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Sensitivity and accuracy of high-
throughput metabarcoding 
methods for early detection of 
invasive fish species
Chelsea Hatzenbuhler1,2, John R. Kelly1, John Martinson3, Sara Okum2,4 & Erik Pilgrim4

High-throughput DNA metabarcoding has gained recognition as a potentially powerful tool for 
biomonitoring, including early detection of aquatic invasive species (AIS). DNA based techniques are 
advancing, but our understanding of the limits to detection for metabarcoding complex samples is 
inadequate. For detecting AIS at an early stage of invasion when the species is rare, accuracy at low 
detection limits is key. To evaluate the utility of metabarcoding in future fish community monitoring 
programs, we conducted several experiments to determine the sensitivity and accuracy of routine 
metabarcoding methods. Experimental mixes used larval fish tissue from multiple “common” species 
spiked with varying proportions of tissue from an additional “rare” species. Pyrosequencing of genetic 
marker, COI (cytochrome c oxidase subunit I) and subsequent sequence data analysis provided 
experimental evidence of low-level detection of the target “rare” species at biomass percentages as 
low as 0.02% of total sample biomass. Limits to detection varied interspecifically and were susceptible 
to amplification bias. Moreover, results showed some data processing methods can skew sequence-
based biodiversity measurements from corresponding relative biomass abundances and increase false 
absences. We suggest caution in interpreting presence/absence and relative abundance in larval fish 
assemblages until metabarcoding methods are optimized for accuracy and precision.

Aquatic invasive species (AIS) endanger the economic and ecological constitution of successfully colonized natu-
ral ecosystems. Ecological impacts resulting from increased predation1, parasitism2, interspecific competition1,3, 
or habitat disturbance4,5 associated with unchecked AIS populations often have negative economic consequences 
such as reduced native commercial sport and forage fish populations1,2,6,7 or industrial and recreational water 
use impairments accompanying AIS biofouling8,9. Despite extensive management efforts focused on preventing 
new introductions and controlling the spread of established populations AIS remain an enduring threat to many 
aquatic communities10,11. The continued spread of AIS has encouraged development of AIS early detection meth-
ods targeting invasion prone locations to detect new invaders during early stages of the invasion process when 
individuals are present at low abundance (rare) and the population is localized12,13. Nonetheless, “rare” can be 
hard to find and requirements for an adequate search can be costly. Moreover, detection errors can occur during 
sample collection or taxonomic identification in the field or lab and failing to detect a newly introduced species 
restricts our ability to manage burgeoning populations.

A practical early detection strategy balances the search effort with an acceptable amount of non-detection 
risk14,15 for a given detection probability. Developing a practical strategy involves quantifying detection limits 
and error related to the search and species identification/validation methods, as well as optimizing the entire 
process to increase detection efficiency. Typically, adult populations are monitored for early detection of invasive 
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fish species14, but monitoring larval fish communities may provide some benefits over adult surveillance because 
detecting new invaders in larval form would more strongly suggest the presence of a successfully reproducing 
population posing an imminent threat. Moreover, detection efficiencies may be gained through sampling the lar-
val life stage because larval fish are more abundant, may occupy different habitats, and may be less likely to avoid 
capture than their adult counterparts15,16. Traditional taxonomic identification of larval fishes, however, presents 
significant challenges for a practical and successful early detection program. The morphological ambiguities at the 
larval life stage impede the accurate, high-resolution classifications (i.e., species level)17–22 required to maintain a 
low probability of detection errors. Furthermore, sample processing and identification of numerous individuals 
creates a substantial delay between sample collection and completion of identifications which has major ram-
ifications for the “early detection” concept15,23,24. Due to the challenges associated with traditional taxonomic 
identification of larval fishes, monitoring larval fish communities for early detection of invasive fish species may 
only be practical if an alternative identification method is employed.

