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Summary

The ADF/cofilins are a family of actin-binding proteins expressed in all eukaryotic cells so far examined.
Members of this family remodel the actin cytoskeleton, for example during cytokinesis, when the
actin-rich contractile ring shrinks as it contracts through the interaction of ADF/cofilins with both
monomeric and filamentous actin. The depolymerizing activity is twofold: ADF/cofilins sever actin
filaments and also increase the rate at which monomers leave the filament’s pointed end. The three-
dimensional structure of ADF/cofilins is similar to a fold in members of the gelsolin family of actin-
binding proteins in which this fold is typically repeated three or six times; although both families bind
polyphosphoinositide lipids and actin in a pH-dependent manner, they share no obvious sequence
similarity. Plants and animals have multiple ADF/cofilin genes, belonging in vertebrates to two types,
ADF and cofilins. Other eukaryotes (such as yeast, Acanthamoeba and slime moulds) have a single
ADF/cofilin gene. Phylogenetic analysis of the ADF/cofilins reveals that, with few exceptions, their
relationships reflect conventional views of the relationships between the major groups of organisms.
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Actin-binding proteins modulate the actin-based cytoskele-

ton; together, they form, destroy and reform the vast array of

actin-rich structures that exist in eukaryotic cells. The actin-

depolymerizing factors (ADFs, also known as destrins) and

the cofilins are a single family called the ADF/cofilins. They

are abundant and essential in almost every eukaryotic cell

type, with the possible exception of red blood cells and sperm

cells (see [1,2] for comprehensive reviews). Chromosomal

locations of selected ADF/cofilin genes are shown in Table 1.

Gene organization and evolutionary history
An analysis of the available ADF/cofilin sequences has been

performed (Figure 1), and this agrees well with previous analy-

ses on more limited datasets [3-5]. In general, the tree con-

forms to the expected relationships between the major groups;

for instance, all the fungi and yeast sequences group together

separately from the plants and animals and all the plant

ADF/cofilin sequences group together. Relationships between

plant ADF/cofilins are complicated by the presence of many

sequences from some plant species (for instance, there are 12 in

Arabidopsis), although expected kinships, for example

between the related tomato and potato sequences, can be seen. 

As ADF/cofilins are probably found in all eukaryotes, are

diverse in sequence, are small proteins and a large number

of cDNAs are already available (Figure 1), the family is a

suitable candidate for analyzing relationships between

phyla. The fact that some organisms have several different

ADF/cofilins is a distinct disadvantage, however.

ADF/cofilin genes can be so divergent that Southern blotting

reveals only one type, even though multiple forms may exist;

for example, Southern blotting detects only “a few”

ADF/cofilin genes in maize and lily [6,7], whereas Arabidop-

sis thaliana is known to contain 12 different sequences

(although not all have been shown to be functional genes), so

maize and lily would be expected to have multiple

ADF/cofilin genes. From a phylogenetic point of view this
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presents problems, such as which of the Arabidopsis ADF

genes best represents this plant with respect to its relation-

ship with other plants. Such problems are especially appar-

ent within the protists and are compounded by longbranch

attraction, an artifact in which divergent species group

together on a phylogenetic tree, and by the very sparse data

available for many protistan groups (data is also very sparse

for algae, molluscs and reptiles).

The ADF/cofilins found in each group of organisms
Animals
Most vertebrates have one ADF and two cofilins; the latter

are divided into muscle and non-muscle cofilins [8]. The

reported human destrin-2 gene (Genbank U72518) is most

likely to be a pseudogene [9]. The frog Xenopus expresses

two ADF/cofilins, but these appear to be more closely

related to the cofilins than the ADFs; the possibility of a

Xenopus ADF cannot presently be excluded, however. If

there is no Xenopus ADF, this may indicate that the ADF

and cofilin lineages may have diverged in the reptilian

common ancestor of birds and mammals. Only one cofilin is

found in chicken and this is more similar to the mouse

muscle cofilin (96.4% identity) than it is to the mouse non-

muscle cofilin (81.3%).

