Supplementary Table 2. This guideline includes four
domains (patient selection, index test, reference stan-
dard, flow, and timing) in the risk of bias and three
domains (patient selection, index test, reference stan-
dard) in applicability concerns. This new tool is an AI-
specific extension to QUADAS-228 and QUADAS-C,29

providing researchers with a specific framework to eval-
uate the risk of bias and applicability when conducting
reviews that evaluate AI-centered diagnostic test accu-
racy. Conflicts were discussed with a third collaborator
(F-HL).
Meta-analysis
A hierarchical summary receiver-operating characteris-
tic curve (SROC) was fitted to evaluate the accuracy of
the AI model. We plotted the combined curve with cor-
responding 95% confidence region and 95% prediction
region around averaged SE, SP, and Area Under the
Curve (AUC) estimates in SROC figures. When same or
different AI models were tested within the same paper,
the proposed model with the best accuracy was used for
further meta-analysis. Heterogeneity was assessed
using the I2 statistic. Subgroup and regression analyses
were performed to explore potential sources of heteroge-
neity. The random effects model was conducted because
of the assumed differences between studies. The risk of
publication bias was evaluated using funnel plot and
regression test.

Seven sub-analysis were performed: (1) according to
sample size (≤300 or >300); (2) according to AI algo-
rithms (ML or DL); (3) according to imaging modalities
(CT, US, or MRI); (4) according to the pooled perfor-
mance using the same dataset (AI algorithms or human
clinicians); (5) according to the year of publication
(before or after 2020); (6) according to the geographical
distribution (Asia or non Asia); (7) according to different
risk of bias levels (≥3 domain low risk or < 3 domain
low risk)

The methodological quality of included studies was
evaluated using the QUADAS-AI by RevMan (Version
5.4). A cross-hairs plot was also produced (R V.4.2.1) to
better display the variability between sensitivity/specific-
ity estimates.30 All other statistical analyses were con-
ducted in Stata software (Version 15.0) with two-tailed
probability of type I error of 0.05 (a = 0.05).
Role of the funding source
Our study was funded by the Natural Science Founda-
tion of China, the LiaoNing Revitalization Talents Pro-
gram, and the 345 Talent Project of Shengjing Hospital
3
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of China Medical University. The funder of the study
had no role in study design, data collection, data analy-
sis, data interpretation, or writing of the report. The cor-
responding authors had full access to all the data in the
study and had final responsibility for the decision to
submit for publication.
Results

Study selection and characteristics of eligible studies
A total of 1212 records were retrieved on initial search
and 513 duplicates were removed, and of these 642 stud-
ies were excluded based on screening of titles and
abstracts, resulting in 57 studies for full-text review.
Finally, 34 articles were included in the present system-
atic review and 28 had sufficient data for meta-analysis
(Figure 1).

Majority of the studies (n = 31) were based on retro-
spective patient data except four studies. Only two stud-
ies using prospective data. One studies used images
Figure 1. PRISMA flowch
from public databases. Eight studies excluded low qual-
ity images, while twenty-six studies did not mention
this process. Only three studies using out-of-sample
dataset to perform external validation, of which two
studies did not provide data of our concern for integrated
analysis. Eight studies compared AI model with clinicians
in the same dataset. Moreover, imaging modalities were
classified as US (n = 19), MRI (n = 10), CT (n = 3),
MRI and US (n = 1), and MRI and CT (n = 1). Further-
more, the distribution of the number of studies on AI
algorithms in the present study is as follows: DL (11 stud-
ies) and ML (23 studies). Tables 1−4 show the detailed
characteristics of these including studies.
Pooled performance of AI algorithms
The SROC curves for 28 included studies with 160 con-
tingency tables are provided in Figure 2a, the combined
SE and SP were 88% (95%CI: 85−90%) and 85% (82
−88%), respectively, with an AUC of 0.93 (0.91−0.95)
for all AI algorithms. When the highest accuracy
art of study selection.
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Author [ref], year Participants N Mean or median
age (SD; range)

Inclusion criteria Exclusion criteria

Liu et al,31 2022a Patients with no previous pelvic sur-

gery; patients with no previous

gynecological disease history;

patients who had MRI examina-

tions performed at our institution

before pelvic or laparoscopic

surgery.

Patients with previous pelvic surgical

history or radiation history;

patients whose MRI data were

unavailable either due to the

examination being performed at

another institution or due to claus-

trophobia; patients whose data

lacked histological results.

196 46.3

Gao et al,22 2022a Consecutive adult patients (aged

≥18 years) who presented with

adnexal lesions in ultrasound in

ten hospitals between September

2003, and May 2019.

Duplicated cases; postoperative

patients who were deprived of

adnexa; patients without histologi-

cal diagnosis.

1,07,624 NR

Saida et al,32 2022a Aged above 20 years for ethical rea-

sons; pelvic MRI scan obtained as

per the protocol followed at our

hospital between January 2015 and

December 2020; pathologically

proven malignant epithelial tumors

(i.e., carcinomas) or borderline

tumors of the ovary for the malig-

nant group; pathologically proven or

clinically apparent benign lesions in

the non-malignant group.

Malignant tumors in the pelvis other

than the ovary; history of surgery

of the uterus or ovaries other than

caesarean section, chemotherapy,

or radiation therapy of the pelvis;

malignant ovarian epithelial

tumors mixed with non-epithelial

components.

465 50 (20−90)

Guo et al,33 2022a Definite pathological diagnosis after

operation; MRI and ultrasound

were performed and the data were

complete; the images could be

used for diagnostic analysis;

patient informed consent.