Advancements in molecular genetics diagnostics hold promise as an alternative to traditional morphological 
taxonomy in an AIS early detection strategy. High-throughput sequencing (HTS), or metabarcoding, enables 
simultaneous sequencing of a high-resolution genetic marker (DNA barcode) in many samples (multiplexing) pro-
viding a fast, and potentially cost-effective method for estimating biodiversity in multi-species assemblages25–27.  
Moreover, instrument sensitivity assessements conducted with marine and aquatic invertebrates28–30 demon-
strated HTS provides a means to accurately describe species richness, and the lowest limit of detection, for tested 
invertebrate communities, is very sensitive. Nonetheless, sample composition (e.g., life stage, relative abundances) 
can vary greatly within and between samples, which may influence the limits to detection. Furthermore, the 
HTS workflow is complex, comprising many factors that can influence detectability. Sample collection and pro-
cessing methods affect the quality of DNA extracted from the samples. Genetic marker selection, PCR design, 
and downstream sequence data processing methods influence taxonomic resolution and accuracy of the final 
biodiversity estimates31–35. For example, data processing methods used to remove low quality and potentially 
erroneous, or biologically irrelevant sequences from final sequence biodiversity estimates36 can exclude genetic 
signals represented by very few sequences (weak signals) despite biological relevance35. Weak signals may corre-
spond to a low abundance of starting material or ensue from differential barcode amplification (PCR bias) that 
can skew sequence biodiversity estimates from corresponding relative biomass abundances32,33. Extreme biases 
may increase non-detection risk for under-represented or rare taxa.

Although development of DNA based detection methods is progressing, our understanding of the limits 
to detection for metabarcoding complex samples is inadequate. Consequently the utility of high-throughput 
metabarcoding methods for AIS management, namely early detection monitoring remains in question. Using 
larval fish as a relevant life stage, we carried out several experiments designed to investigate the sensitivity and 
accuracy of metabarcoding methods commonly used to characterize composition of samples with a mixture of 
species from the larval fish community.

Methods
Experimental design.  Multi-species assemblages were constructed using whole tissue or biomass from 
larval fish categorized as “non-target” or “target” species to represent a common or rare presence, respectively. 
Species were primarily selected based on the availability of biomass in the field-collected samples from which 
we sourced our tissue for constructed samples. To limit sample matrix complexity selected species were from 
distinct families or genera, using specimens similar in size or developmental stage. A preliminary experiment was 
designed to define workflow processes that influence detectabilty. Preliminary results directed design and method 
modifications to improve detectability in the second experiment that aimed to assess detection limits in samples 
with differing degrees of species richness. To evaluate instrument sensitivity and accuracy, sequence biodiversity 
was compared to corresponding biomass relative abundances. Each design comprised three sample types, i) single 
species control, ii) Treatment 1 (T1) a proportionate mix of non-target biomass, target excluded, and iii) a suite 
of test mixes (Treatments 2–7; T2–T7). In T2–T7 non-target matrices with 1:1 biomass ratios between taxa were 
spiked with varying proportions of biomass from an additional target species, the percentage of target biomass in 
each treatment reflected the probability of detecting the target species (e.g., target biomass is 1% of total sample 
mass, so theoretical probability of detection is 1 in 100).

Trial A.  The target selected for our preliminary experiment (Trial A) was Proterorhinus semilunaris (tar-
get A) and four species constituted the non-target tissue mix in each treatment (Table 1). Species richness 
(S =​ non-target +​ target taxa, S =​ 5) mirrored average richness observed in natural community samples.

Trial B.  Relative to Trial A, our second experiment (Trial B) was designed to evaluate instrument sensitivity to 
rare biomass for a restricted range of detection probabilities using a different target species, Percopsis omiscomay-
cus (target B) in three subsets constructed with low (S =​ 2), intermediate (S =​ 5) or high (S =​ 11) species richness 
(Table 2).

