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AMPA receptors (AMPARs) are critical for mediating glutamatergic synaptic transmission
and plasticity, thus playing a major role in the molecular machinery underlying
cellular substrates of memory and learning. Their expression pattern, transport and
regulatory mechanisms have been extensively studied in the hippocampus, but their
functional properties in other brain regions remain poorly understood. Interestingly,
electrophysiological and molecular evidence has confirmed a prominent role of AMPARs
in the regulation of hypothalamic function. This review summarizes the existing evidence
on AMPAR-mediated transmission in the hypothalamus, where they are believed to
orchestrate the role of glutamatergic transmission in autonomous, neuroendocrine
function, body homeostasis, and social behavior.

Keywords: glutamatergic synapses, AMPAR-mediated synaptic transmission, AMPAR subunit switch, synaptic
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INTRODUCTION

Glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are
central to regulate excitatory synaptic transmission in the central nervous system (CNS). Theirs
characteristic fast kinetics differentiate them from the N-methyl-aspartate receptors (NMDARs),
allowing a rapid depolarization of the postsynaptic membrane and making possible the high-fidelity
propagation of electric signals between neuronal cells (Traynelis et al., 2010).

α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors are concentrated at the
postsynaptic membrane of excitatory synapses where are highly dynamic, moving in and out
of synapses in both a constitutive and an activity-dependent manner. Changes in their number,
subunit composition, post-translational modifications, and interaction with scaffolding and
accessory proteins modulate the postsynaptic content of AMPARs, which allows a rapid tight
control of the synaptic strength. These unique physiological properties make AMPARs a key
regulatory element of synaptic plasticity, the ability of synapses to modify their responses according
to the inputs they receive (recent reviews on this topic: Huganir and Nicoll, 2013; Herring and
Nicoll, 2016; Nicoll, 2017; Diering and Huganir, 2018). The vast majority of groundbreaking
studies on AMPAR structure, synthesis, trafficking, and function, have been performed in CA3-
CA1 hippocampal synapses, a fundamental circuit for memory and learning, and an ideal model
for structure-function studies (Neves et al., 2008). Furthermore, since long-term potentiation (LTP)
was firstly reported by Bliss and Lomo (1973), multiple forms of synaptic plasticity have been
described and most of them, despite its dependence on different receptor types or intracellular
signaling cascades, rely on the ability of AMPARs to rapidly move in and out of synapses (Huganir
and Nicoll, 2013; Herring and Nicoll, 2016; Nicoll, 2017; Diering and Huganir, 2018). However,
most studies assaying AMPAR function have focused on a reduced number of brain areas,
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predominantly regions associated with high-order functions such
as the hippocampus and the cortex, or midbrain areas involved
in reward and goal directed behaviors (reviewed in Huang et al.,
2009; Stuber et al., 2010; Lammel et al., 2014; Loweth et al., 2014;
Bellone et al., 2021). In contrast, studies on the role of AMPAR-
mediated transmission and plasticity in brain regions in control
of autonomous, homeostatic and endocrine functions are scarcer.
This lack in our knowledge prevents to attain a complete picture
of the role of AMPAR function in the whole array of neuronal
functions both high cognitive processes and, brain and body
homeostasis maintenance.

The hypothalamus is the main brain structure involved in
the regulation of hormone control due to its strong connection
to the pituitary gland (Ulrich-Lai and Herman, 2009; Le
Tissier et al., 2017). Embedded deep in the floor of the third
ventricle, the hypothalamus constitutes an intricate structure
comprised by distinct small nuclei of great cell heterogeneity.
These features have hindered the unambiguous identification of
hypothalamic synaptic and plasticity properties which are highly
influenced by glutamatergic transmission (Iremonger et al.,
2010), although many questions regarding glutamate receptors
expression, composition and function remain to be elucidated in
this brain area. This review summarizes the current knowledge
on AMPAR function in the hypothalamus, and contextualizes
it using the detailed mechanisms described in hippocampal
synapses. Recent advancements on this topic expand our current
view of the role of glutamatergic transmission and primarily
AMPARs, as major drivers of metabolic processes, sexual and
social behaviors, and emotional responses.

AMPAR STRUCTURE AND FUNCTION

AMPAR Structure
α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
receptors are tetrameric ion channels formed by the assembly
of homogenous or heterogeneous subunits constituted by
GluA1, GluA2, GluA3, and GluA4 (Greger and Mayer,
2019). At the structural level, each subunit is composed by
an extracellular domain, a transmembrane domain and an
intracellular domain. In addition, two genetic processes:
alternative splicing and RNA messenger edition, contribute to
the diversity of AMPARs.

The extracellular domain of the receptor contains two
important regions: The LIVBP (leucine/isoleucine/valine-
binding protein-like domain) N-terminal domain (NTD) and the
Ligand Binding domain (LBD). The NTD is the less understood
motif, but it is believed to contribute to the receptor assembly and
stability of specific receptor populations (Rossmann et al., 2011;
Sukumaran et al., 2011; Herguedas et al., 2016). In addition, the
NTD has been proposed to play a critical role in the contribution
of AMPARs to synaptic transmission and long-term plasticity
maintenance (Watson et al., 2017).

In contrast, the LBD has been extensively studied. This region
is composed by two segments oriented toward the extracellular
space and separated by the channel pore inserted in the plasma
membrane. These two fragments form the specific pocket for

glutamate sensing, which undergoes a fast conformational change
upon ligand binding (Sakakura et al., 2019). In addition, this
segment contains an alternatively spliced flip/flop exon and
an R/G editing site, which defines the kinetics of receptor
desensitization (Pei et al., 2009; Wen et al., 2017).

The transmembrane domain (TMD) is composed by four
membrane segments (M) named M1, M2, M3, and M4, which
constitute the channel pore and allow the entry of Na+ and to
a lesser extent Ca2+ trough receptors comprised by particular
subunits (Swanson et al., 1997; Cull-Candy et al., 2006; Isaac
et al., 2007; Liu and Zukin, 2007). The most conserved region
is formed by the four M3 helices which constitute the core
structure of the channel pore. The M3 helices are connected
by intracellular and extracellular loops linked to the LBD for
activation gating (Taverna et al., 2000; Moore et al., 2013). In
addition, the M4 segment is essential for subunit tetramerization,
and trafficking (Herguedas et al., 2013; Salussolia et al., 2013; Gan
et al., 2015, 2016; Greger et al., 2017). Furthermore, the M2 loop
contains a Q/R editing site that controls specific processes like the
retention of unedited subunits in the endoplasmic reticulum (ER)
(Greger et al., 2003).