Incomplete ultrasound, MRI, or path-

ological data; combined with

severe organic diseases, such as

coagulation dysfunction, renal

insufficiency, heart failure, and

other surgical contraindications;

history of ovarian surgery; com-

bined with other pelvic diseases,

such as endometrial cancer and

rectal cancer.

207 NR

Li et al,34 2022a Patients with ovarian tumor con-

firmed by histopathology; no his-

tory of malignant tumors other

than ovarian tumor; patients who

were undergoing pelvic CT exami-

nation within half a month before

surgery.

Those who had received radiother-

apy, chemotherapy, or radiother-

apy−chemotherapy before CT

examination; patients diagnosed

with inflammatory diseases;

patients with low image quality.

140 NR

Wang et al,35 2021a A histologic diagnosis of benign, bor-

derline, or malignant SOTs

between March 2013 and Decem-

ber 2016; availability of diagnostic-

quality preoperative US images; US

scanning before neoadjuvant ther-

apy or surgical resection.

No ultrasound results or the ovarian

mass was not completely in the

images; mucinous, clear cell, endo-

metrioid, or metastatic cancer.

265 51 (15−79)

Chiappa et al,36 2021a Diagnosis of OM; execution of a pre-

operative ultrasonographic exami-

nation within 2 weeks before

surgery; surgery performed.

Age<18 years; absence of ultrasono-

graphic images stored; consent

withdrawn.

241 55 (18−84)

Table 1 (Continued)
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Author [ref], year Participants N Mean or median
age (SD; range)

Inclusion criteria Exclusion criteria

Jian et al,37 2021 All patients were histopathologically

proven to have either BEOT

(n = 165) or MEOT (n = 336).

NR 501 NR

Wang et al,38 2021a Benign or malignant ovarian lesions

confirmed by either pathology or

imaging follow-up; available pre-

operative MRI examination includ-

ing T1C and T2WI; the quality of

images was clear without motion

or artifacts and were fit for

analysis.

Lack pre-operative MRI; lack clear

ovarian lesion; lack T1C images.

451 45.7

Hu et al,39 2021a NR Patients with poor image quality;

patients without enhanced scan-

ning; patients with unclear bound-

ary and unable to outline

110 NR

Yu et al,40 2021a SBOTs and SMOTs were diagnosed

by postoperative pathology; SBOTs

and SMOTs were in an early stage

(I and II) according to the guideline

of the FIGO; the images were of

sufficient quality for radiomics

analysis.

SBOTs and SMOTs which were in a

late stage (III and IV) according to

the FIGO guideline; patients who

received any treatment before CT

examination or were on treatment

at the time of CT examination were

also excluded to eliminate the

effect of treatment on imaging

features.

182 47.7

Ștefan et al,41 2021a A lesion with a minimum diameter of

at least 20 mm; the availability of

conventional B-mode images; lack

of imaging artifacts; and the exis-

tence of a patient’s serial number.

No medical data corresponding to

the PSN; the absence of a final

pathological diagnosis to indicate

the benign or malignant nature of

the lesions; the pathological analy-

sis performed at more than

30 days after the image acquisi-

tion; and no gynecological follow-

up.

120 38.2

Christiansen et al,42 2021a Surgery within 120 days after the

ultrasound examination or ultra-

sound follow-up for a minimum of

3 years or until resolution of the

lesion.

NR 758 NR

Akazawa et al,43 2020 Patients were ovarian tumors which

had been diagnosed patholog-

ically after surgical resection.

Lack of sufficient preoperative clini-

cal data, such as tumor markers or

the records of imaging tests.

202 51 (14−84)

Martínez et al,44 2019a NR NR 384 NR

Zhang et al,20 2019a No previous pelvic surgery; no previ-

ous gynecological disease history;

MRI examinations before pelvic or

laparoscopic surgery were per-

formed at our institution.

Previous pelvic surgical history or

radiation history; MRI data were

unavailable either for the examina-

tion performed at another institu-

tion or due to claustrophobia; no

histological results.

438 52.7

Table 1 (Continued)
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Author [ref], year Participants N Mean or median
age (SD; range)

Inclusion criteria Exclusion criteria

Mol et al,45 2001a Women who had surgery for an

adnexal mass between January

1991 and December 1998 were

included.

NR 170 46 (20−89)

Liu D et al,46 2017a Patients with histologically proven

diagnosis of EOCs; patients com-

plete CT or MRI examination

before operation in two weeks.

Surgery was performed outside our

institution without definite histo-

logical diagnosis, incomplete clini-

cal or CT and MRI records

preoperatively.

65 56.4

Kazerooni et al,47 2017a Patients were scheduled for surgical

removal of suspicious ovarian

masses and postoperative histo-

pathological assessment within 2

weeks of MRI exam.

NR 55 38.4

Acharya et al,48 2014a NR Women with no anatomopathologi-

cal evaluation.

20 49.5

Acharya et al,49 2013a NR Patients with no anatomopathologi-

cal evaluation.

20 49.5

Acharya et al,50 2012a NR NR 20 49.5

Umar et al,51 2012 NR NR 24 NR

Acharya et al,52 2012a NR Patients with no anatomopathologi-

cal evaluation.

20 49.5

Al-Karawi et al,53 2021a All ovarian tumors were given a his-

tological diagnosis label.

NR 232 NR

Jian et al,54 2021 Histologically proven EOC; MRI per-

formed within 1 month prior to

gynecological operation; all four

axial MRI sequences obtained: fast

spin-echo T2-weighted imaging

with fat saturation(T2WI FS), echo-

planar DWI with gradient b factors

of 0 and 600, 800, or 1000 s/mm2,

ADC map, and 2D volumetric inter-

polated breath hold examination

(VIBE) contrast enhanced T1-

weighted imaging with FS (CE-

T1WI) in the late phase (150−190 s

after the intravenous administra-

tion of contrast agent); absence of

prior gynecological operation or

chemotherapy prior to MRI

scanning.