Of the invertebrates, Caenorhabditis elegans has one

ADF/cofilin gene, unc-60, which encodes two different pro-

teins, UNC-60A and UNC-60B [10] (see below). Drosophila

has one ADF/cofilin gene, twinstar [11]. The first ADF/cofilin

sequence to be determined, that of depactin, which was iso-

lated from eggs of the sea star Asterias amurensis [12], was

determined by direct amino-acid sequencing of the protein

[13], and to date no supporting cDNA or gene sequence is

available. Although a putative ADF/cofilin gene from another

echinoderm, the sea urchin Strongylocentrotus purpuratus,

is available, this sequence does not group with depactin. In

fact, depactin is the most divergent member of the group so

far discovered (see Figure 1). 

Plants
A surprising finding is that plants have many more

ADF/cofilin genes than animals. Using a limited data set,

Mun et al. [3] classified the plant ADF/cofilins into four

groups (I-IV); our analysis (Figure 1) supports this classifica-

tion and we have also subdivided groups I and II into two

subgroups and group III into three subgroups. Some indica-

tions of a separation of the plant ADF/cofilins along the lines

of the major plant groups (gymnosperms, angiosperms,

monocots, and dicots) is evident: group I is composed

Table 1

Chromosomal locations of selected ADF/cofilin genes

Species/gene Chromosome location Genomic accession Number of Reference(s)
number introns

A. thaliana ADF1 Chr 3 F16L2.220 (At3g46010) AF102173 2 TIGR database [66]

A. thaliana ADF2 Chr 3 F16L2.210 (At3g4600) AL162459 2 TIGR database [66]

A. thaliana ADF3 Chr5 MMN10.4 (At5g59880) AF102821 2 TIGR database [66]

A. thaliana ADF4 Chr5 MMN 10.8 (At5g59890) AF102822 2 TIGR database [66]

A. thaliana ADF5 Chr2 T24121.11 (At2g16700) AF102825 2 TIGR database [66]

A. thaliana ADF6 Chr2 F16D14.4 (At2g31200) AF183576 ? TIGR database [66]

C. elegans UNC-60 Chr 5 AF024494 4 C. elegans sequencing 
consortium [67]

D. discoideum DCOF1 ? D37980 1 [22] 

D. discoideum DCOF2 ? D37981 0 [22]

D. melanogaster twinstar Chr 2 U24676 2 [11]

Human non-muscle cofilin (Cfl1) Chr 11 q13.4 AC009470 3 Human Genome Project [68]

Human muscle cofilin (Cfl2) Chr 14 AF242299, AF283513 4 [19,69]

Human ADF Chr 12 U47924 0 Human Genome Project [68]
(possibly a pseudogene)

Human ADF Chr 8 AC022868 0 Human Genome Project [68]
(possibly a pseudogene)

Human ADF Chr 20 AL132765 3 Human Genome Project [68]

O. sativa ADF1 Chr10 AC079029 2 TIGR database [66]

O. sativa ADF2 Chr3 AC084320 2 TIGR database [66]

S. cerevisiae Cof1 Chr XII 39803- 40413 Z14971, D13230 1 [20,70]

S. pombe ADF1 Chr 1 Z98600 0 [71] 
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Figure 1 (see legend on the next page)
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exclusively of dicots (although there is a rice gene similar to

Petunia hybrida ADF1 on chromosome 3; GenBank acces-

sion number AC084320), whereas group III contains both

dicots and monocots. Group II contains dicots, monocots

and gymnosperms, and group IV presently includes Zea

mays ADF3 and an ADF/cofilin from wheat (some trees

placed these ADF/cofilins more closely than in Figure 1).

