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Abstract

The robustness of large scale critical infrastructures, which can be modeled as complex net-
works, is of great significance. One of the most important means to enhance robustness is
to optimize the allocation of resources. Traditional allocation of resources is mainly based
on the topology information, which is neither realistic nor systematic. In this paper, we try to
build a framework for searching for the most favorable pattern of node capacity allocation to
reduce the vulnerability to cascading failures at a low cost. A nonlinear and multi-objective
optimization model is proposed and tackled using a particle swarm optimization algorithm
(PSO). ltis found that the network becomes more robust and economical when less capac-
ity is left on the heavily loaded nodes and the optimized network performs better resisting
noise. Our work is helpful in designing a robust economical network.

Introduction

Modern human societies very much depend on large scale critical infrastructures to deliver
resources and services to consumers and businesses. These infrastructures are complex systems
of structural and functional elements. Such systems work reliably in our everyday life. How-
ever, as some rare occurrences in the past have shown, they are still vulnerable to major out-
ages, such as telecommunication outages [1], blackouts in power grids [2-4] and financial
bankruptcy [5].

The theory of complex networks has emerged in recent years, and has proved to be a valid
tool to describe, model and quantify complex systems in system robustness and cascading fail-
ures [6-16]. In these fields, two important issues are always focused on by most researchers:
how to design man-made networks with higher robustness to cascading failures and how to
reduce the cost to maintain the robustness of networks. High robustness and low cost seem to
be contradictory, and it is difficult to achieve both in most cases. For instance, dense networks
are more likely to be robust to cascading failures, but more edges always mean more resources
and a higher cost. In short, building a robust network is very expensive.
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Some models and strategies have been proposed to balance robustness and cost. Motter
etal. [17] first introduced a homogeneous capacity-load relationship model which is widely
used today. In this model, the capacity of a node is proportional to the initial load of the node
which is based on the flow along the shortest hop path. Wang et al. [18] introduced a model in
which the capacity of a vertex is assigned as a nonlinear monotonically increasing function of
the load. It aims to enhance the robustness of the network with a lower cost via protecting the
higher load vertices merely.

However, most previous works allocate the capacity resources simply according to network
topology information, such as degree and betweenness. Kim et al. [19, 20] argued that these
models are unrealistic due to the fact that empirical networks always show a nonlinear capac-
ity-load relationship and heavily loaded nodes usually have relative less unoccupied capacity.
Actually, the essence of resource allocation is an optimization problem, but the cascading fail-
ure process is hard to be described functionally, rendering traditional optimization methods
powerless. It was not until very recently intelligent optimization algorithms, which have been
proven to be valid for solving practical non-functional optimization problems, have been
applied to network optimization [21-25]. Huang et al. [21] proposed a multi-objective simu-
lated annealing algorithm to optimize the network topology for packet routing. Zhou et al. [22]
introduced a memetic algorithm to optimize the structure of networks in order to enhance the
robustness of scale-free networks against cascading failures. Fang et al. [23] applied the non-
dominated sorting binary differential evolution algorithm to the power generation allocation of
the existing buses in the 400kV French power transmission network. It turns out that optimiza-
tion algorithms work well in optimizing the robustness of complex networks.

Motivated by their works, in this paper we formulate the problem of resource allocation
within a large-scale, nonlinear and multi-objective optimization framework and construct an
optimal model of allocating the capacity resources. To solve it, an effective algorithm named
particle swarm optimization (PSO) is utilized. We investigate the cost-efficiency, capacity-load
and vulnerability-cost relationships and the effect of noise.

Materials and Methods

In this section, we describe (1) network and cascade model, (2) optimal model of capacity allo-
cation, and (3) PSO algorithm based solution. For clarity, the terms “node” and “vertex” will be
used interchangeably in this paper.

Network and cascade model

To capture the heterogeneity of many real-world networks, the Barabasi-Albert (BA) scale-free
network [26] is adopted. The BA network is generated by starting from a small amount of 1,
fully connected nodes. It increases by adding a new node at each time step. This new node is
connected preferentially to m(m < mj,) old nodes in such a way that the probability of connect-
ing to an existing node is proportional to the old node’s degree. The BA scale-free network
exhibits a power-law distribution P(k) ~ k7. In the following, the networks are set to N = 500,
my=2and m=2.

In the cascade model, the node load is estimated through node betweenness if the traffic
flow travels along the shortest-path. As in Refs. [17, 27] we adopt the data-transport model
which uses node betweenness to denote the node load:

L= % 1)

s#iFEt 65[
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where 0, is the number of shortest paths between nodes s and ¢ that run through node i, and 6,
denotes the total number of available shortest paths from s to . The capacity of a node is the
maximum load that the node can handle. Following Refs. [17, 18], the capacity of node i is
assigned as

C=Q0+a)L (2)

Where L? is the initial load and a;(a; > 0) is the tolerance parameter.

The cascading failure is triggered by removing the highest-load node in the network result-
ing in the globally redistribution of the flow and node loads [17, 18]. If a surviving node is over-
loaded, i.e. L; > C;, then it fails, leading to further load redistribution. This process continues
recursively until no more nodes overload. Moreover, it is assumed that only the nodes in the

giant component remain functional.

Optimal model of capacity allocation

Methods of resource allocation are generally framed to reduce the vulnerability (enhance the
robustness) of networks against cascading failures with a limited cost. The variables to be opti-
mized are defined as the tolerance parameter vector & (i.e. & = [0}, d, ..., 0] > 0, is a vector
of network size N). Motter-Lai (ML) model [17] is the most basic and widely used model, in
which ¢; are the same values c(c > 0) for all nodes. Wang et al. [18] proposed a model in which
o= c@(ﬁ — B), where ©(x) = 0(1) for x < 0(x > 0), is a two-valued function. The latter
model performs better than the former one, so it is possible that a pattern of & that yields lower
vulnerability and cost can be found by means of a variation approach.