Finally, the carboxyl-terminal intracellular domain (CTD)
located at the intracellular tail is the most variable domain
between subunits and spliced variants. This region is involved in
the regulation of receptor function including trafficking, synaptic
anchoring and stabilization due to interactions with signaling
complexes and postsynaptic scaffolds (Henley and Wilkinson,
2016; Díaz-Alonso and Nicoll, 2021). Most research efforts have
aimed to elucidate the role of the CTD region in subunit-
specific trafficking during basal and activity-dependent synaptic
transmission (Huganir and Nicoll, 2013; Henley and Wilkinson,
2016; Díaz-Alonso and Nicoll, 2021). These studies have yielded
controversial results, particularly in the case of the GluA1 CTD
whose essential role during LTP (Hayashi et al., 2000), has been
questioned by studies employing transgenic models and novel
strategies for in vivo molecular manipulation (Kim et al., 2005;
Granger et al., 2013; Díaz-Alonso et al., 2020).

α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
receptors are synthetized in the ER where inter-subunit
interactions allow the ensemble of the receptors at the ER plasma
membrane (Greger and Esteban, 2007; Greger et al., 2007;
Schwenk and Fakler, 2020). AMPARs are built in a serial process
that first involves the formation of dimers mainly determined
by the NTD, and the subsequent association of dimers into
tetramers driven by the arginine/glycine (R/G) editing site
(Opazo and Choquet, 2011).

The editing of the R/G and the glutamine/arginine (Q/R) sites
underlies the basis for the subunit composition of functional
receptors. In particular, the switch of the arginine R743 to
glycine in the LBD in any of the GluA1-GluA4 subunits
influences the homo/hetero dimerization possibilities of the
receptor (Greger et al., 2017). Interestingly, the edition of the
glutamine Q586 to arginine at the M2 segment of the TMD occurs
exclusively in GluA2 subunits, conferring the GluA2-containing
receptors with an additional positive charge in the channel pore
rendering it impermeable to Ca2+ (Seeburg, 1996; Seeburg and
Hartner, 2003). This edition process impacts many aspects of the
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biosynthesis, assembly and transport of the receptors (Sommer
et al., 1991; Greger et al., 2002, 2003; Wright and Vissel, 2012).

AMPAR physiology is further enriched by the diversity of
the GluA1-GluA4 subunits which may exist in two different
conformations determined by the incorporation of flip-flop
variants, being the flip versions more permissive to ion
entry upon glutamate binding (Seeburg and Hartner, 2003;
Coleman et al., 2006; Pei et al., 2009). The combination of
multiple checkpoints at the synthesis and post-transcriptional
levels results on a majority of GluA1/GluA2 or GluA3/GluA2-
containing AMPARs in the adult brain (Wenthold et al., 1996),
whereas GluA4-containing receptors, primarily GluA2/GluA4
heterodimers, are prominent during embryonic development to
be drastically reduced at early postnatal stages (Zhu et al., 2000).
In addition, Q/R unedited GluA2 subunits are steadily displaced
by Q/R edited GluA2 subunits to comprise 99% of the GluA2-
containing receptors in the mature brain (Monyer et al., 1991;
Pachernegg et al., 2015).

The exit of the receptor from the ER is a complex process with
multiple quality control steps, which involve the refinement of
the domains involved in glutamate binding, and the association
to signaling and scaffold proteins (Greger and Esteban, 2007;
Greger et al., 2007; Esteban, 2008; Parkinson and Hanley,
2018). Then, the receptors travel to the Golgi apparatus where
AMPARs undergo post-translational modifications influencing
their stabilization at the postsynaptic density, the modulation
of their function and kinetics and the activation of intracellular
signaling cascades that determines neuronal communication
and input integration (Greger et al., 2017). The receptors
travel through the trans-Golgi network and later enter into
the endosomal recycling system ready to be inserted into the
postsynaptic density (Hanley, 2010; Opazo and Choquet, 2011).
Once they reach the plasma membrane and during the whole
receptor life cycle, a variety of post-translational modifications
(Mao et al., 2011) will modulate their function by fast signaling
changes like phosphorylation, stability at the plasma membrane
by palmitoylation, recycling and maintenance by sumoylation
or protein degradation in an ubiquitin-dependent manner
(reviewed in Lu and Roche, 2012).

AMPAR Trafficking and Plasticity
Neural plasticity was observed for the first time by Terje Lomo
and Tim Bliss in 1973 (Bliss and Lomo, 1973) in the hippocampus
of anaesthetized rabbits, when they described how the delivery
of electrical activity at high frequency led to a robust and
long-lasting increase of the postsynaptic responses of those
cells receiving the stimulus, in a phenomenon known as long-
term potentiation (LTP). Almost two decades of the discovery
of LTP in the hippocampus, it was exposed that the reversal
process known as long-term depression (LTD) (Ito, 1989) was
also possible at the model CA3-CA1 synapse (Dudek and Bear,
1992a). The phenomenon of long-term plasticity, particularly
LTP, was soon regarded as a plausible cellular mechanism
for learning and memory, thus concentrating great efforts to
unveil the molecular underpinnings involved in the induction
and stabilization of long-term changes of synaptic strength.
Cumulative evidence over several decades of intensive research

has led to a prominent working hypothesis which postulates
AMPARs as the main player of the molecular changes occurring
during synaptic plasticity, largely due to their dynamic subunit
composition and trafficking properties (Huganir and Nicoll,
2013; Herring and Nicoll, 2016; Nicoll, 2017; Diering and
Huganir, 2018).

After the exit from the Golgi apparatus, AMPARs may
be driven to the plasma membrane at extra-synaptic sites to
later diffuse to the synaptic membrane or to be accumulated
in recycling compartments where can be further recycled or
incorporated at synaptic or peri-synaptic locations (Park et al.,
2004; Penn et al., 2017). Both trafficking pathways seem to be
regulated in an activity-dependent and subunit-specific manner
which highly influences the properties of synaptic transmission
and plasticity. In this regard, AMPARs containing short C-tails
like GluA2 and GluA3 seem more likely to traffic in and out of the
membrane in a constitutive manner, during a process that ensures
the maintenance of AMPARs at the postsynaptic membrane (Shi
et al., 2001). On the other hand, subunits exhibiting long C-tails
as in the case of GluA1 and GluA4 subunits, are accumulated
at early and recycling endosomes where they are available to be
rapidly recruited in an activity-dependent manner (Shi et al.,
2001). This complex scenario results in the fine regulation
of the receptor transport in which specific subunits can be
incorporated at distinct membrane locations at critical time
points (Diering and Huganir, 2018).