Patients without definitive histopa-

thology or with poor MRI image

quality (image has artifacts that

cannot outline the tumor).

294 (51.2−57.2)

Li et al,55 2020 Histologically proven BEOT or MEOT

from January 2010 to June 2018;

MRI performed within 2 weeks

prior to gynecological operation.

Lacking any one of these four axial

MRI sequences; prior gynecologi-

cal operation and/or chemother-

apy before MRI scanning; poor MRI

image quality with artifacts that

affected the delineation of the

tumor.

501 (47.2−51.6)

Acharya et al,56 2014a NR NR 20 NR

Pathak et al,57 2015a NR NR 120 NR

Table 1 (Continued)
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Author [ref], year Participants N Mean or median
age (SD; range)

Inclusion criteria Exclusion criteria

Ameye et al,58 2009a NR Exclusion criteria were pregnancy,

inability to tolerate transvaginal

sonography, and surgery per-

formed more than 120 days after

sonographic assessment.

1573 46 (9−94)

Jian et al,59 2022a Inclusion criteria were as follows:

patients with 1) BEOT or MEOT

that was proven by surgery and

histopathology from January 2010

to June 2018; 2) an MRI performed

within 2 weeks before gynecologi-

cal operation which included the

following three axial MRI sequen-

ces: fast spin echo T2-weighted

imaging with fat saturation (T2WI

FS), echo planar diffusion-

weighted imaging (DWI) with

apparent diffusion coefficient

(ADC) maps generated from maxi-

mum b-value imaging if images

with multiple b-values available,

and 2D volumetric interpolated

breath-hold examination of con-

trast-enhanced T1-weighted imag-

ing (CE-T1WI) with FS in the late

phase (150− 190 seconds after the

intravenous administration of con-

trast agent); and 3) no history of

gynecological operations or che-

motherapy prior to the MRI scan.

Patients with poor quality images

were excluded (based on the eval-

uation of the radiologist with 10

years’ experience in gynecological

imaging) because artifacts could

affect the observation of the

tumor.

501 58.92 (14.05)

Alqasemi et al,51 2012a NR NR 24 NR

Chen et al,60 2012a Inclusion criteria were as follows:

patients with at least one persist-

ing ovarian tumor detected at US

(except for physiologic cysts) from

January 2019 to November 2019,

patients who underwent a surgical

procedure with histopathologic

results, an interval of 30 days

between US examination and sur-

gery, and patients who had no

previous history of ovarian cancer.

Exclusion criteria were histopatho-

logic analysis−confirmed uterine

sarcomas or nongynecologic

tumors, inconclusive histopatho-

logic results, or poor US image

quality.

422 46.4 (14.8)

Zheng et al,61 2022 Patients with either SBOTs or SMOTs,

who underwent preoperative

MRI scans and confirmed by post-

operative pathology.

Exclusion criteria were as follows: (1)

solid tissue <80% in lesion (25); (2)

the tumor had significant metasta-

ses; (3) significant image artifacts.

1260 61 (20−79)

Table 1: Participant demographics for the 35 included studies.
Abbreviation: BEOT: borderline epithelial ovarian tumor; CT: computed tomography; EOC: epithelial ovarian cancer; FIGO: International Federation of Gyne-

cology and Obstetrics; MEOT: malignant epithelial ovarian tumors; NR=not reported; MRI: magnetic resonance imaging; OM: ovarian mass; SBOT; serous

borderline ovarian tumors; SMOT: serous malignant ovarian tumors; SOT: serous ovarian tumors; T1C: T1-weighted contrast-enhanced sequence; T2WI: T2-

weighted sequence; US: ultrasound.
a Studies (n = 28) included in the meta-analysis.
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Author [ref], year Reference standard Type of internal validation External validation AI versus clinicians

Liu et al,31 2022a Histopathology NR No No

Gao et al,22 2022a Histopathology Random split sample validation Yes Yes

Saida et al,32 2022a Histopathology NR No Yes

Guo et al,33 2022a Histopathology K-fold cross validation No No

Li et al,34 2022a Histopathology Ten-fold cross-validation No No

Wang et al,35 2021a Histopathology Three-fold cross validation No No

Chiappa et al,36 2021a Histopathology Ten-fold cross validation No No

Jian et al,37 2021 Histopathology Random split sample validation No No

Wang et al,38 2021a Histopathology Cross validation No Yes

Hu et al,39 2021a NR Ten-fold cross-validation No No

Yu et al,40 2021a Histopathology NR No No

Ștefan et al,41 2021a Histopathology NR No No

Christiansen et al,42 2021a Histopathology NR No Yes

Akazawa et al,43 2020 Histopathology K-fold cross validation No No

Zhang et al, 2019a Histopathology Ten-fold cross validation No No

Martínez et al,44 2019a Histopathology Cross validation No No

Zhang et al,20 2019a Histopathology Leave-one-out cross-validation No Yes

Mol et al,45 2001a Histopathology Cross validation No No

Liu D et al,46 2017a Histopathology Cross validation No No

Kazerooni et al,47 2017a Histopathology Leave-one-out cross-validation No No

Acharya et al,48 2014a Histopathology Ten-fold cross validation No No

Acharya et al,49 2013a Histopathology Ten-fold cross validation No No

Acharya et al,50 2012a NR K-fold cross validation No No

Umar et al,51 2012 Histopathology NR No No

Acharya et al,52 2012a Histopathology Ten-fold cross validation No No

Al-Karawi et al,53 2021a Histopathology Random split sample validation No No

Jian et al,54 2021 Histopathology NR Yes Yes

Li et al,55 2020 Histopathology NR Yes Yes

Acharya et al,56 2014a NR Ten-fold cross validation No No

Pathak et al,57 2015a NR Cross validation No No

Ameye et al,58 2009a Histopathology NR No Yes

Jian et al,59 2022a Histopathology NR No No

Alqasemi et al,51 2012a Histopathology NR No No

Chen et al,60 2012a Histopathology NR No Yes

Zheng et al,61 2022 Histopathology Ten-fold cross validation No No

Table 2: Model training and validation for the 35 included studies.
Abbreviation: AI: artificial intelligence; NR=not reported.