Larval fish collection and sample construction.  Larval fish were collected from the St. Louis River estu-
ary and Duluth-Superior harbor (i.e., Laurentian Great Lakes coastal waters) during June and July 2013. Larval 
specimens were preserved in 95% non-denatured ethanol at the time of collection then stored at or below 4 °C37–

41. For all laboratory procedures, sample contamination was prevented by wearing sterile, disposable gloves and 
disinfecting the lab workspace, tools, and glassware between each use. Because of the challenges associated with 
identifying larval fish, we only selected species for our experiments that we could easily identify to species level 
with 100% confidence. After fish larvae were identified42, specimens from each species were pooled and identi-
fications were verified by a second taxonomist. To limit the potential for measurement error, pipettable tissue 
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homogenates were prepared from each species. Cryogenic grinding with mortar and pestle reduced pooled larvae 
into small pieces and cryogenic homogenates were desiccated in heat sterilized aluminum weigh pans39, weighed, 
transferred to a known volume of chilled (4 °C) Tris EDTA buffer, pH 8 and rotor-stator homogenized using the 
polytron stand homogenizer (POLYTRON PT-10735 Homogenizers). Equations used to calculate homogenate 
concentration and volume are given in Table 3. To construct samples, homogenate aliquots (±​0.00076 mg/μ​L) 
from each species were pipetted into 2 mL sterile polypropylene tubes and stored at −​20 °C until submitted into 
the sequencing workflow.

DNA sequencing.  Total genomic DNA was extracted according to the manufacturer’s instructions from 
larval fish mixes using the DNeasy Blood and Tissue kit (Qiagen) and normalized using sterile water to 10 ng 
template DNA/μ​L. The genetic marker was a 658 base pair (bp) section of the 5′​ end of the mtDNA protein cod-
ing gene, cytochrome c oxidase subunit I (COI), a standard DNA barcode for identifying fish species26,43,44. COI 
barcodes were PCR amplified using a universal fish primer cocktail with C_FishF1t1-C_FishR1t1 forward and 
reverse primers (including M13 tails to facilitate sequencing) at a ratio of 1:145. The PCRs using 20 ng template 
DNA, 4 μ​L 1X BSA, 2 μ​L 10X PCR buffer (Qiagen), 0.6 μ​L 25 mM MgCl2, 0.4 μ​L 10X dNTPs, 0.1 μ​L 10 mM Taq 
DNA polymerase (Qiagen), 0.5 μ​L of primer cocktail and sterile water for a final volume of 20 μ​L took place in 
a Bio-Rad thermocycler, initiated at 94 °C for 150 sec., then 35 cycles of 94 °C for 30 sec., 46 °C for 60 sec., and 
72 °C for 60 sec., before a final extension at 72 °C for 10 min. Five replicates were cycled for each sample and 
pooled prior to PCR product purification with QIAquick PCR Purification Kit (Qiagen). Amplified COI barcodes 
(amplicons) were quantified and normalized with the same methods used for genomic DNA.

Purified COI amplicons were prepped for pyrosequencing on the Roche GS-FLX+​ instrument per manufac-
turer’s instructions for MID tag multiplexing and amplicon library building, then centrifuged with sequencing 
reaction enzymes onto a 70 ×​ 75 PicoTiter plate (PTP). Samples in each trial were multiplexed using ten 10 bp 
MID tags and a multi-region plate gasket. Trial A samples were sequenced on two separate 454 runs placing 18 
and 4 samples on 8 and 4 region plates, respectively. In total, 79 samples constructed for Trial B were sequenced 
on a single run using a 16 region plate. The PTP layouts were designed to provide adequate sequencing depth, 
meaning the probability of detecting the rare biomass (target species) in a given sample was at least 10X greater 
than the manufacturer’s lowest estimated number of sequences (reads) per sample (e.g., P(Dt) =​ 1 in 100, est. 
reads ≥​1000).