α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
receptor C-tails also modulate the binding to regulatory subunits
like TARPs or cornichons, transmembrane proteins that interact
with AMPARs, modulating channel conductance and facilitating
receptor biosynthesis and transport (Tomita et al., 2003;
Greger et al., 2017; Kamalova and Nakagawa, 2021). These
regulatory proteins are selectively targeted to plasma membrane
microdomains enriched with specific phosphoinositides (PIP),
which highly influence AMPAR localization. In this sense, the
balance of PIP3/PIP2 levels at the plasma membrane plays an
important role in receptor stability during plasticity. As such, the
increment of PIP3 levels favors AMPAR insertion and facilitates
LTP maintenance (Arendt et al., 2010) whereas reduced PIP3
levels lead to receptor endocytosis (Jurado et al., 2010b). In fact,
PI3K and PTEN, the two main regulators of PIP3/PIP2 levels
have been identified to play a critical function in plasticity events
(Man et al., 2003; Jurado et al., 2010b).

Although AMPARs are primarily synthetized at the somatic
ER, the required machinery for receptors biosynthesis has also
been found in dendrites, where local transduction and translation
rapidly occur in response to neuronal activity (Krug et al., 1984;
Steward and Schuman, 2001; Ju et al., 2004). During both somatic
and dendritic synthesis, receptors are transported through the
cellular cytoskeleton in a process that requires the participation
of motor proteins, either for constitutive recycling or activity-
driven transport. AMPARs are capable of interacting with the
microtubule-enriched cytoskeleton, predominantly present in
dendrites, through the C-tail PDZ domain which facilitates
the interaction with GRIP1, thought to act as a prominent
link to motor proteins (Setou et al., 2002). Other proteins
involved in the microtubular transportation of AMPARs are
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KIF1 (Shin et al., 2003), liprin-α (Hales et al., 2001) or GIT1
(Ko et al., 2003). Within dendritic spines, microtubules are
replaced by an actin-enriched cytoskeleton (Hanley, 2014), which
redirects the transport of the receptors to the plasma membrane.
This step involves a specific ensemble of scaffolding proteins
involving 4.1N, RIL or SAP9, motor proteins like Myo Vb
(Wang et al., 2008), Myo Va (Correia et al., 2008) and MyoVI
(Osterweil et al., 2005), and small GTPases from the Rab
family (Rab11, Rab8) (Brown et al., 2007) and its accessory
FIP proteins (Wang et al., 2008; Royo et al., 2019). Activity-
dependent insertion of receptors at the plasma membrane is
achieved by an exocytic process orchestrated by the interaction
of specific SNARE proteins (Jurado, 2014; Madrigal et al., 2019).
Synaptotagmin-1 and -7, complexin-2, syntaxin-3, or SNAP-47
have been shown to participate in the incorporation of AMPARs
to the plasma membrane in response to NMDAR activation
(Ahmad et al., 2012; Jurado et al., 2013; Wu et al., 2017). Once
at the plasma membrane, AMPARs can laterally diffuse until
being stabilized at postsynaptic regions through the interaction
with scaffolding proteins, primarily from the MAGUK family
(Membrane-Associated Guanylate Kinase) like PSD95 or PSD93,
via indirect interactions with auxiliary proteins such as TARPs
(Díaz-Alonso and Nicoll, 2021). Additionally, proteins involved
in the insertion of receptors like GRIP1 and NSF also participate
in AMPAR membrane stabilization (Braithwaite et al., 2002;
Greger et al., 2017; Bissen et al., 2019).

AMPAR removal from the postsynaptic membrane is
mediated by a classic clathrin-mediated endocytic process that
may occur in a constitutive or in an activity-dependent manner,
as it has been described during LTD induction (Malenka and
Bear, 2004). Although GluA2 subunits have been proposed to
be major drivers of receptor internalization, their exact role
is not yet fully understood. These subunits may facilitate the
interaction with drivers for protein endocytosis such as the
clathrin adaptor AP2 (Fiuza et al., 2017). A plausible hypothesis
proposes a mechanism in which AP2 competes with NSF for
receptor binding (Lee et al., 2002), driving endocytosis as a result
of an increase in the fraction of AP2 bound to the GluA2-PDZ
domain. In addition, AKAP150, PSD95, PKA, PICK1, and small
GTPases like Rab5 or Arf1 are also required in the constitutive
and activity dependent internalization of AMPARs (Beattie et al.,
2000; Brown et al., 2005; Bhattacharyya et al., 2009; Han et al.,
2009; Citri et al., 2010; Jurado et al., 2010a; Hanley, 2018; Hausser
and Schlett, 2019; Cheng et al., 2020).

After endocytosis, receptors traffic to early endosomes,
also known as sorting endosomes, and targeted to different
endosomal pathways to either enter the recycling system or
be degraded by lysosomal or proteasomal pathways (Parkinson
and Hanley, 2018). AMPARs sorting either involves entering
recycling endosomes to be inserted into the plasma membrane,
or be retrograde transported to the trans-Golgi network for
post-translational modification (Parkinson and Hanley, 2018).
On the other hand, receptors may be targeted for degradation
by ubiquitination (Widagdo et al., 2017), an enzymatic reaction
achieved by the coordinated and sequential action of the E1, E2,
and E3 proteins, which target specific receptors to lysosomes.
The proper balance of recycling and degradation pathways is

critical for regulating AMPAR number and determines synaptic
transmission and plasticity, particularly LTD maintenance
(Fernández-Monreal et al., 2012; Widagdo et al., 2015).

GLUTAMATERGIC TRANSMISSION IN
THE HYPOTHALAMUS

The hypothalamus acts as a central integrator of neuronal
and endocrine information controlling hormone secretion,
homeostatic functions, and shaping complex behaviors
such as social interactions (Saper and Lowell, 2014). The
hypothalamic system can be divided in three main regions:
periventricular, medial, and lateral in a coronal plane. These
regions are composed by small and dispersed neuronal
clusters that comprise distinct morphological and functional
nuclei such as the paraventricular nucleus (PVN), supraoptic
nucleus (SON), suprachiasmatic nucleus (SCN), dorsomedial
hypothalamus (DMH), ventromedial hypothalamus (VMH),
lateral hypothalamus (LH), the arcuate nucleus (ARC) and
the retrochiasmatic area (RHC). These nuclei are highly
interconnected providing a communication hub between the
CNS, the autonomic nervous system and the endocrine system.