Southern blot analysis [14], probing with the wheat

ADF/cofilin, reveals the presence of similar sequences in all

the monocots tested, Secale cereale, Avena sativa, Hordeum

vulgare, Oryza sativa and Zea mays (the latter sequence is

presumably ADF3), whereas the dicots tested, Medicago

sativa and Brassica napus, did not hybridize, indicating

perhaps that group IV is exclusive to the monocots [14]. It is

possible that group II is exclusively pollen-specific and that,

within this group, monocots and dicots form subgroups

[6,7]. Members of group IIIc (the third subgroup of group

III, see Figure 1) have an insert of various lengths between

sheet 6 and helix 4 (see Characteristic structural features),

for no presently apparent purpose.

The Arabidopsis thaliana genome sequencing project is

complete, so it is possible to analyze the full complement of

ADF/cofilin genes from this plant. Although Arabidopsis has

a genome size only 4% that of humans, it has 12 ADF/cofilin

genes (AtADFs). It is not yet clear how many of these are

expressed, but cDNAs have been isolated for most [15]. Two

pairs of AtADF gene products are very similar (AtADF1 and

AtADF4, and AtADF8 and AtADF10), making it likely that

their functions may be redundant. The phylogenetic analysis

(Figure 1) predicts that AtADF7 and perhaps AtADF8 and

AtADF10 are pollen-specific, as maize and lily pollen-specific

ADFs fall in the same grouping as these three AtADFs. The

ADF genes of Arabidopsis are clustered: AtADF3 and

AtADF4 are adjacent on chromosome 5, and a putative ADF

gene is followed by AtADF2 and AtADF1 on chromosome 3 

Other eukaryotes 
Compared with animals and plants, there are relatively few

ADF/cofilins characterized from other eukaryotes, which

limits our interpretation of the evolution of the ADF/cofilin

genes (Table 1, Figure 2b). There is only one ADF/cofilin

sequence in the fully sequenced Saccharomyces cerevisiae

genome, and there is evidence for a single ADF/cofilin gene

(actophorin) in the soil amoeba Acanthamoeba castellanii

[16]. It was previously suggested on similar evidence,

however, that there was only one cofilin gene in Dic-

tyostelium, but more recently the sequence of another

Dictyostelium cofilin-like gene, cofilin-2, has been

deposited in GenBank (accession number AB055926) by

4 Genome Biology Vol 3 No 5 Maciver and Hussey

Figure 1 (see figure on the previous page)
A phylogenetic tree of the ADF/cofilin family. The groups and subgroups of plant ADF/cofilins are separated by dotted lines. An alignment of the
complete sequences was made with Clustal W; this was used to derive a phylogenetic tree with Clustal W using bootstrapping (1,000 reiterations) and
the output tree was plotted using the Njplot program. The data were taken from the published literature, expressed sequence tag databases and genomic
databases. Arabidopsis thaliana ADF1-ADF9 are named in accordance with Bowman et al., 2000 [4] with an additional sequence ADF10 from GenBank
(AAF78408). The petunia (Petunia hybrida) and cotton (Gossypium hirsutum) ADF/cofilins are numbered in accordance with Mun et al., 2000 [3]. The
alignment generated for this analysis and other information relating to this article and the ADF/cofilins generally is available from the authors’ ADF/cofilin
home page [76]. In order from top of the figure to the bottom, the sequences were derived from the following accession numbers (GB, GenBank [18];
SP, SwissProt [77]; GB; PIR, protein information resource [78]): Glycine max 1 (soya bean), BG725541; A. thaliana 3 (thale cress), GB AF360169,