Sequence data processing and analysis.  The sequence data output was demultiplexed to correspond-
ing treatment/replicate IDs, then MID tags and primers were trimmed from COI barcodes36. Concurrent with 
demultiplexing and primer/tag trimming, sequences were quality filtered based on the quality score (Phred score) 
assigned to each nucleotide base indicating the accuracy of each base call, a process that determines nucleotide 
sequences from signal peaks generated during pyrosequencing. A sliding window test of quality scores was used 
to filter for quality. Sequences were trimmed from the 3′​ end to the point where every run of 100 consecutive 
bases had an average quality score ≥​20 (99% accuracy). After trimming, sequences with a total length <​200 
bases were discarded from further processing36. The remaining acceptable sequences were de novo clustered with 
UCLUST software at ≥​97% base similarity into operational taxonomic units (OTUs). The seed (first) sequence 
of each OTU cluster was selected to represent the cluster46. Representative sequences were assigned taxonomy 
and screened to identify potential chimeric sequences that might have been produced during PCR36. Taxonomy 
was assigned based on a percent match criteria threshold of >​90% base similarity to reference sequences. Our 
reference library database consisted of publicly available COI sequences downloaded from the Barcode of Life 
Database (BOLD)47 augmented by COI voucher sequences obtained from adult fish fin clips from specimens col-
lected from the Laurentian Great Lakes basin and identified by the U.S. EPA Duluth, MN laboratory, the U.S. Fish 
and Wildlife Service, Ashland WI office, and the Minnesota and Wisconsin Department of Natural Resources.

After assigning taxonomic identities to the unknown COI barcodes, our knowledge of sample composition 
allowed us to set filtering thresholds to identify and isolate potential false positives resulting from sequencing 
errors or the presence of small amounts of extracellular DNA shed from fish species present in the bulk tissue 
samples from which we sourced the fish tissue for constructing our samples. Filtering thresholds were set based 
on the expected values (the probability of sequence alignment occurring by chance, reflecting the biological rel-
evance of taxonomic assignments) and overall signal strength (number of clustered sequences) of representative 

Treatment

Target Non-target

Proterorhinus 
semilunaris

Notropis 
hudsonius

Ambloplites 
rupestris

Esox 
lucius

Gasterosteus 
aculeatus

T1 n/a 25.00 25.00 25.00 25.00

T2 20.00 20.00 20.00 20.00 20.00

T3 0.10 24.98 24.98 24.98 24.98

T4 0.04 24.99 24.99 24.99 24.99

T5 0.02 24.995 24.995 24.995 24.995

Table 1.   Summary of experimental design for Trial A. Tissue homogenates for each species were mixed 
prior to DNA extractions to achieve the following biomass ratios. Approximate relative biomass abundance per 
taxon as a percent of total sample biomass for single species controls (not listed) and treatment replicates (single 
species control, n =​ 1 per species; T1, nreplicate =​ 1; T2–T5 nreplicate =​ 4; ntotal =​ 22). Common names for taxa from 
left to right; Tubenose Goby, Spottail Shiner, Rock Bass, Northern Pike, Three Spine Stickleback.
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OTUs associated with a false presence or low-resolution taxonomic classification (e.g., taxon not used to con-
struct samples, or ‘Perciformes spp.’, respectively). Genetic signals below threshold values were filtered from the 
data set. The limits to detection were evaluated by comparing final sequence biodiversity estimates to constructed 

Richness 
treatment

Target Non-target

Percopsis 
omiscomaycus

Catostomus 
spp.

Perca 
flavescens

Etheostoma 
nigrum

Proterorhinus 
semilunaris

Micropterus 
salmoides

Ambloplites 
rupestris

Percina 
caprodes

Osmerus 
mordax

Notemigonus 
crysoleucas

Esox 
lucius

Low

T1 n/a n/a

T2 50 50

T3 1 99

T4 0.33 99.67

T5 0.167 99.83

T6 0.125 99.88

Intermediate

T1 n/a 25 25 25 25

T2 20 20 20 20 20

T3 1 24.75 24.75 24.75 24.75

T4 0.33 24.92 24.92 24.92 24.92

T5 0.167 24.96 24.96 24.96 24.96

T6 0.125 24.97 24.97 24.97 24.97

T7 0.05 24.99 24.99 24.99 24.99

High

T1 n/a 10 10 10 10 10 10 10 10 10 10

T2 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09

T3 1 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9

T4 0.33 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97

T5 0.167 9.98 9.98 9.98 9.98 9.98 9.98 9.98 9.98 9.98 9.98

T6 0.125 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99

Table 2.   Summary of experimental design. Trial B richness (S) subsets with low (S =​ 2) intermediate (S =​ 5) 
and high (S =​ 11) species richness. Approximate relative biomass abundance per taxon as a percent of total 
sample biomass for single species controls (not listed) and treatment replicates (single species control, n =​ 1 per 
species; T1, nreplicate =​ 2; T2–T7 nreplicate =​ 4; ntotal =​ 79). Common names for taxa from left to right; Troutperch, 
White & Longnose Suckers, Yellow Perch, Johnny Darter, Tubenose Goby, Largemouth Bass, Rock Bass, 
Logperch, Rainbow Smelt, Golden Shiner, Northern Pike.
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Table 3.   Equations (eq.) used to calculate (eq. 1) tissue homogenate (H, mg
uL