Arguably, the PVN and the SON are among the most studied
hypothalamic nuclei mainly due to their prominent involvement
in the hypothalamic-neurohypophysial axis as major sources of
oxytocin (OXT) and arginine-vasopressin (AVP) (Swanson and
Sawchenko, 1983; Brown, 2016; Qin et al., 2018). Neurons in
hypothalamic regions are classically categorized in magnocellular
or parvocellular, with specific functional and morphological
features (Swanson and Sawchenko, 1983; Luther and Tasker,
2000; Luther et al., 2002; Tasker et al., 2020). The magnocellular
system is formed by large neurons that produce OXT or
AVP mainly released to the peripheral nervous system at
the level of the pituitary gland. Conversely, the parvocellular
system is composed by smaller neurons primarily connected
to the CNS, the brainstem and the spinal cord (Swanson and
Sawchenko, 1983). However, new advancements on anatomical
and genetic techniques have enabled to revisit the connectivity
and functional properties of magno and parvocellular neurons
(Althammer and Grinevich, 2017). A recent study revealed that
oxytocinergic magnocellular neurons can innervate forebrain
areas like the central amygdala (Knobloch et al., 2012),
and SON oxytocinergic parvocellular cells were observed to
directly innervate magnocellular neurons (Eliava et al., 2016).
Furthermore, two studies by Romanov et al. (2017) and Xiao
et al. (2017) reported distinct types of oxytocinergic neurons,
according to their expression of genetic markers and ability to
modulate dopaminergic function, suggesting that the classical
cellular classification in magno and parvocellular neurons needs
to be reconsidered.

Although, the hypothalamus is mainly recognized as a
neuropeptidergic hub, communication among hypothalamic
nuclei is greatly facilitated by glutamatergic-mediated
transmission (Van Den Pol et al., 1990; Meeker et al., 1993,
1994a; Van den Pol and Trombley, 1993; Brann, 1995;
Hrabovszky and Liposits, 2008; Iremonger et al., 2010). However,

Frontiers in Synaptic Neuroscience | www.frontiersin.org 4 January 2022 | Volume 14 | Article 833449

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


fnsyn-14-833449 January 29, 2022 Time: 12:50 # 5

Royo et al. AMPAR Function in the Hypothalamus

the properties of excitatory transmission and plasticity
in this brain area has been scarcely studied in contrast to
the hippocampus.

AMPARs and NMDARs Expression in
Hypothalamic Nuclei
Classical in situ hybridization studies in the rat brain revealed
widespread expression of AMPA, kainate, and NMDA receptor
mRNA in the hypothalamus, at similar levels than in the
cortex and the hippocampus (Van Den Pol et al., 1994;
Meeker et al., 1994a; Herman et al., 2000; Eyigor et al.,
2001; Ziegler et al., 2005). The role of glutamate-mediated
transmission all along the hypothalamus has been further
supported by receptor autoradiography, electrophysiology, and
calcium imaging experiments which demonstrated distinct
intracellular calcium dynamics in response to different glutamate
receptor agonists (Stern et al., 1999).

A detailed map of glutamate receptors expression across the
hypothalamus has been carried out in two different animal
models: rat and guinea pig. In the rat hypothalamus, Eyigor and
colleagues investigated the expression of ionotropic glutamate
receptors by in situ hybridization detecting high levels of GluA1,
GluA2, GluK2, GluN1, GluN2A, and GluN2B across the different
hypothalamic nuclei (Eyigor et al., 2001). GluA1 and GluA2
subunits predominance in the rat hypothalamus differentiated
from the observations of Waremburg and colleagues in the
guinea pig hypothalamus. In this case, the predominant subunits
were GluA2 and GluA3 and to a lesser extent GluA1, whereas
GluA4 immunoreactivity was very low in all the researched
regions (Warembourg and Leroy, 2002). Furthermore, the
mandatory NMDAR subunit, GluNA1 was detected throughout
the rat hypothalamus (Van Den Pol et al., 1994; Ziegler et al.,
2005). Pioneer histological studies also reported low to moderate
expression of group I metabotropic glutamate receptors (mGluR1
and mGluR5) in hypothalamic neurons (van den Pol, 1994; Van
Den Pol et al., 1994; Kocsis et al., 1998).

Interestingly, AMPAR subunits seem to exhibit region- and
cell- specific expression patterns (Figure 1). As such, GluA1/2/4
are abundant at preoptic areas, whereas at the tuberal level
(e.g., ventromedial and dorsomedial nuclei) the higher expression
corresponds to GluA1/2/3 subunits. Furthermore, GluA1 and
GluA2-containing receptors are predominant in the mammillary
nuclei, where GluA3 and GluA4 subunits appear at lower
levels (Van Den Pol et al., 1994). Taking into consideration
that subunit composition is critical for AMPAR functionality,
influencing multiple aspects of their biology from biosynthesis,
transport, kinetics, to protein interactions, region- and cell-
specific expression of glutamate receptors suggests multiple
modes of glutamatergic transmission in the hypothalamus,
which may underlie and modulate its various central and
neuroendocrine functions (Brann, 1995).

AMPAR- and NMDAR- Mediated
Transmission in Hypothalamic Neurons
As aforementioned, hypothalamic function is highly influenced
by glutamatergic transmission (Van Den Pol et al., 1990; Boudaba

et al., 1997; Marty et al., 2011). As such, OXT- and AVP -
expressing cells, located in the SON and PVN nuclei, receive
dense glutamatergic innervation (Van Den Pol et al., 1990;
Meeker et al., 1993) and express both postsynaptic AMPARs
and NMDARs (Gribkoff and Dudek, 1990; Gribkoff, 1991;
Wuarin and Dudek, 1993; Yang et al., 1995) which are believed
to influence their firing patterns and ability to release OXT
and AVP. Pulsatile hormone release involves secretion events
which follow regular temporal patterns achieved by bursting
synchronization (Poulain and Wakerley, 1982; Belin and Moos,
1986). Bursting synchronization is differentially regulated in
hypothalamic magnocellular and parvocellular neuroendocrine
cells (Eliava et al., 2016; Xiao et al., 2017; Lewis et al., 2020)
consistent with their distinct expression of voltage gated ionic
channels, permeable to either Ca2+ or K+ (Luther and Tasker,
2000). As such, AVP neurons have been shown to transition
from slow and irregular patterns of activity to a phasic bursting,
consistent with burst and inter-burst intervals of 20-30 sec,
whereas OXT neurons commonly transition from irregular to
continuous firing patterns (Dyball et al., 1991; Tasker and
Dudek, 1991). The generation of different activity patterns,
although highly dependent on intrinsic excitability properties,
is also determined by glutamatergic synaptic inputs (Armstrong
et al., 2010). A prominent example are the SON magnocellular
neurons, which receive multiple excitatory inputs from the
organum vasculosum lateral terminalis, olfactory nuclei, and the
dorsal hypothalamus integrated by the activation of GluA1-4-
containing AMPARs (Petralia and Wenthold, 1992; Ginsberg
et al., 1995). Indeed, these neurons show linear current-voltage
relations, and are capable of eliciting fast action potentials (Tasker
and Dudek, 1991) which rapidly adapt to meet the requirements
of hormone release.