a Studies (n = 28) included in the meta-analysis.
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contingency table was selected from these 28 studies,
the pooled SE and SP were the same as 91% (84−95%)
and 94% (89−97%), respectively (Figure 2b). A cross
hairs plot shows reported point estimates and confi-
dence intervals in Figure 3.
Quality assessment
The quality of included studies was determined by the
QUADAS-AI (Supplementary figure 1). The detailed
assessment results are presented with a diagram in Sup-
plementary figure 2. Over half of the studies showed a
high risk or an unclear risk of bias respectively for
patient selections (n = 23) and index test (n = 31) because
www.thelancet.com Vol 53 November, 2022
these studies did not clarify description of included
patients detailing previous testing, presentation, setting,
the intended use of the index test and lack of adequate
external evaluation.
Subgroup meta-analyses
Considering the stage of development of the algorithm
and the difference in nature, we categorized them into
ML and DL algorithms and did a sub-analysis. The
results demonstrated a pooled SE of 89% (95%CI: 85
−92%) for ML and 88% (95%CI: 84−91%) for DL, and
a pooled SP of 88% (95%CI: 82−92%) for ML and 84%
(95%CI: 80−87%) for DL (Supplementary figure 3a, b).
9



Author [ref], year Indicator definition Algorithm

Device Exclusion of poor-
quality imaging

Heatmap
provided

Algorithm
architecture

ML/DL Transfer learning
applied

Liu et al,31 2022a MRI NR No LASSO ML No

Gao et al,22 2022a US Yes No DCNN DL No

Saida et al,32 2022a MRI NR Yes CNN DL No

Guo et al,33 2022a MRI, US NR No LR ML No

Li et al,34 2022a CT Yes No LR ML No

Wang et al,35 2021a US NR Yes DCNN DL No

Chiappa et al,36 2021a US NR No SVM ML No

Jian et al,37 2021 MRI NR No MAC-Net DL No

Wang et al,38 2021a MRI Yes No CNN DL No

Hu et al,39 2021a CT Yes No LR ML No

Yu et al,40 2021a CT Yes Yes SVM ML No

Ștefan et al,41 2021a US NR No KNN ML No

Christiansen et al,42 2021a US NR No DNN DL No

Akazawa et al,43 2020 US NR No SVM, KNN, RF, NB, XGBoost ML No

Martínez et al,44 2019a US NR No KNN, LD, SVM, ELM ML No

Zhang et al,20 2019a MRI NR No LASSO ML No

Mol et al,45 2001a US NR No LR, NN ML No

Liu D et al,46 2017a CT, MRI NR No RF ML No

Kazerooni et al,47 2017a MRI NR No SVM, LDA DL No

Acharya et al,48 2014a US NR No PNN ML No

Acharya et al,49 2013a US NR No DT ML No

Acharya et al,50 2012a US NR No SVM ML No

Umar et al,51 2012 US NR No SVM ML No

Acharya et al,52 2012a US NR No DT ML No

Al-Karawi et al,53 2021a US NR No SVM ML No

Jian et al,54 2021 MRI Yes No LASSO ML No

Li et al,55 2020 MRI NR No LR ML No

Acharya et al,56 2014a US NR No PNN ML No

Pathak et al,57 2015a US NR No SVM ML No

Ameye et al,58 2009a US NR No LR ML No

Jian et al,59 2022a MRI Yes No MICNN DL No

Alqasemi et al,51 2012a US NR No SVM ML No

Chen et al,60 2012a US Yes No ResNet DL No

Zheng et al,61 2022 MRI NR No LASSO ML No

Table 3: Indicator, algorithm, and data source for the 35 included studies.
Abbreviation: AI: artificial intelligence; CNN: convolutional neural network; CT: computed tomography; DCNN: deep convolutional neural network; DL: deep

learning; DT: decision tree; DNN: deep neural network; ELM: extreme learning machine; KNN: k-nearest neighbor; LASSO: least absolute shrinkage and selec-

tion operator method; LD: linear discriminant; LR: logistic regression; ML: machine learning; MRI: magnetic resonance imaging; NB: na€ıve bayes; NR=not

reported; PNN: probabilistic neural networks; RF: random forest; SVM: support vector machine; US: ultrasound.
a Studies (n = 28) included in the meta-analysis.
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Seventeen US studies had a pooled SE of 91%
(87−93%), a pooled SP of 87% (82−91%), and with an
AUC of 0.95 (0.93−0.97). Six MRI studies with a
pooled SE of 83% (77−88%), pooled SP of 84%
(80−87%), and an AUC of 0.90 (0.87−0.92). Three CT
studies that had a pooled SE of 75% (68−81%), pooled
SP of 75% (67−82%), and an AUC of 0.82 (0.78−0.85)
(Supplementary figure 4a, b, c).

Eight studies presented the diagnostic accuracy
between AI algorithms and human clinicians in the
same dataset. The pooled SE was 82% (77−87%) for AI
algorithms, and human clinicians had 77% (73−80%).
The pooled SP was 86% (83−89%) for AI algorithms,
and 80% (75−84%) in human clinicians. The AUC was
0.91 (0.88−0.93) and 0.85 (0.81−0.88) for AI algo-
rithms and human clinicians, respectively (Supplemen-
tary figure 5a, b).