GB AF102821 and GB AAD09109; Solanum tuberosum (potato), GB BE340726; Lycopersicon esculentum 1 (tomato), GB BG791215; Glycine max 3,
GB BE802250; G. max 4, GB BG882919; G. max 2, GB BG882937, GB BG882422 and GB BG882919; Medicago truncatula (barrel medic), GB AA660460
and GB AA660869; A. thaliana 2, GB U48939; Petunia hybrida 1 (petunia), GB AAK72617 [3]; A. thaliana 4, GB AF102822; A. thaliana 1, GB AF102173;
Gossypium hirsutum 4 (cotton), GB AI728908; G. hirsutum 1, GB AF731080; P. hybrida 2, GB AAK72616 [3]; Beta vulgaris (sugar beet), GB BF011219; Malus
domestica (apple tree), GB AF179295; A. thaliana 10, GB AAF78408; A. thaliana 8 (incomplete) [4]; Zea mays 2 (maize), GB X97725 [7]; Z. mays 1,
GB X80820 [7]; Lilium longifolium (trumpet lily), PIR S30935, GB Z14110 [6]; Lycopersicon esculentum 2, GB AW218268; A. thaliana 7 [4]; Brassica napus
(incomplete; rapeseed), PIR S30934 and GB Z14109 [6]; Pinus taeda 2 (Loblolly pine), GB AA556832; P. taeda 1, GB AW290013; A. thaliana 9
(incomplete) [4]; G. hirsutum 2, GB AI730337; G. max 5, GB BE211729; A. thaliana 5, AF360302, AF102825 and AF102823; Mesembryanthemum crystallinum
3 (ice plant or figmarigold), GB BE033507; Oryza sativa 2 (rice), GB AAK09235; G. max 6, GB BG726731; Elaeis guineensis (African oil palm), GB
AF236068; A. thaliana 6 (incomplete) [4]; G. hirsutum 3, GB AI729046; M. crystallinum 4, GB BE033912; Oryza sativa 1, GB AAK38308; M. crystallinum 2,
GB BE035020; M. crystallinum 1, GB GB035057; Suaeda salsa (seablite), GB AW990964; Z. mays 3, X97726 [7]; Triticum aestivum (wheat), GB U58278
[14]; Acanthamoeba castellanii (soil amoeba) actophorin, SP P37167 [16]; Toxoplasma gondii (coccidian parasite), U62146; Neospora caninum
(apicomplexan), GB BG235118 and GB BG235281; Eimeria tenella 2 (coccidian parasite), GB AI756831; E. tenella 1 GB BG235538; D. discoideum (slime
mould), SP P54706 [22]; Agaricus bisporus (cultivated mushroom), GB AW444327; Neurospora crassa (incomplete; fungus), GB T49327;
Schizosaccharomcyes pombe (yeast) Cof1, GB D89939 and PIR T38120; Zygosaccharomyces rouxii (yeast), GB BAB18899; S. cerevisiae (yeast), SP Q03048
and D13230 [20,70]; Strongylocentrotus purpuratus (sea urchin), Contig 501 [79]; Danio rerio 2 (zebrafish), GB B017097; D. rerio 1, GB Fa96c03.Y1, GB
Fa91d10.YL, GB Fb04b04.y1 and GB Fa96c03.x1; Xenopus laevis 2 (South African clawed toad), SP P45593 [80]; X. laevis 1, GB U26270 [80]; Ictalurus
punctatus (channel catfish), GB BE470088, GB BE469308 and GB BE468299; D. rerio 3, GB AW018661, GB AI658133 and GB AI794635; Gallus gallus
(chicken) muscle cofilin, M55659 [81]; Mus musculus (house mouse) muscle Cof2, L29468 [8]; Homo sapiens (human) muscle cofilin, GB AF283513; Rattus
norvegicus (rat) non-muscle cofilin, GB G509201; M. musculus non-muscle Cofilin, SP P18760; Sus scrofa (pig) non-muscle cofilin, GB M20866; H. sapiens
non-muscle cofilin1, GB D00682; G. gallus ADF, GB J02912; S. scrofa ADF, GB J05290 [43]; H. sapiens ADF, PIR A54184 [47]; M. musculus ADF,
NP062745; Sarcoptes scabiei (parasitic mite), GB BG817660; Manduca sexta (silkworm, insect), GB BF707432; Drosophila melanogaster (fruit fly) Twinstar,
PIR A57569 [11,82]; Lumbricus rubellus (earthworm), GB BF422380; Schistosoma japonicum (trematode fluke causing schistosomiasis), GB AA140553;
Echinococcus granulosus (cestode tapeworm of dogs), GB BI244320; Caenorhabditis elegans 1 (nematode), SP Q07750 [10]; C. elegans 2, SP Q07749 [10];
Cryptosporidium parvum (apicomplexan), GB AA224644; Asterias amurensis (starfish) depactin, SP P20690; Entamoeba histolytica (dysentery-causing amoeba),
contig ENTFF06TR [83].