) concentrations and (eq. 2, 3) 
homogenate volumes (VH, μL) for non-target (nt) and target (t), respectively. For eq. 1, Ttissue is the total mass 
of cryogenic tissue homogenate used from a single species. For eq. 2 total sample mass (Tmass) and number of 
non-target taxa (Snt) and for eq. 3 (Tmass) and probability of detection for target species P(Dt) at the 
corresponding ratio of target mass to total sample mass.
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biomass based biodiversity for all replicates. To evaluate how our filtering application affected observed detection 
limits, data comparisons were made before and after setting filtering thresholds.

Experimental Results
Analysis of COI sequence biodiversity in constructed samples (Trial A).  Pyrosequencing of COI 
markers generated 346,507 sequences on the eight region plate and 371,608 sequences on the four region plate 
after filtering for quality and removing PCR artifacts from sequence data. For the combined datasets 99.7% of 
the sequences were assigned to species used to construct the mixes and thus expected in the various treatments. 
Average percent base similarity of our sequences to reference sequences used to assign taxonomy was 97.2%. 
Genetic signals for expected species were observed for each single species control and in T1, and T2 replicates 
constructed with equal biomass proportions between species (Table 1). COI sequences for target A, P. semilu-
naris were recovered in 50% and 25% of replicates with target biomass representing 0.1% (T3) and 0.02% (T5) 
of total biomass, respectively and positive detection was attributed to 1–5 sequences per hit. Signal for target A 
was not observed in T4 replicates where target biomass represented 0.04% of the total biomass. COI barcodes for 
common, non-target species each with an initial biomass ≈​ 24.99% were recovered in all replicates constructed 
for T3–T5.

DNA based biodiversity estimates in treatments with ≤​0.1% target biomass (T1, T3, T4, T5; Fig. 1) did not 
correspond to constructed biodiversity. Moreover, considerable variation between genetic signal strength and 
corresponding biomass proportion was observed for some non-targets in the same treatments with lower rel-
ative abundance of target biomass (Fig. 1). Most notably, the signal for non-target N. hudsonius represented 
a much larger proportion of sequences (52.73%) than biomass (24.96%) and greatly outnumbered sequences 
recovered for the other non-targets E. lucius, G. aculeatus and A. rupestris (Fig. 1). Disparity was also observed in 
T2 replicates constructed with 20% biomass from each species (Fig. 1), where target A represented 4.30% of total 
sequences, and N. hudsonius again made up a disproportionately large percentage (43.5%) of the total sequences.

In total, 2.9% of Trial A sequences (combined sequencing runs) with expected taxonomic classification fell 
below filtering thresholds set to identify potential false presences. After filtering, signal for target A was reduced 
by 0.03% (40 sequences) in T2 and detectability did not change. In replicates with target biomass equal to 0.1% 
(T3) and 0.02% (T5) of total sample mass, target signal fell below filtering threshold values and was not detected 
in these treatments after filtering. Detection of non-target species did not change after filtering and relative signal 
strength for non-target species varied from pre-filtered signals by ±​1% per species.