Moreover, hormonal secretion at neurohypophysial terminals
is largely regulated by glutamatergic activity onto both, OXT and
AVP magnocellular neurons. In vivo studies have shown that
bursting activity of magnocellular neurons promotes OXT release
required for lactation in a NMDAR and AMPAR-dependent
manner (Hu and Bourque, 1992; Lambert et al., 1993; Parker and
Crowley, 1993; Moos et al., 1997). Similar to OXT cells, AVP
neurons unsynchronized phasic activity (Poulain and Wakerley,
1982) requires NMDARs activation (Nissen et al., 1994;
Moos et al., 1997). Interestingly, electrophysiological studies
in rodent models (Stern et al., 1999; Luther and Tasker, 2000;
Eliava et al., 2016; Xiao et al., 2017; Lewis et al., 2020)
identified that OXT neurons in the SON displayed larger
AMPAR-mediated miniature EPSCs (mEPSCs) and faster decay
kinetics than AVP neurons (Stern et al., 1999). In both cell
types, AMPAR-mediated synaptic responses showed inward
rectification, although this feature was more pronounced in OXT
neurons, which also displayed larger calcium permeability, likely
due to a low expression of GluA2-containing receptors in these
cells (Stern et al., 1999).

Even though early in vivo work suggested NMDAR
contribution to synaptic responses was larger in AVP neurons
and practically inexistent in OXT neurons (Nissen et al., 1994,
1995; Yang et al., 1994; Richardson and Wakerley, 1997), later
ex vivo studies identified clear NMDAR-mediated currents in
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FIGURE 1 | AMPAR subunit distribution across distinct hypothalamic nuclei in the rat brain. (A) Coronal plane of the hypothalamus showing the different
hypothalamic regions. PVN = paraventricular nucleus; DMH = dorsomedial hypothalamus; VMH = ventromedial hypothalamus; LH = lateral hypothalamus;
SON = supraoptic nucleus; PeVN = periventricular nucleus; SCN = suprachiasmatic nucleus; ARC = arcuate nucleus. (B) Sagittal plane of hypothalamic nuclei.
AMPAR subunit abundance is represented for each nucleus according to available literature in the rat brain (Van Den Pol et al., 1994; Eyigor et al., 2001). Detailed
information regarding AMPAR subunit abundance in magno and parvocellular neurons is only available for the PVN (Herman et al., 2000).

OXT neurons (Stern et al., 1999). Interestingly, NMDARs have
been shown to inhibit OXT release in the posterior pituitary
while, a combination of AMPARs and mGluRs activation
promotes somatodendritic OXT release (Pampillo et al., 2001).
Although the molecular details underlying these differences
remain to be elucidated, cell-specific glutamatergic modulation
of hypothalamic neurons may provide hypothalamic circuits
with the ability to display various firing patterns in response
to similar physiological stimuli, likely through a mechanism
influenced by differences in AMPAR and NMDAR subunit
composition in both OXT and AVP neurons, as it has been
shown in principal and inhibitory neurons in other brain regions
(Geiger et al., 1995).

Hypothalamic Plasticity
The functional and molecular properties of glutamatergic
plasticity in the hypothalamus have been understudied (Le
Tissier et al., 2017) in comparison to other brain areas, such
as the hippocampus. The heterogeneous composition of the
hypothalamus, comprised by various cell types embedded in
intricate nuclei lacking a laminar organization, posed major
technical challenges that are now beginning to be overcome
by novel circuit and functional mapping strategies as well as
cell-specific genetic manipulations. Furthermore, the synaptic

properties of hypothalamic neurons seem to differ from cells
in other areas preventing a straightforward implementation of
traditional plasticity protocols. As such, glutamate transmission
onto PVN neurons exhibit short-term depression in response
to high frequency stimulation (greater than 2 Hz), suggesting
that glutamatergic transmission in the hypothalamus may
shows higher fidelity at lower rates of synaptic activity
(Marty et al., 2011). This effect was described as a mostly
presynaptic phenomenon involving glutamate vesicle depletion,
which reduced transmission efficacy upon high frequency
stimulation (Marty et al., 2011). Although not completely
definitive, these findings strongly suggest that high frequency
protocols, classically used to elicit long-term potentiation
in the hippocampus, may result in synaptic depression in
the hypothalamus.

Similarly, a form of presynaptic short-term potentiation has
been observed in Agouti related protein (AgRP)-expressing cells
and propio-melanocortin (POMC) neurons, from the arcuate
nucleus, which regulate body weight and appetite. These neurons
are extremely efficient at synaptic integration, coordinating
hormonal signals and excitatory synaptic inputs in order to
modulate neural firing (Branco et al., 2016). As such, different
types of short-time plasticity have been described during food
deprivation in both AgRP and POMC neurons. On one hand,
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AgRP neurons have been shown to exhibit a short-term type
of plasticity which involves presynaptic positive feedback of
AMP-activated protein kinases (Yang et al., 2011), which in
turn results in the increase of excitatory input onto AgRP
neurons determining their activation during periods of fasting.
Interestingly, fasting has been shown to increase the number
of dendritic spines in AgRP neurons through a mechanism
that require the activation of postsynaptic NMDARs (Liu
et al., 2012). In fact, the growth of new synaptic contacts is
consistent with an observed increase in the frequency, but not
the amplitude, of AMPAR-mediated transmission. In contrast,
POMC neurons in the arcuate nucleus control satiety and glucose
metabolism through a fasting-dependent depression with a clear
postsynaptic locus of expression (Suyama et al., 2017). As such,
fasting-dependent depression of POMC neurons involves the
reduction of AMPAR-mediated amplitude, but not frequency,
explained by a switch in AMPAR subunit composition (Suyama
et al., 2017). Intriguingly, AMPAR-mediated current rectification
measurements showed that feeding increases GluA2-lacking
receptors in POMC neuros through a NMDAR-independent
mechanism (Liu et al., 2012).