the same group that cloned cofilin-1. The inclusion of this

sequence in our phylogenetic analysis has the effect of

removing the cofilin-1 sequence from its present position

within the tree to an outlying group with cofilin-2. As the

cofilin-2 gene has this effect and because it has not been

verified as being an ADF/cofilin member, it has not been

included in our analysis. Acanthamoeba actophorin most

closely resembles the plant ADF/cofilins of the limited

number of phyla included in the study; a kinship between

Acanthamoeba and plants is suggested in many (but by no

means all) ribosomal DNA analyses. 

The coccidians, including the bird parasite Eimeria tenella

and the cat and human parasite Toxoplasma gondii, appear

to have two ADF/cofilins; only one ADF/cofilin gene has been

reported in Toxoplasma gondii [17], but at least two differen-

tially spliced forms are found in expressed sequence tag (EST)

databases (GenBank BG658910, BG659044 [18]). (Although

the actin-binding function of the Eimeria ADF/cofilin protein

has not been published, it is similar to Toxoplasma

ADF/cofilin, which is a confirmed ADF/cofilin member in

terms of its interaction with actin.) The ADF/cofilin sequence

from Cryptosporidium parvum is a puzzle, because being

from another protozoan (an apicomplexan), it would be

expected to group with T. gondii, but instead, it appears in

our analysis to group loosely with the nematode C. elegans.

Some trees generated in our analysis do suggest a relation-

ship between Toxoplasma and Cryptosporidium. More
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Figure 2
The structure of ADF/cofilins. (a) The three major groups of ADF/cofilins identified in Figure 1 (plants, fungi and vertebrates) are each represented by a
structure. The predominant structural features (� helices and � sheets) are shown in colors that correspond to those used in (b), which shows the
genomic organization of ADF/cofilins superimposed on the amino-acid sequence, with secondary structures highlighted. The red squares or bars indicate
the positions of introns interrupting the deduced amino-acid sequences. Red underlining represents the PIP2/actin-binding site [30].
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sequences are of course needed to resolve this puzzle. A

partial sequence from another apicomplexan, Sarcocystis

neurona (GenBank BE636150, not included in our analysis),

is related to mammalian cofilins, adding to the confusion.

This sequence may have been ‘picked up’ at some point by

horizontal transfer as the parasite moved between hosts.

Gene structure
The intron-exon boundaries often provide information on the

ontogeny and evolution of genes. As expected, there are several

such boundaries within ADF/cofilin genes, and these are pre-

served across the phyla. A remarkable tendency for

ADF/cofilin genes is for the first amino acid (or the first few) to

be encoded by a separate exon (Figure 2b). The human muscle

cofilin gene (Clf2) produces two different mRNAs that encode

identical polypeptides by the use of two alternative first exons

encoding the methionine and upstream untranslated region;

these mRNAs presumably differ in their localization and/or

stability [19]. The opposite is true for the muscle ADF/cofilin

of the nematode C. elegans: two different ADF/cofilin proteins

are produced from one gene, although the only exon to be

shared is that encoding the initiating methionine. The S. cere-

visiae Cof1 gene contains one exon in the region encoding the

amino terminus of the protein [20], as does one of the two

genes encoding identical proteins in Dictyostelium

discoideum. Several ADF/cofilin genes, for example those

from Schizosaccharomyces pombe, Entamoeba histolytica

and Strongylocentrotus purpuratus), have no introns, but

some of these have yet to be shown to be functional genes.

Genes that contain no introns are likely to be pseudogenes

[21,22], so those ADF/cofilin genes identified solely on the

basis of their genomic sequence (such as those from E. his-

tolytica and S. purpuratus) must be verified by cDNA cloning.