Fifteen studies had sample sizes ≤ 300 and thirteen
studies had sample sizes > 300. The pooled SE was
85% (81−88%) for sample size ≤ 300, and 93% (89
www.thelancet.com Vol 53 November, 2022



Author [ref], year Source of data Number of images for
training/ /testing

Data range Open access
data

Liu et al,31 2022a Retrospective study, data from Gyneco-

logical and Obstetric Hospital, School

of Medicine, Fudan University, Shang-

hai, China.

99/97 2014.01−2017.12 No

Gao et al,22 2022a Retrospective study, data from Tongji

Hospital, Tongji Medical College, Huaz-

hong University of Science and Tech-

nology, and seven other hospitals,

Jingzhou First People’s Hospital and

Xiangyang Central Hospital.

575930/8416/7929 2003.09−2019.05 No

Saida et al,32 2022a Retrospective study, data from Faculty of

Medicine, University of Tsukuba.

3663/100 2015.01−2020.12 No

Guo et al,33 2022a Retrospective study, data from Qilu

Hospital.

138/69 2018.04−2021.04 No

Li et al,34 2022a Retrospective study, data from the First

Affiliated Hospital of Nanchang Medical

College.

99/41 2017−2020 No

Wang et al,35 2021a Retrospective study, data from Tianjin

Medical University Cancer Institute and

Hospital.

195/84 2013.03−2016.12 No

Chiappa et al,36 2021a Retrospective study, data from Fonda-

zione IRCCS Istituto Nazionale dei

Tumori di Milano.

NR 2017.01−2019.12 No

Jian et al,37 2021 Retrospective, data from eight clinical

centers in china.

282/119 NR No

Wang et al,38 2021a Retrospective study, data from one large

academic center in the United States.

384/161 NR No

Hu et al,39 2021a Retrospective study, data from Lishui

Hospital of Zhejiang University

76/34 2010.01−2018.12 No

Yu et al,40 2021a Retrospective study, data from the Affili-

ated Hospital of Qingdao University.

127/55 2017.12−2020.06 No

Ștefan et al,41 2021a Retrospective study, data from University

of Medicine and Pharmacy

NR 2017.10−2019.02 No

Christiansen et al,42 2021a Retrospective study, data from the Karo-

linska University Hospital(tertiary refer-

ral center)and Sodersjukhuset

(secondary/tertiary referral center) in

Stockholm, Sweden.

508/250 2010−2019 No

Akazawa et al,43 2020 Prospective study, date from Tokyo Wom-

en’s Medical University Medical Center

East.

141/61 2013.12−2019.01 No

Martínez et al,44 2019a Retrospective study, data from the Uni-

versity Hospital of the Catholic Univer-

sity of Leuven.

NR NR No

Zhang et al,20 2019a Retrospective study, data from Gyneco-

logical and Obstetric Hospital, School

of Medicine, Fudan University, Shang-

hai, China.

NR 2014.01−2017.12 No

Mol et al,45 2001a Prospective study, data from in the Saint

Joseph Hospital in Veldhoven.

NR 1991.01−1998.12 No

Table 4 (Continued)
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Author [ref], year Source of data Number of images for
training/ /testing

Data range Open access
data

Liu D et al,46 2017a Retrospective study, date from Depart-

ment of Radiology, Shanghai Tenth

People’s hospital of Tongji University.

NR 2009.01−2015.10 No

Kazerooni et al,47 2017a Prospectively study, NR. NR NR No

Acharya et al,48 2014a Retrospective study, NR. 2340/260 NR No

Acharya et al,49 2013a Retrospective study, NR. 1800/200 NR No

Acharya et al,50 2012a Retrospective study, NR. 1800/200 NR No

Umar et al,51 2012 Retrospective study, NR. NR NR No

Acharya et al,52 2012a Retrospective study, NR. 1800/200 NR No

Al-Karawi et al,53 2021a Retrospective study, data from the IOTA

research.

150/148

74/76

2005.11−2013.11 No

Jian et al,54 2021 Retrospective study, eight centers. 144/75/75 2010.01−2019.02 No

Li et al,55 2020 Retrospective study, NR. 250/92/159 2010.01−2018.06 No

Acharya et al,56 2014a Retrospective study, NR. 2340/260 NR No

Pathak et al,57 2015a Retrospective study, NR. 70/50 NR No

Ameye et al,58 2009a Retrospective study, data from the IOTA

research.

754/507 1999−2006 No

Jian et al,59 2022a Retrospective study, NR. 342/159 20102018 No

Alqasemi et al,51 2012a Retrospective study, NR. 400/95 NR Yes

Chen et al,60 2012 a Retrospective study, data from the Ruijin

Hospital affiliated with Shanghai Jiao-

tong university School of Medicine.

296/41/85 2019.01−2019.11 No

Zheng et al,61 2022 Retrospective study, data from the Tianjin

Medical University General Hospital

from November 2010 to May 2020.

125/31 2010−2020 No

Table 4: Data source for the 35 included studies.
a Studies (n = 28) included in the meta-analysis.
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−95%) for sample size > 300. The SP for ≤ 300 was
82% (80−85%) and 91% (84−96%) for > 300. The
AUC was 0.90 (0.87−0.92) for ≤ 300 and 0.97 (0.95
−0.98) for > 300 (Supplementary figure 6a, b).

Thirteen studies were published before 2020. Fif-
teen studies were published after 2020. The pooled SE
was 89% (84−93%) for published before 2020, and 88
(85−90%) for published after 2020. The SP was 89%
(83−93%) and 83% (80−85%), respectively. The AUC
was 0.95 (0.93−0.97) and 0.92 (0.89−0.94), respec-
tively ((Supplementary figure 7a, b).