Analysis of COI sequence biodiversity in constructed samples with varying degrees of species 
richness (Trial B).  Trial B was designed to compare the limits to detection between samples constructed 
with varying degrees of species richness (S) to simulate a portion of the inherent variation observed in natural 
community samples. Ten of the eleven taxa used to construct test mixes were positively detected in corresponding 

Figure 1.  Metabarcoding results from larval fish tissue samples constructed for Trial A before setting false 
presence filtering thresholds. The observed distribution of genetic signals as the percent of total sequences 
(y-axis) recovered for species in Treatments 1–5 (x –axis; T1, n =​ 1; T2–T5, nreplicate =​ 4; ntotal =​ 17) constructed 
with equal proportions of biomass per non-target species (T1–T5) and spiked with decreasing amounts of target 
(P. semilunaris) tissue (T2–T5). The genetic signal for the target taxon was observed in two replicates in T3, one 
replicate in T5 and was not present in T4 replicates.
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individual controls. Initially, genetic signal for non-target M. salmoides was not detected in its individual control 
and was only observed in 1 of 22 samples constructed with M. salmoides tissue. We re-assigned taxonomy to 
OTUs initially classified as ‘Perciformes spp.’ using the GenBank48 which resulted in signal amplification and 
positive detection of non-target M. salmoides. All reported results are from data after re-assigning taxonomy for 
M. salmoides.

In total, there were 270,053 COI sequences after filtering for quality and error of which 99.7% received the 
expected taxonomic classification. Average percent base similarity of our sequences to reference sequences used 
to assign taxonomy was 96.8%. Genetic signal for target B, P. omiscomaycus, was detected in all treatment repli-
cates spiked with target tissue in each richness subset constructed to simulate low (S =​ 2), intermediate (S =​ 5), 
and high (S =​ 11) species richness. Genetic signals and associated biomass percentage for each taxon were mark-
edly dissimilar in replicates constructed with proportionate biomass between all taxa in each richness subset 
(Fig. 2). Genetic signal for target B was considerably over-represented, with sequence percentages approximately 
2X, 5X and 9X greater than corresponding biomass percentages when richness was low, intermediate, and high, 
respectively (Fig. 2). Some non-target genetic signals were also substantially skewed from corresponding biomass 
percentages in intermediate and high richness subsets where target biomass was ≤​1% (Fig. 3).

Genetic signals for all non-target species were detected in all treatment replicates constructed with low and 
intermediate richness. In contrast, COI sequences were routinely recovered in all treatment replicates for only 
four of ten non-target species in treatment replicates constructed with high richness. The remaining non-target 
species were not detected in 36–95% of treatment replicates and 14 of the 26 total false absences occurred in T2 
replicates constructed with equal amounts of biomass from target and non-target taxa.

In total, 0.51% of sequences with expected taxonomic classification fell below filtering thresholds set to iden-
tify potential false presences. In contrast to target A, the additional filtering did not affect the lowest limit of 
detection for target B. After filtering, non-target relative signal strength varied only slightly from pre-filtered 
signals (≤ .0 604%) and detection rates for non-target signals did not change in treatments constructed with low 
and intermediate richness. In treatments with high richness, filtering resulted in signal loss and reduced detection 
rates for some non-target species; the overall occurrence of false absences associated with non-target species 
increased by 5% and the largest error rate increase (10%) occurred in T2.

Discussion
High throughput metabarcoding methods (HTS) have the capacity to provide a practical, and quicker alternative 
to traditional morphological identification25–27,30, but we must understand the associated detection limits before 
incorporating HTS into an early detection monitoring program. In principle, the failure to recover a genetic sig-
nal from a species known to be present in our experiments, by design, provides information about the limits to 
detection in metabarcoded samples. The main findings from our assessment of detection sensitivity and accuracy 
associated with metabarcoding experimentally constructed larval fish assemblages are that we can detect species 
with biomass percentages as low as 0.02% of total sample mass, but that detection limits varied interspecifically, 
and in some cases sequence ratios were considerably different from the corresponding biomass ratios. The signal 
observed for P. semilunaris was under-represented relative to other species when all were present with biomass of 
equal proportions in Trial A, T2 (Fig. 1) and also in all Trial B treatments constructed for subsets with intermedi-
ate richness (Figs 2b and 3a) and high richness (Figs 2c and 3b). In contrast, the signal for target B, P. omiscomay-
cus, was consistently over-represented relative to constructed biomass percentages and despite increased matrix 