This rule also appears to hold for human ADF genes; a number

of pseudogenes homologous to ADF/cofilin genes lacking

introns are suspected (such as those with GenBank accession

numbers AC009498 (chromosome 2) and AL132765 (chromo-

some 20)). As far as can currently be determined, plant

ADF/cofilin genes are organized in a similar manner, with an

intron following the exon encoding the amino terminus and a

conserved intron further 3�. This pattern holds for Arabidopsis

and Oryza sativa ADF/cofilin genes. 

Characteristic structural features
The ADF/cofilins are formed by a single folded domain, the

ADF homology domain, which is also found in other actin-

binding protein families, including Abp1p, drebrins [23],

twinfilin [24] and coactosin [25] (Figure 3). The ADF/cofil-

ins themselves vary in size from 113 amino acids

(E. tenella) to 168 amino acids (both Xenopus laevis pro-

teins). Despite the considerable variation in sequence and

size across the ADF/cofilin family, the structures so far

available (Table 2, Figure 2a) show that they share a

remarkably conserved fold. The main actin-binding struc-

ture of the ADF/cofilins is the long � helix starting, for

example in human destrin, at Leu111 and terminating at

Phe128. Most ADF/cofilins contain at least one nuclear-

localization signal (NLS) close to the amino terminus.

Interestingly, even those ADF/cofilins, such as those of

Dictyostelium and Zea mays, that lack the classic bipartite

NLS can still be induced to enter the nucleus when the cells

are treated with either 10% dimethylsulfoxide [22] or

cytochalasin D [26]. Many ADF/cofilins are known to asso-

ciate with the phospholipid phosphatidylinositol-4,5-bis-

phosphate (PIP2) [16,27,28], and a short sequence

(Trp100-Met115; see Figure 2) has been identified that is

important for binding to both actin and PIP2 [29]. The

analogous region of Acanthamoeba actophorin also con-

tains overlapping sites for both actin and PIP2, explaining

the competition observed between the two ligands [30]. 

Localization and function
Subcellular localization
ADF/cofilins are usually localized in parts of the cell where

there is a high turnover of actin filaments, such as the

6 Genome Biology Vol 3 No 5 Maciver and Hussey

Figure 3
Relationships of ADF/cofilins with other actin-binding proteins. The
ADF/cofilins are composed of a single fold (the ADF homology domain),
which has sequence similarity with a domain found in drebrins, coactosin,
twinfilin and Abp1p. It is not yet certain if the fold of these two domains
is similar. The fold of the ADF homology domain is similar to a domain
found in the gelsolin family (the ‘gelsolin fold’), despite very low sequence
similarity between the two.
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leading edge of moving animal cells [16,31-33] and the

growing tips of plant cells [26]. The main activity of

ADF/cofilins has been found from in vitro experiments to be

to increase actin-filament turnover [5,34,35]. They accom-

plish this by severing actin filaments and increasing the rate

at which actin monomers leave the pointed end of actin fila-

ments (see below). The rate at which actin filaments depoly-

merize is the rate-dependent step in the overall turnover of

filaments that comes about as cells move forwards [36]. Cells

lacking cofilin have impaired locomotion [37], and those

over-expressing cofilins are more motile [38]. The effects are

specific to certain types of actin filaments: older filaments

(those at the base of leading lamellae) are ‘marked’ for

turnover; the mark arises because they tend to contain more

ADP-actin monomers and it is with these that the ADF/cofil-

ins preferentially interact [34,35]. ADF/cofilins are also nec-

essary for cytokinesis, depolymerizing the contractile ring

between daughter cells as it contracts. ADF/cofilins localize

to the contractile ring [39], and cells lacking ADF/cofilins

are defective in cytokinesis [11]. 