Fifteen studies were geographically distributed in
Asia and thirteen studies were geographically distrib-
uted outside Asia. The pooled SE was 87% (84−90%)
and 90 (85−93%), respectively. The SP was 83% (80
−86%) and 89% (82−93%), respectively. The AUC was
0.92 (0.89−0.94) and 0.95 (0.93−0.97), respectively
(Supplementary figure 8a, b).

There were ten studies with low risk in more than
three evaluation domains and eighteen studies with
high risk. The pooled SE was 86% (78−91%) and 89%
(87−91%), respectively. The SP was 92% (88−95%)
and 81% (76−85%), respectively. The AUC was 0.93
(0.90−0.95) and 0.93 (0.91−0.95), respectively (Sup-
plementary figure 9a, b).
Heterogeneity analysis
The meta-analysis results of 28 studies suggested that
AI algorithms were beneficial for the diagnosis of OC
from medical imaging from random-effects model.
However, there was substantial heterogeneity among
the included studies, SE had an I2 = 94.68%, while SP
had I2 = 97.50% (p < 0.01). The detailed results of sub-
group and meta-regression analyses exploring the
potential source of between-study heterogeneity are
shown in Table. 5 and Supplementary figure 10-23. The
results highlighted a statistically significant difference.
Visual inspection of funnel plots suggested there
was no publication bias (p = 0.83) (Supplementary
figure 24).
Discussion
With the widespread application of AI in medical imag-
ing during recent years, radiomics and AI models are
now being actively evaluated for diagnostic accuracy in a
variety of malignancy types. To our best knowledge, this
is the first systematic review and meta-analysis specifi-
cally dedicated to AI system performance in the diagno-
sis of OC. We are strictly in line with the guidelines for
diagnostic reviews,62 and conducted a comprehensive
www.thelancet.com Vol 53 November, 2022



Figure 2. (a, b). SROC curves of all studies included in the meta-analysis (28 studies). a: SROC curves of ll studies included in the
meta-analysis (28 studies with 160 tables). b: SROC curves of studies when selecting contingency tables reporting the highest accu-
racy (28 studies with 28 tables).

Abbreviations: AI: artificial intelligence; SROC = summary receiver operating characteristic; SENS = summary sensitivity; SPEC =
summary specificity.

Articles
literature search in both medical databases and engi-
neering and technology databases to ensure the rigor of
the study.

After a careful selection of research on relevant
topics, we found that AI algorithms excelled in the iden-
tification of OC using medical radiography imaging,
which manifested an equivalent or even better perfor-
mance than independent detection by human clini-
cians. This study also described the performance of the
different imaging modalities, sample size, the year of
publication, geographical distribution, and the different
risk of bias levels. Potential sources of inter-study het-
erogeneity were identified based on the above subgroup
Figure 3. Cross-hair Plot of all studies included in

www.thelancet.com Vol 53 November, 2022
and meta-regression analyses. More importantly, we rig-
orously rated study quality and risk of bias using an
adapted QUADAS-AI assessment tool, which is a
strength of this systematic review and will also better
guide future related studies.

Advances in ML techniques may facilitate processing
of large amounts of medical image data. Notwithstand-
ing their utility, ML methods are known to have limita-
tions63 related to: manual extraction and selection of
features, this is a fundamental task in order to find a
group of significant variables to predict and correlate
with outcome; Poor performance when dealing with
imbalanced datasets. DL is the newest class of ML and
the meta-analysis (28 studies with 160 tables).
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No. of studies Sensitivity P valueb Specificity P valueb

Sensitivity P value a I2 (95%CI) Specificity P value a I2 (95%CI)

Overall 28 0.88 (0.85−0.90) < 0.05 94.68 (94.16−95.19) 0.85 (0.82−0.88) < 0.05 97.50 (97.31−97.69)

Algorithm < 0.05 < 0.05

Machine learning 19 0.89 (0.85−0.92) < 0.05 95.11 (94.49−95.72) 0.88 (0.82−0.92) < 0.05 97.69 (97.46−97.92)

Deep learning 9 0.88 (0.84−0.91) < 0.05 95.48 (94.84−96.11) 0.84 (0.80−0.87) < 0.05 95.84 (95.28−96.41)

Imaging modality < 0.05 < 0.05

Ultrasound 17 0.91 (0.87−0.93) < 0.05 96.58 (96.22−96.94) 0.87(0.82−0.91) < 0.05 98.55 (98.43−98.66)

Magnetic resonance imaging 6 0.83 (0.77−0.88) < 0.05 85.72 (82.32−89.12) 0.84(0.80−0.87) < 0.05 83.47 (79.37−87.58)

Computed tomography 3 0.75 (0.68−0.81) 0.43 0.00 (0.00−100.00) 0.75 (0.67−0.82) 0.83 0.00 (0.00−100.00)

Sample size < 0.05 < 0.05

≤ 300 15 0.85 (0.81−0.88) < 0.05 91.75 (90.61−92.90) 0.82 (0.80−0.85) < 0.05 83.00 (80.08−84.93)

> 300 13 0.93 (0.89−0.95) < 0.05 97.96 (97.72−98.20) 0.91 (0.84−0.96) < 0.05 99.42 (99.38−99.47)

Risk of bias < 0.05 < 0.05

Low 10 0.86 (0.78−0.91) < 0.05 97.49 (97.14−97.84) 0.92 (0.88−0.95) < 0.05 97.31 (96.92−97.69)

High 18 0.89 (0.87−0.91) < 0.05 91.78 (90.70−92.87) 0.81 (0.76−0.85) < 0.05 95.94 (95.51−96.37)