Magnocellular hypothalamic neurons controlling blood
pressure, blood volume, and Na+ balance also undergo
experience and activity-dependent plasticity. Chronic salt-
loading stimulation produces an increase in GluA1 protein
expression level, subsequently potentiating AMPAR-mediated
current amplitude. In addition, an increase in the frequency of
AMPAR-mediated responses was also observed in parallel to the
growth of glutamate release sites, which led to the formation of
new synapses enriched in highly labile Ca2+-permeable GluA1
receptors, highly dependent on continuous dendritic protein
synthesis (Di et al., 2019). In turn, osmotic activation of the
hypothalamus-neurohypophysial system induces changes in
glutamatergic receptors. Water deprivation increases the density
of GluN1 in the SON AVP and OXT neurons (Meeker et al.,
1994b) accompanied by a reduction of GluN2B expression
(Decavel and Currás, 1997; Currás-Collazo and Dao, 1999).
Although the functional significance of this subunit switch
remains unknown, a general increase in NMDARs may
underlie the low activation threshold of these neurons during
dehydration, believed to serve as a signal for water re-absorption
in parallel to AVP release, also controlled by NMDAR activation
(Busnardo et al., 2012).

Importantly, SON and PVN magnocellular neurons undergo
plastic changes during lactation and milk ejection which involve
a two-fold increase in AMPAR-mediated current frequency
and decay kinetics, probably due to a switch in AMPAR
subunit composition (El Majdoubi et al., 1996, 1997; Pak and
Currás-Collazo, 2002). Furthermore, lactating rats exhibit an
augmentation in neurotransmitter release, synaptic density, and
shared synapses (El Majdoubi et al., 1996, 1997; Stern et al., 2000;
Pak and Currás-Collazo, 2002). However, and despite the great
significance of lactation for animal survival, just a few studies
address the role of glutamatergic regulation in this process,
highlighting the need for expanding research on this topic.

Another prominent example of glutamatergic plasticity in
the hypothalamus is stress-related synaptic plasticity (Bartanusz

et al., 1995; Bains et al., 2015). A single acute stressful event can
increase the ratio of AMPAR- to NMDAR-mediated transmission
in parvocellular neurons in the PVN due to a long-lasting
decrease of NMDARs triggered by the robust secretion of
corticotropin-releasing hormone (Kuzmiski et al., 2010). This
mechanism for decreasing synaptic strength contrasts with
AMPAR internalizatiofn which usually orchestrates synaptic
depression in the hippocampus (Malenka and Bear, 2004;
Citri and Malenka, 2008). These findings further support the
notion that glutamatergic synapses in the hypothalamus exhibit
distinct regulatory mechanisms which may involve a more active
mobilization of NMDARs from their synaptic locations.

Furthermore, recent work employing novel methods of
transcranial direct stimulation mimicking LTP protocols
on rats indicated that these procedures stimulated GluA1
translocation in hippocampal synapses but no changes in
receptor localization were observed in the hypothalamus,
although an increase in S831 phosphorylation was reported
in both areas (Stafford et al., 2018). These results together
with the lower GluA2/GluA1 ratio observed in hypothalamic
neurons, support the notion that glutamate receptors in
the hypothalamus may exhibit distinct trafficking and
functional properties that are likely to influence plasticity
in this brain area.

According to this, certain hypothalamic neurons have
been shown to express negligible levels of GluN2A and
GluN2B (Aubry et al., 1996), which suggests that glutamatergic
transmission may directly influence hypothalamic neurons
independently of NMDAR activation. An example is the
synaptic potentiation induced by the activation of the glucagon-
like peptide-1 (GLP-1) receptor in PVN neurons. Activation
of the GLP-1 receptor results in an increase in excitatory
synaptic strength mediated by the insertion of GluA1-
containing AMPARs into the plasma membrane (Liu et al.,
2017). Furthermore, somatostatin receptor activation (sst2)
of mediobasal hypothalamic neurons inhibits the AMPAR
component of glutamatergic synapses through a regulatory
process that requires concomitant activation of NMDARs and
mGluRs (Peineau et al., 2003). The need for the combined action
of sst2, NMDARs and mGluRs to effectively depress AMPAR-
mediated transmission highlights the heterogeneous nature
of hypothalamic neurons, which in addition to glutamatergic
inputs coordinate the function of various neurohormones and
neuropeptides to generate an integrative response.

In summary, there are many evidences indicating that
hypothalamic neurons undergo plastic events in which
AMPAR modifications in terms of subunit composition,
post-translational modifications or subcellular localization
are required (summarized in Table 1). Nevertheless, the
exact mechanisms involved in these processes are not as well
understood as in hippocampal synapses, thus undeniably more
research on this topic is needed. A conclusion drawn from the
data already available is that although hypothalamic plasticity
events may be shorter-lived that in the hippocampus (Abraham
et al., 2002), they commonly involve AMPAR trafficking in
response to activity-dependent changes usually, but not always,
via NMDARs activation (see model in Figure 2).
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AMPAR-MEDIATED MODULATION OF
HOMEOSTATIC FUNCTIONS

It is now clear that vital homeostatic functions regulated by
hypothalamic circuits depend on the activation of AMPARs
and exhibit plastic properties similar to those described in
hippocampal and cortical areas. A classic example is the
involvement of AMPARs in the control of gonadotropin-
releasing and lutein hormones in female animals in an estradiol-
dependent manner (Ping et al., 1997). Gonadotropin is released
in the neurohypophysial system where stimulates the production
of follicle-stimulating and luteinizing hormones, which control
the proper balance of hypothalamic-pituitary-gonadal axis. In
fact, gonadal steroid receptors have been found localized in
glutamate receptors-expressing neurons in the hypothalamus
where they affect excitatory transmission by regulating AMPAR
content in a gender-specific manner (Diano et al., 1997). As
such, whereas GluA1 levels equally increase in males and females,
females exhibited a two-fold higher rise of GluA3/GluA2-
containing AMPARs in response to estradiol (Diano et al., 1997).
Moreover, estradiol induces formation of hypothalamic dendritic
spines that shapes developmental sex differences by enhancing
glutamate release and promoting AMPAR reorganization in
hypothalamic connections (Schwarz et al., 2008).