Figure 2.  Distribution of genetic signals as the percent of total sequences recovered for each taxon (pie 
chart values) obtained from metabarcoded larval fish tissue samples constructed for Treatment 2 (T2) in 
Trial B subsets before setting false presence filtering thresholds. Panel (a) Low richness subset (nreplicate =​ 4). 
Panel (b) Intermediate richness subset (nreplicate =​ 4). Panel (c) High richness subset (nreplicate =​ 4). T2 replicates 
were constructed with equal proportions of biomass between the target (P. omiscomaycus) and all non-target 
species in each particular subset.
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complexity, we detected target B in all treatments. In this case, detection of rare biomass was likely improved 
by the favorable PCR bias exhibited toward target B. Furthermore, despite having an equal or greater biomass 
proportion relative to P. omiscomaycus, we were unable to recover signals for six of the ten non-target species in 
Trial B subset with high species richness, and when we did detect them, their signals were usually represented by 
very few sequences.

Although species composition was accurately determined for many metabarcoded samples, our ability to 
detect a species was impaired by factors that skewed genetic signal from corresponding biomass abundance. 
In some cases, the bias caused false absences, and thus an increase in non-detection. Although sequence data 
filtering methods aimed at eliminating biologically irrelevant sequences and reference sequence database com-
pleteness (e.g., the M. salmoides case mentioned earlier) contributed to this skew, differential COI amplification 
(PCR bias) expressed by each specific mix of taxa had the largest influence on detectability. Our results from Trial 
B suggest that increasing sample complexity by adding more species did not impede our ability to detect species 
that are rare in terms of biomass; however, because the degree of bias expressed by a species depends on the mix of 
species present (as our Trial B results show), we cannot generalize how bias impacts measures of species richness. 
Comparisons between Trial A and B results suggest the limits to detection vary interspecifically because PCR 
bias increased the risk of non-detection for some taxa. Therefore, instrument sensitivity to rare biomass may be 
understated and results for the lowest limits of detection, while valid for our specific experiments, are not abso-
lute for all sample mixtures. Instead, sensitivity and accuracy associated with metabarcoding will likely vary with 
species composition.

The accuracy of biodiversity measurements derived from metabarcoded samples can be improved if COI 
amplification bias is predictable or reducible. The primary source(s) of bias must be understood to determine if 
bias can be predicted and whether or not changes to the metabarcoding workflow can reduce the potential for 
biases to be expressed. Common sources of bias include PCR drift, interspecific variation in gene copy number, 
denaturation efficiency, and primer binding affinity31–33. In larval fish communities, the extent of variation in 
mitochondrial densities is unknown, however, we assumed there was some degree of variation and tried to limit 
it by constructing samples from specimens in similar developmental stages. PCR errors, denaturation efficiency, 
and primer binding affinity are artifacts of PCR. As our experimental design tried to limit bias due to differential 
COI densities, the PCR program used in our study was designed to limit bias originating from other sources as 
well. We attempted to reduce bias resulting from random amplification, a minimal contributor to bias by pooling 
multiple PCR replicates. Additionally, we could have reduced the total number of PCR cycles to limit differences 
in the copying rate32. Nonetheless, if PCR errors were the sole cause of bias in our samples, the similar signal skew 
observed across replicates would not have occurred. To limit bias associated with differential denaturation effi-
ciency, we included a reduced annealing temperature, and low template to reaction volume ratio, as has been used 
for multi-templates containing a mix of AT and GC rich genes. Comparisons between sequencing results from 
samples amplified using a single primer49 and the primer combination used in our study45 revealed intraspecific 

Figure 3.  Metabarcoding results from larval fish tissue samples constructed for Trial B subsets before 
setting false presence filtering thresholds. Panel (a) Intermediate richness subset (S =​ 5). Panel (b) High 
richness subset (S =​ 11). The genetic signal distribution as the percent of total sequences recovered for species in 
each treatment (T1, nreplicate =​ 2, T3–T7, nreplicate =​ 4; S =​ 5, ntotal =​ 22; S =​ 11, ntotal =​ 18) constructed with equal 
proportions of biomass per non-target species (T1, T3–T7) and spiked with decreasing amounts of target (P. 
omiscomaycus) tissue (T3–T7).
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differences in signal strength and detection error rates. The amplification bias observed in our study was likely 
caused by a species-specific response to the primer design.