In addition to their role in microfilament recycling,

ADF/cofilins are also found in actin-rich, spicule-like rods

found in stressed cells, in both the cytoplasm and the

nucleus [26,40]. ADF/cofilins are also targeted to the

nucleus upon heat shock and chemical stress. It may be that

actin is taken into the nucleus in this manner so that a pool

of tightly packed actin is protected from denaturation, and is

then available after the stress is removed. ADF is known to

inhibit actin denaturation, supporting this hypothesis [41]. 

The localization of ADF/cofilins in plant cells is broadly

similar to that in animal and protist cells - they are primarily

concentrated in regions rich in dynamic actin structures -

but pollen and vegetative ADFs appear to have different

properties. Pollen ADF has been seen to bind filamentous

(F-) actin in vivo in mature pollen, dehydrated pollen and at

adhesions between the tip of the pollen-tube and an adjacent

substrate. Taken together with the fact that lily pollen ADF

has an inefficient actin-depolymerizing activity, these data

suggest that pollen ADFs serve to bind and remodel F-actin

structures, presumably in cooperation with other actin-

binding proteins [42]. In contrast, given that the maize vege-

tative ZmADF3 locates to the tip of growing root-hair cells, is

not seen to co-localize with F-actin in vivo and has an effec-

tive actin-depolymerizing activity, its principal role appears

to be to increase the turnover of actin filaments. In root-hair

cells, the effect of increased actin dynamics at the hair tip

would be to promote root-hair growth [26]. 

Expression
In vertebrates, a single ADF gene is expressed in most tissues

[32], and ADF tends to have a reciprocal pattern of expression

compared with the cofilins, with either the cofilins (generally)

or ADF being more abundant. Both ADF and non-muscle

cofilin are abundant in brain, both expressed at very low levels

in liver and mature muscle [43]. The pattern of expression for

most of the AtADFs has yet to be determined, but AtADF1 and

AtADF4 are expressed in the vascular tissues in the entire

plant and AtADF5 is expressed at the tip of the root meristem

[15]. Dictyostelium Cofilin-2 is expressed specifically at the

aggregation stage of Dictyostelium development. 

Function
The ADF/cofilins appear to have multiple functions, and this

is reflected in their very complex association with

monomeric and filamentous actin. They depolymerize actin

filaments during, for example, cytokinesis [11,39], cell loco-

motion [36,37], and plant-cell elongation [26], in addition to

being involved in cellular stress responses [44] and patho-

logical situations [45]. ADF/cofilins are regulated by pH

[31,46,47], polyphosphoinositides [16,27,28,31], phosphory-

lation [48-51], nucleotides bound by actin [36] and the pres-

ence of other actin-binding proteins [52-54]. They are, so

far, unique among the actin-binding protein families in that

they alter the twist of the actin filament [55]. ADFs and cofil-

ins have very similar properties in vitro, but are present in

varying relative concentrations in cells and, where they

appear in the same cell as each other, interesting differences

in behavior have been noted [31]. Rather surprisingly, the

distribution of ADF but not cofilin is modulated by intracel-

lular pH in mouse cells.
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Table 2

ADF/cofilins for which structures are known

Protein name and source Method GenBank/SwissProt Reference Protein Data Bank Reference
accession number accession number

Human destrin (ADF) NMR P18282 [43] 1AK6/1AK7 [72]

Acanthamoeba castellanii 

actophorin Crystal P37167 [16] 1AHQ [73]

1CNU (phosphorylated form) [74]

S. cerevisiae Cof1 Crystal Q03048 [70] 1COF [75]

A. thaliana ADF1 Crystal AAC72407 1F7S [4]



The two ADF/cofilins encoded by the C. elegans unc-60

gene, UNC-60A and UNC-60B [10], have distinct actin-

binding properties, but understanding this is further compli-

cated by the discovery that UNC-60B behaves differently

with respect to its interaction with rabbit muscle actin and

actin from the nematode itself [56]. The most dramatic dif-

ference is that UNC-60A binds much more weakly to F-actin

at pH 7.0 than does UNC-60B [10]. The carboxy-terminal

domain of UNC-60B is essential in F-actin binding and it has

been postulated to constitute a second actin-binding site

[57]. The actin-binding properties of Drosophila Twinstar

[11] have not yet been characterized. 