Another important homeostatic role of the hypothalamus
is the orchestration of the circadian clock, which is ultimately
regulated by the SCN where photic stimulation induces phase-
shifts, which in turn, control firing patterns related to pacemaker’s
oscillations. Glutamate application in the SCN was described
to depolarize membrane potentials (Meijer et al., 1993) mainly

through NMDARs activation (Colwell, 2001), even though
both NMDA and non-NMDA receptors contribute to neuronal
depolarization (Michel et al., 2002). Photic stimulation triggers
glutamate release from the synaptic terminals of retinal ganglion
cells within the SCN, where activate postsynaptic AMPARs and
NMDARs which increase calcium influx and recruit intracellular
signaling cascades associated to long-term synaptic plasticity
(Mikkelsen et al., 1995; Ding et al., 1997; Meijer and Schwartz,
2003). The role of NMDARs in light-induced phase-shift
has been demonstrated by the light-dependent adaptation of
NMDA-dependent calcium transients, which are larger and
longer during the night (Colwell, 2001; Pennartz et al., 2001).
In contrast to the well-defined role of NMDARs in this
process, AMPAR function is unclear since their activity seems
independent of circadian rhythms, although their activation leads
to the increase of calcium influx in SCN neurons (Michel et al.,
2002). Furthermore, exogenous AMPA application induces phase
delays of locomotor activity and phase-shifts in the core clock
gene Per1 both in vitro an in vivo indicating AMPARs play a role
in the entrainment of the circadian rhythms (Mizoro et al., 2010).

Furthermore, AMPAR-mediated transmission has been shown
to mediate osmoticchanges associated to feeding (Hettes et al.,
2003). As such, early studies in rats employing intracranial
injections of AMPAR agonists and antagonists promoted or
inhibited feeding depending of the targeted areas. Several
studies have revealed how CNQX and NBQX are able to
induce feeding in a dose dependent manner when injected in
perifornical hypothalamic regions or PVN while AMPA injection
induce feeding when injected into the lateral hypothalamus
(Hettes et al., 2003, 2010).

TABLE 1 | Summary of AMPAR and NMDAR modifications during plastic events reported in the hypothalamus.

Hypothalamic
region

Cellular
type

Adaptation
type

Locus of expression Synaptic modification Bibliography

PVN Parvocellular neurons Depression Presynaptic Glutamate release reduction Marty et al., 2011

Arcuate Nucleus AgRP-expressing neurons Potentiation Presynaptic
Postsynaptic

Glutamate release increase
Increase NMDARs activation
Increase AMPARs number

Yang et al., 2011; Liu et al.,
2012; Branco et al., 2016

Arcuate Nucleus POMC neurons Depression Postsynaptic Decrease GluA2-lacking AMPARs Suyama et al., 2017

SCN SCN neurons Potentiation Postsynaptic Increase NMDAR activation Colwell, 2001; Pennartz et al.,
2001

SON Magnocellular neurons Potentiation Presynaptic
Postsynaptic

Glutamate release increase
Increase GluA2-lacking AMPARs

Di et al., 2019

SON OXT-AVP
Magnocellular neurons

Potentiation Postsynaptic Increase NMDAR number
NMDAR subunit switch (↓GluN2B)

Meeker et al., 1994b; Decavel
and Currás, 1997;

Currás-Collazo and Dao, 1999

SON-PVN OXT-AVP
Magnocellular neurons

Potentiation Postsynaptic
Presynaptic

AMPAR subunit switch
Glutamate release increase

El Majdoubi et al., 1996, 1997;
Stern et al., 2000; Pak and

Currás-Collazo, 2002

SON-PVN Sst2 receptor-expressing
neurons

Depression Postsynaptic Internalization AMPARs
Cocomitant activation of NMDARs and

mGluRs

Peineau et al., 2003

PVN-VMH Androgen and strogen
receptor-expressing neurons

Potentiation Postsynaptic
Presynaptic

Increase AMPARs (GluA1-3)
GluA2/3 increase higher in females

Glutamate release increase

Diano et al., 1997; Schwarz
et al., 2008

PVN Parvocellular neurons Potentiation Postsynaptic Decrease NMDARs number Kuzmiski et al., 2010

PVN CRH-expressing neurons Potentiation Postsynaptic Increase GluA2-lacking AMPARs Liu et al., 2017
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FIGURE 2 | Comparative representation of the molecular mechanisms underlying plasticity in hippocampal and hypothalamic synapses. (A) Schematic
representation of the model CA3-CA1 synapse. High frequency stimulation (HFS) induces calcium entry trough NMDARs activating intracellular signaling cascades
that drive new AMPARs including GluA2-lacking receptors, into the synaptic membrane. These changes result in a long-lasting potentiation of the synaptic strength
and an increase in spine volume. In contrast, low frequency stimulation (LFS) induces a moderate entry of intracellular calcium which drives AMPARs out from the
plasma membrane, weakening synaptic strength and decreasing the spine volume. (B) Schematic representation of a hypothalamic synapse. In addition to
glutamatergic inputs, hypothalamic synapses are heavily influenced by hormonal secretion from neighboring peptidergic neurons. In contrast to classical plasticity
protocols in the hippocampus, hypothalamic synapses commonly exhibit short-term adaptions in response to prolong and low frequency patterns of activity.
Short-term potentiation of synaptic strength can be achieved by activation of postsynaptic NMDAR and an increase of synaptic AMPARs, enriched in GluA2-lacking
subunits. In addition, NMDARs can be rapidly recruited at synaptic localizations in parallel to presynaptic changes. On the other hand, hypothalamic synapses
undergo short-term synaptic depression in response to low frequency stimulation by several mechanisms which may involve the activation of peptidergic or NMDA
receptors, that drive the removal of synaptic GluA2-lacking AMPARs, NMDARs, and reduce glutamate release probability.

Aligned with this observation, food intake and food restriction
has been suggested to distinctly regulate AMPARs in different
parts of the brain. For example, a short-term high fat diet has
been shown to decrease GluA1 and GluA2 expression as well
as GluA1 Ser845 phosphorylation levels in the hypothalamus
(Liu et al., 2021). In contrast, administration of DNQX or
blocking specifically GluA1 subunit in the nucleus accumbens
induces feeding (Carr et al., 2009), suggesting a model where
food restriction specifically promotes GluA1 expression in this
region. In contrast, the manipulation of the hypothalamic
neuropeptide melanin-concentrating hormone (MCHR1) in the
nucleus accumbens, induces feeding behaviors in parallel to a
reduction of GluA1 surface expression, mEPSC amplitude and
lower GluA1 phosphorylation levels (Sears et al., 2010). This
set of data indicates that AMPAR activation and inactivation
in different and overlapping nuclei is sufficient to induce
feeding behaviors, suggesting that the regulated switch of
AMPAR subunit composition and the modulation of AMPAR
number at the postsynaptic site may underlie metabolic control.
More recently, the implementation of Cre-recombinase-enabled
and cell-specific mapping techniques in mice have allowed
elegant studies to reveal an unknown excitatory drive from
the PVN to AgRP-expressing neurons in the arcuate nucleus
(Krashes et al., 2014). Interestingly, leptin-mediated signaling
has been shown to modulate NMDARs and AMPARs to
influence neuronal excitability and synaptic plasticity in the
hippocampus (reviewed in Gavello et al., 2016), although its role
in modulating glutamatergic transmission in the hypothalamus
remains elusive.