Although HTS studies focused on diverse marine and freshwater invertebrate taxa28–30,50 have demonstrated 
barcode and primer selection influence the accuracy of species richness estimates in metabarcoded samples24, 
this effect has not been previously documented in larval fish assemblages. The COI barcode was the preferred 
option because species-level identifications18,51,52 and an existing reference database47 are essential elements to 
improve species detection probabilities using HTS for a non-targeted AIS early detection strategy. Nonetheless, 
the extreme amplification biases resulting in non-detection of some species in our study demonstrate the draw-
backs of using COI for species detection. Reducing the effects of bias and improving species detection probabili-
ties in metabarcoded samples, however, would also be possible in conjunction with other mitochondrial markers 
such as cytochrome b (cyt b), 12S rRNA, or 16S rRNA with multiple primers53. An additional advantage to using 
multiple markers is that measures of biodiversity can be compared across markers as a means of cross-verification 
of the taxa detected per sample54.

While differential amplification of the COI barcode considerably influenced detection error rates, we identi-
fied other areas within the HTS workflow that also need refining to reduce non-detection risk. From the initial 
results from Trial B (S =​ 11) we learned that reference sequence databases used to assign taxonomy to unknown 
barcode sequences can contain flaws including low resolution taxonomic classification or taxonomic synonyms 
and misspelled names that can cause detection errors. Therefore, the ability to detect is limited by the reference 
database used to assign taxonomy. Unlike PCR bias, detection errors associated with this factor are easily cor-
rected and libraries used in early detection assays should be revised to eliminate such flaws. In addition, sample 
collection, handling, processing and preservation methods should minimize the chance for DNA degradation 
and contamination to produce samples that yield high quality DNA. Currently, we have the tools and knowledge 
for the effective collection and preservation of larval fish samples but, we must ensure these methods are imple-
mented in the field and lab. Methods used in downstream processes such as the metabarcoding PTP layout, and 
parameter settings selected for bioinformatics processing can also affect the accuracy of sequencing results35. In 
our study, under-represented signals usually fell below filtering thresholds set to identify and isolate false pres-
ences. Similar methods used to define signal strength gradients and identify false presences in natural community 
samples with unknown biodiversity may be increasing the likelihood of non-detection of rare or negatively biased 
species. Recent studies confer additional support for this conclusion30–35, but a generalized approach to handling 
under-represented signals in the context of the rare species detection has yet to be developed.

Our study provides insight into the limits to detection associated with metabarcoding analysis of larval fish 
communities. This approach was sensitive enough to detect the presence of species with biomass as low as 0.02% 
and 0.05% of total sample mass for target A, P. semilunaris and target B, P. omiscomaycus, respectively. The 
observed lowest limits of detection are far from theoretical expectations based on the possible instrument plating 
layouts and corresponding estimated number of output sequences per sample. Given that the lowest theoretical 
detection limits were not tested in our study we may be able to detect species rarer than we reported. Moreover, 
our results indicated that PCR bias can skew genetic signals and increase non-detection risk, therefore, the limits 
to detection seem to be specific to each species and may vary with sample composition. However, detection limits 
may become more uniform between species if using better designed primers and multiple genetic markers to 
smooth the effects of PCR bias.

Though PCR bias and other challenges remain in the development of HTS for biomonitoring, the potential 
benefits of these molecular methods warrant continued investigation and experimentation to solve these prob-
lems. Incorporation of improved PCR primers, primer cocktails, and the use of multiple genetic markers has a 
strong chance of removing many PCR bias issues. Beyond improvements in lab techniques, the field of HTS is 
rapidly changing and growing, providing greater opportunities to test detection limits through increased depth of 
coverage and more accurate DNA sequencing chemistries. Databases of genetic information grow more quickly 
each year, thereby increasing the available genomic data for further development of new markers and new meth-
ods of analyzing metagenomic data sets. The field of environmental genomics is still quite young, but continues 
to create new avenues for applying genetic information to biomonitoring as long as methods are properly vetted 
and tested for environmental applications.
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