Mechanism and regulation
The mechanism by which actin filaments are depolymerized

by ADF/cofilins has been controversial and the details are

still far from clear. Filaments are depolymerized by severing

and by an increase in the rate at which actin monomers fall

off the pointed end of the actin filament. Phosphorylation is

a principal regulator of ADF/cofilin function: ADF/cofilins

are phosphorylated on an amino-terminal serine (Ser3 in

human non-muscle cofilin) by LIM kinases 1 and 2, TESK 1

[58] and TESK 2 [59], and maize ADF3 is phosphorylated by

a calmodulin-like domain protein kinase [50,51]. Phospho-

rylation by all these kinases prevents ADF/cofilins from

binding actin (Figure 4). 

Many ADF/cofilins, including vertebrate ADF and cofilins

[28], Acanthamoeba actophorin [16], Zea mays ADF3 [27],

and Saccharomyces cerevisiae Cof1, have been found to

bind PIP2 and, to a lesser extent, phosphatidylinositol-4-

phosphate. Some of the actin-binding interfaces of

ADF/cofilins partially overlap with the binding site of PIP2

[30], explaining why PIP2 dissociates the actin-ADF/cofilin

complex. In turn, ADF/cofilins reciprocally affect the metab-

olism of the polyphosphoinositides. Vertebrate cofilins [29]

inhibit the hydrolysis of PIP2 by phospholipase C, as does

Zea mays ADF3 [27]. Binding of ADF/cofilins by PIP2, and

perhaps by ion channels, may help to localize ADF/cofilins

to the membrane, where they function to increase actin-fila-

ment turnover as well as to modulate PIP2 metabolism.

Both Acanthamoeba actophorin [60] and sea star depactin

[61] have been reported not to be pH-sensitive, although

they are in other respects typical ADF/cofilins. No obvious

relationship between sequence and pH sensitivity is yet
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Figure 4
The regulation of ADF/cofilins through kinase and other pathways. In many cell types, the LIM kinases regulate ADF/cofilin activity by phosphorylation.
LIM kinases are themselves activated by a host of upstream kinases including the Rho-activated kinase ROCK, Ca2+ and phospholipid-dependent kinase
protein kinase C and Rac-activated kinase PAK1, which are in turn activated by small G proteins or diacyglycerol (DAG). Phosphorylated ADF/cofilins do
not bind actin. Perhaps counterintuitively, the severing and depolymerization of actin filaments by ADF/cofilins is activated by phosphorylation, as this
leads to dissociation of ADF/cofilin from actin, leaving it free to sever and depolymerize actin once more after it is dephosphorylated by phosphatase
activity. Depolymerization would be increased further if ADF/cofilin phosphatase activity as well as LIM kinase activity were increased.
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apparent, and pH dependence has been reported for many

ADF/cofilins, including vertebrate ADF [41,47] and cofilins

[46], Arabidopsis thaliana ADF1 [34], Zea mays ADF3 [27],

and the ADF/cofilins of Saccharomyces cerevisiae [20],

Petunia hybrida [3], Triticum aestivum [14], and the acom-

plexan Toxoplasma gondii [17].

Frontiers
Recently, some of the detail of how ADF/cofilins fit into

various signaling cascades has come to light, and this contin-

ues to be a growing area of research. Another major task that

is awaited is the construction of a detailed structural picture

of how exactly ADF/cofilins bind and sever actin and

increase the monomer release rate. It is known that the

ADF/cofilins induce a remarkable (and so far unique)

increase in the twist of the actin filament, but it is controver-

sial how this is accomplished. One view is that ADF/cofilins

bind between the two longitudinally associated actin

monomers by binding a second actin-binding site [62], but

this is in disagreement with other models in which

ADF/cofilins are placed on the filament surface [63-65]. The

crystallographic solution of the structure of cofilin-saturated

actin filaments is an obvious but very ambitious goal that

would resolve these issues.
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