HYPOTHALAMIC AMPAR- MEDIATED
TRANSMISSION IN PATHOLOGY

As aforementioned, glutamatergic transmission influences
practically all autonomic and homeostatic responses orchestrated
in the hypothalamus including stress, energy and electrolyte
balance, circadian rhythms, blood pressure, lactation, and
fertility. Given the various roles of AMPAR-mediated
transmission in the hypothalamus, it is tempting to hypothesize
that alterations of its function may trigger pathological
conditions related to brain and body homeostasis maintenance.
As such, AMPARs has been shown to facilitate stress-evoked
autonomic responses (e.g., arterial blood pressure and heart
rate) (Busnardo et al., 2013), and an enrichment of GluA2-
lacking AMPARs contributes to the increased excitability of
PVN presympathetic neurons related to hypertension (Li
et al., 2012). Furthermore, the involvement of AMPAR in
the maintenance of normal neurological function suggests
that dysregulations of their trafficking, phosphorylation or
subunit composition may be associated with cognitive and
behavioral impairments as varied as anxiety, depression,
ischemia, intellectual disability, neurodegenerative conditions,
drug addiction or social deficits (Krugers et al., 2010; Kuniishi
et al., 2020; Zhang and Bramham, 2020; Babaei, 2021; Ge and
Wang, 2021; Wu et al., 2021). In addition, several research works
have demonstrated that positive modulators of AMPARs leads
to antidepressant effects improving behavioral, neurochemical
and glutamate-transmission deficits in perinatal stressed rats
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(Andreasen et al., 2013, 2015; Morley-Fletcher et al., 2018).
In contrast, reduction of AMPAR transmission may underlie
anxiety and stress (Alt et al., 2006; Andreasen et al., 2015; Li
et al., 2017; Hasegawa et al., 2019). Increased stress vulnerability
has been also related to GluA2 trafficking alterations in a
GluA2 mutant (GluA2 K882A) with disrupted PKC-dependent
phosphorylation and exacerbated anxiety (Ellis et al., 2017),
highlighting the relevance of AMPAR-mediated transmission in
stress regulation and emotional responses.

Interestingly, recent cumulative evidence points to the
dysregulation of AMPAR trafficking as a major culprit of
cognitive and social disorders, such as autism spectrum
disorder (ASD) (Danesi et al., 2019). As such, Frmp1 KO
mice, characterized by neurological and behavioral ASD-like
symptoms and repetitive behaviors, show reduced levels of
PKCε, AMPAR phosphorylation deficits and aberrant recycling
of GluA2-containing receptors through a process that impacts
the development of OXT neurons in the PVN (Marsillo
et al., 2021). Stimulation of PKCε at early stages of postnatal
development reduced the hyper-anxiety and social behavior
impairments, and increased GluA2 recycling (Marsillo et al.,
2021). Another example of the importance of maintaining
adequate phosphorylation levels of AMPARs is the data from the
Grip1/2D KO mice which present increased social interactions
and augmented levels of GluA2 phosphorylation (Han et al.,
2017). These results together with previous observations from
a Grip1 gain-of-function mutant (Mejias et al., 2011) indicate
that preserving the ratio of GluA2-containing receptors play an
important role in the modulation of social behaviors.

Moreover, a developmental misbalance of
excitation/inhibition of neural circuits has been identified
as a common underlying mechanism of ASD (Polleux and
Lauder, 2004; Orekhova et al., 2007). In fact, a general reduction
of AMPAR density has been found in postmortem brain samples
of ASD patients particularly in the cerebellum and the prefrontal
cortex (Purcell et al., 2001) with no reported data for the
hypothalamic region. Importantly, a recent study also examined
glutamatergic transmission in the cortex of two different ASD
models: a contactin-associated protein-like 2 gene (Cntnap2) KO
(Gdalyahu et al., 2015) and a prenatal exposure of valproic acid-
induced mouse model (VPA mice). Both animal models exhibit
alterations in their glutamate receptors expression patterns in
the cortex: however, while Cntnap2 KO mice displayed reduced
glutamatergic expression and activity, VPA-exposed mice showed
an increase in glutamatergic receptors, and nonetheless they
both exhibited similar autism-like behaviors (Kim et al., 2019).
Intraperitoneal injection of AMPAR agonist in the Cntnap2
KO or AMPAR antagonist in the case of the VPA-exposed
model, restored social behavior suggesting an important role for
AMPARs in the physiopathology of the disease. Interestingly
AMPAR agonists/antagonists had no effect treating repetitive
behaviors, which have been associated to NMDARs abnormal
function (Lewis and Kim, 2009; Archer and Garcia, 2016).
According to this, social deficits and repetitive behavior were
restored in a VPA-exposed rat model, characterized by ASD-like
symptoms and impaired NMDAR-dependent LTD, after the
administration in the lateral amygdala of D-cycloserine (DCS),

a cognitive enhancer that increases NMDARs function (Wu
et al., 2018). Nonetheless, DCS action also impacted AMPARs
by facilitating the removal of GluA2-containing AMPARs, and
enabling NMDAR-dependent LTD in the lateral amygdala. These
findings expose the importance of NMDAR and AMPAR balance
in the development and clinical manifestation of neurological
disorders related to social behaviors. Furthermore, the current
lack of information regarding the status of hypothalamic
glutamatergic function in the context of pathological conditions
highlights the need of intensifying research efforts on this topic.

CONCLUSION

The significance of glutamatergic, and particularly AMPAR-
mediated transmission, in hypothalamic function is just starting
to emerge. Selective targeting of AMPARs in specific neurons
within distinct hypothalamic nuclei could be the foundation
of novel therapies for disorders as varied as hypertension (Li
et al., 2012), feeding disorders (Florent et al., 2020), circadian
clock dysregulation (Rijo-Ferreira and Takahashi, 2019) and
social disorders (Carlson, 2012; Kim et al., 2019). In order to
accomplish this, more research will be needed to understand
the role and regulatory mechanisms of glutamatergic receptors
in hypothalamic synapses. Of particular interest will be to
elucidate the role of AMPA and NMDA receptors in basal
synaptic transmission, and the dynamic processes involved in the
various types of hypothalamic plasticity. Also basic knowledge
as the identification of the drivers of the key signaling pathways
involved in long-term synaptic changes as well as the scaffold and
auxiliary proteins implicated in distinct hypothalamic synapses
will be fundamental to unveil the role of glutamatergic function
in brain and body homeostasis.
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