Geographical distribution < 0.05 < 0.05

Asia 13 0.87 (0.84−0.90) < 0.05 94.48 (93.74−95.22) 0.83 (0.80−0.86) < 0.05 95.00 (94.35−95.65)

Non Asia 15 0.90 (0.85−0.93) < 0.05 96.36 (95.91−96.82) 0.89 (0.82−0.93) < 0.05 98.17 (97.99−98.36)

Year of publication < 0.05 < 0.05

Before 2020 15 0.89 (0.84−0.93) < 0.05 96.26 (95.81−96.71) 0.89 (0.83−0.93) < 0.05 97.89 (97.68−98.10)

After 2020 13 0.88 (0.85−0.90) < 0.05 94.63 (93.87−95.39) 0.83 (0.80−0.85) < 0.05 95.12 (94.45−95.79)

Table 5: Summary estimate of pooled performance of artificial intelligence in image-based ovarian cancer detection.
a P-Value for heterogeneity within each subgroup.
b P-Value for heterogeneity between subgroups with meta-regression analysis.
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has been found to be advantageous to other forms of
ML.64 DL employs multiple layers of neural networks,
leading to expanded ‘neuronal’ complexity, to signifi-
cantly enhance computational power. However, with
DL methods being more prone to overfitting and hence
often requiring more data. Considering the stage of
development of the algorithm and the difference in
nature,65,66 we also carried out a sub-analysis by the dif-
ferent algorithms, where no significant difference was
observed. This may be attributed to the small dataset of
included studies, most of which collected a few hundred
data, limiting the advantages of DL.

Although great promise has been shown with AI
algorithms in a variety of tasks across radiology and
medicine as a whole, these systems are far from perfect,
we should also critically consider some methodological
issues:

First, data continues to be the most central and cru-
cial constituent for learning AI systems.67 Exploiting
radiology report databases by using modern informa-
tion processing technologies may improve report search
and retrieval and help radiologists in diagnosis.68 We
need to call for advocacy for creating interconnected net-
works of identifying patient data from around the world
and training AI on a large scale according to different
patient demographics, geographic areas, diseases, etc.
In addition, we emphasize that rare cancers, including
OC, require more diverse image databases. In fact, max-
imization of the power of AI will require the deposition
of medical data with sufficient annotation in large-
�scale databases.69 However, such data are rarely
curated, and this represents a major bottleneck in
attempting to learn any AI model.70 International col-
laborative projects (such as The Cancer Imaging
Archive [http://www.cancerimagingarchive.net]) that
build large, labeled datasets should make a substantial
contribution to meeting this challenge. Curation can
refer to patient cohort selection relevant for a specific AI
task but can also refer to segmenting objects within
images.70,71 Curation ensures that training data adheres
to a defined set of quality criteria and is clear of
compromising artefacts. It can also help avoid
unwanted variance in data owing to differences in data-
acquisition standards and imaging protocols, especially
across institutions, such as the time between contrast
agent administration and actual imaging.71−73 Only in
this way can we create an AI that is socially responsible
and benefits more people.

Second, as the advent of AI-based diagnostic test
studies, there has been a parallel increase in the number
of systematic reviews summarizing such findings.7,74,75

Noteworthy, 94% studies have been performed in the
absence of an AI-specific quality assessment criteria in
those published systematic reviews.27 During the past
decade, the most frequently utilized tool is the QUA-
DAS-2.28 However, QUADAS-2 does not address the
particular terminology that arises from AI diagnostic
www.thelancet.com Vol 53 November, 2022
test studies, nor does it consider other issues that appear
in AI research, such as the setting of the data set, sources
of bias, etc.27 Therefore, Sounderajah, V et al. proposed
an AI-specific risk of bias tool, termed QUADAS-AI in
2021.27 This tool provided us with a specific instruction
to assess the risk of bias and applicability of the present
study. Not surprisingly, most of the relevant studies were
more often designed or conducted prior this guideline.
We therefore accepted the low quality of some of the
studies and the heterogeneity between the included stud-
ies. It also makes sense that we assume that patient selec-
tion, index test and flow and timing of studies used to
evaluate the diagnostic performance of AI models will be
optimized soon.

Third, although no publication bias was noticed in
the present study, we must be honest about the fact that
the available AI research is often a publication of posi-
tive results. We venture to guess that this phenomenon
stems from reporting bias by researchers, which may
have skewed the dataset and not conducive to the com-
parison between AI models and clinicians.75,76 One
more point, the extraordinary applications of AI technol-
ogy in medicine will require healthcare workers to
enhance their clinical workflow combination. Of the
included studies, only two evaluated the performance of
integrating AI with clinicians. It has been suggested
that scientific research should shift from an AI-physi-
cian dichotomy to a combination of AI and clinicians,
which would be more in line with realistic medical
workflows.

Fourth, 28 of the 34 studies that met the inclusion
criteria for this systematic review provided information
of our concern for the development of contingency
tables. There is a broad range of indicators employed in
AI research to report diagnostic abilities. Metrics such
as SE, SP, and accuracy are the most applied in numer-
ous studies. If the number of subjects with/without dis-
ease is shown in the study, we can combine SE and SP
to derive TP, TN, FP, and FN for the construction of the
contingency table. Other metrics like precision, dice
ratio, F1 score and recall, which are frequently used in
computer science, also present as the default standard
of measurement in some studies.37 However, these met-
rics are not all-encompassing and alone we do not
receive sufficient information to build a contingency
table. Well-defined metrics at the intersection of health
care systems and computer science are also prudent to
consider for future research. Additionally, for AI based
models, the obtained heatmaps show what aspects of
the images are important for a given classification,77

whereas few included studies provide such information.
To reduce bias, we emphasize reporting information
about segmentation properties or heat maps in AI
model-based studies to draw conclusions about the ele-
ments of interest in AI models.

Fifth, there is a disagreement around the critical ter-
minology applied in AI research. Different papers have
15
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defined the same terminology in different ways. For
example, for an AI-based model, the sample set is gen-
erally grouped into several separate sections, including
a training set and a test set for evaluating the effective-
ness of the model.74 Although the term ’validation’ is
used in a causal sense, some researchers used this
phrase to denote the dataset used to assess the diagnos-
tic performance of the ultimate model.22 Other investi-
gations have described it as a dataset with a tweaking
function in the exploitation process.32 The inconsistency
of naming renders it challenging to determine whether
the set is independent. It is vital that the validation set
comprises data isolated from training data and is exclu-
sively dedicated to assess the eventual model. It has
been proposed to classify the sample data set into a
training set, a tuning set and a validation set, whose
functions are to be applied for training the model, for
tuning the parameters and for assessing the perfor-
mance of the final model, respectively.74 Considering
the different sorts of validation sets, Altman et al.78 des-
ignated the datasets used for in-sample validation as
internal validation set and those for out-of-sample vali-
dation as external validation set, suggestions which are
very realistic and contribute to the quality of the study.
Researchers concerned with the application of AI in
healthcare should be careful about the phenomena and
optimize it for future research.

Sixth, within a purely image-based setting, AI can
achieve on par or superior performance to physicians,
thereby highlighting its potential as a decision support
system with immediate clinical implications.79

Although a fairly good evaluation can be made in this
way, it does not take into account all the information
that radiologists rely on when evaluating a difficult
examination.70 Nonimaging-based patient characteris-
tics, such as demographic information, history of can-
cer, and genetic information, may be integrated into the
model. Given a sufficiently large data set, AI could use
these pieces of information in conjunction with the
image data to identify women at high risk of cancer.

Seventh, the high performance of AI model comes at
the cost of high complexity and vast number of parame-
ters.80 We may be unable to understand and explain
why an AI model has made certain classifications in
image analysis. This type of algorithm is often referred
to as a “black box”.81 Compared with AI techniques,
explainable artificial intelligence (XAI) can provide both
decision-making and explanations of the model.82

Some research have been conducted into XAI to over-
come the limitation of the black-box nature of AI meth-
ods. For example, Laios et al.83 have pioneered the
implementation of XAI models in the field of gyneco-
logical oncology. They presented an ensemble AI-based
model that predicted the outcomes following cytoreduc-
tive surgery for OC with high accuracy, and an XAI
strategy that explained the patient and surgery-specific
factors that led to that risk. The team also made a
pioneering attempt to implement XAI models to explain
the prediction of surgical effort at OC cytoreduction, by
feeding the models with features that also include
human factors.84 However, most of radiomics extrac-
tion and imaging biomarkers analyses included in this
review are used as “black box”, and their application in
clinical practice still lacks reliability and interpretability.
This phenomenon is understandable given that the use
of XAI in oncology is still in its infancy. Understanding
the principles and applications of AI in medical imaging
will facilitate assimilation and expedite advantages to
practice.85 We encourage future researches to consider
the interpretability of AI models in modeling, to address
challenges, and to find clinical approaches for the devel-
opment of AI in the field of radiomics.

Eighth, most studies were carried out in a single cen-
ter with limited data availability. Only three of the
included studies have external validation, which refers
to validating the performance of the model with out-of-
sample datasets from other institutions. However,
among the three included studies with external valida-
tion, only one was included in the meta-analysis. This
precluded a subgroup meta-analysis in the present
study, but emphasized the necessity for rigorous and
reliable evaluation of AI performance in external data-
sets. The included studies are more likely to group an
institution’s dataset into a training set, a test set or an
internal validation set. The performance was judged by
the test set or internal validation. As the intention of the
validation was to examine the performance of the model
applied to patients from different populations, it is pref-
erable to obtain a new dataset from a different organiza-
tion. The lack of an external validation set may
potentially lead to overestimation of the results, which
could compromise the generalizability of the model.78

Several reviews7,75 in the AI field reported that studies
with internally validated AI models outperform exter-
nally validated models in the detection of cervical can-
cer, breast cancer and tumor metastases. However, this
is not surprising as the samples in the same dataset are
often homogeneous and the diagnostic performance of
the algorithm can easily be misjudged. Rigorous exter-
nal validation is warranted in the design of AI-related
diagnostic studies. Multicentric studies will have an sig-
nificant role in this research field. The use of interopera-
ble standards and uniform protocols will also be needed
prior to conducting such a study. AI methods can pro-
vide valuable models for quality assurance, personalized
and predictive medicine. For this purpose, the contribu-
tion of clinicians and researchers in the interpretation
of models and their application has a crucial role in the
daily clinical practice.

Additionally, limited prospective studies were carried
out in real clinical environments. Most of the included
studies were based on retrospective data and whose
patients chosen from hospital medical records. It is well
known that prospective studies would provide more
www.thelancet.com Vol 53 November, 2022
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favorable evidence,86 and we anticipate more prospec-
tive AI research to emerge in the future. And only con-
sidering the inclusion of English articles may omit
important information from other language studies.
Another limitation is that we did not contact the authors
because most of the studies included in full-text screen-
ing (93%) provided the necessary data.

The present study represents a summary of the enor-
mous potential of AI algorithms that are useful for
detecting OC using medical radiology imaging. How-
ever, it is also acknowledged that this finding is derived
from relatively low methodological quality research,
which inevitably overestimates the accuracy of the algo-
rithm. The research of AI-based systems in diagnosing
OC needs to be further improved in terms of study
design.
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