The vulnerability of a network is defined as

V(x) = (3)

where N'(& ) is the number of failed vertices under the tolerance vector & and N is the total
number of vertices in the network. Obviously, the smaller V'is, the more robust the network
will be. The cost of whole network resources is defined, in accordance with previous works
[18], as

E(&)—lia—l&I (@)
N&~" N

where 1 is a column vector of ones. The larger the E is, the more resources the network costs.

The cascade-robustness network is a network with redundant vertex capacity. However,
redundancy usually means extra cost. Robustness and cost are expected to be in opposition,
requiring trade-offs. Therefore, we define the overall objective function F(o/ ) of a network by
aggregating vulnerability and cost through an adjusting parameter w(0 < w < 1) balancing the
importance of vulnerability and cost:

— — —

F(a) =wV(a)+ (1 — w)E(a) (5)

When w is small, we pay more attention to controlling the cost rather than reducing the vul-
nerability. On the contrary, when w is large, we focus more on enhancing the network robust-
ness and care less about the cost. It is easily found that the smaller the objective function is, the
better the results are.

Maximum cost is always a constraint in real world projects, which are subject to a budget.
Thus, it is necessary to set whole network maximum cost as a constraint. Since ML model is
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the fundamental model, without loss of generality, we set the whole network cost of the initial
pattern of ML model, as the maximum cost.
Then the node capacity allocation optimization model can be formulated as

min F(o)
E(o) <2
- (6)
sit.\ E(a) :%&.1
a >0

The dimension of the variable & is N, which represents the number of vertices in the net-
work. F(& ) is the objective function which is the linear combination of vulnerability and cost
and is not an analytic expression. A is the upper bound of the total node capacity cost. The
value & is a feasible solution if it satisfies all the constraints, otherwise it is an infeasible solu-
tion. One feasible solution is @ = [4, 4, ..., 4], which means feasible solutions do exist.

Particle swarm optimization based solution

Particle swarm optimization is an effective optimization algorithm proposed by Kennedy and
Eberhart [28] which is inspired by the social behavior of swarms such as fish schooling or bird
flocking [29]. In PSO, to search for the global optimum, a flock of particles move in a con-
strained parameter space, interacting with each other and updating their positions and veloci-
ties. Owing to its simplicity, effectiveness and low computational cost, PSO is widely used
in solving practical optimization problems [30, 31] and there are a number of variations [32-
36].

For our capacity allocation optimization problem with N variables and an objective function
F(a'), the PSO algorithm represents the potential solutions with a flock of particles. Each
0y ---X] and avelocity v, = [v,, v,, ...v,]in the N-
dimensional space. The position X represents the tolerance parameter o and the velocity v
represents the variance of & . The goal is to find an optimal position ¥ of any particle i that
makes the objective function F(o ) minimum. Initially the particles’ positions and velocities are
generated randomly within the constraint. Then, at each iteration each particle updates its

particle i has a position x; = [x,;, x,

i

position and velocity according to the following equations [28]:

i i i

V=0 (% +U0,0) (3 -%)+U(0,0)- (p,, - %)) (7)

el

e (8)

1 1
where § = ——2——, ¢ = ¢; + ¢, > 4. Here p; is the best historical position found by ’s neigh-
12-9=+/9° 49|

bors, ¢, and ¢, are the acceleration coefficients. U(a, b) is a random number drawn at each iter-
ation from the uniform distribution [a, b]. Therefore, ¢, and ¢, balance the impacts of each
particle’s own and its neighbors’ experiences, and 7 indicates the learning rate. Based on previ-
ous extensive analysis [37], we choose the appropriate setting as ¢; = ¢, = 2.05 and 1 = 0.7298.
The number of particle is 50 and the number of iterations is 1000.
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To handle the constraints, we follow Ref. [38]:

1. A volition function G(& ) is assigned to make up the final fitness function with F (2 ). The
volition function is defined as follows:

. 0, if E(a) < 4
E

G(o) = ©)

(o) — A, otherwise

2) A better solution is chosen by the tournament selection operator. The following three crite-
ria are satisfied during the selection operator:

a. when two feasible solutions are compared, the one with smaller value of F (&) is chosen;

b. when two infeasible solutions are compared, the one with smaller value of G(2') is
chosen;

c. when one feasible and one infeasible solutions are compared, the infeasible solution is
chosen only if it has a smaller value of F/(& ) and G(& ) is less than a constant £, otherwise
the feasible solution is chosen.

3) The constant € is used to limit the number of infeasible solutions. To keep the proportion of
infeasible solutions a fixed proportion /, € is defined as:

1.2e, when the proportion of infeasible soloution < [
£ = { &, when the proportion of infeasible soloution =/ (10)

0.8, when the proportion of infeasible soloution > I

It is worth noting that a handful of infeasible solutions do exist in the population. They are
helpful due to the fact that sometimes the optimal solution is found in the boundary of the
constraints.

Results and Discussion

Solving the optimal model of allocation of resources using the PSO algorithm described in pre-
vious section, we analyze (1) the optimization performance of the network; (2) cost-efficiency,
(3) capacity-load and (4) vulnerability-cost relationships; and (5) the effect of noise.

Optimization performance of the network

We start by analyzing the optimization performance on BA scale-free networks. The basic
Motter-Lai model [17] is set as the initial model to compare with. As reducing the vulnerability
is the main purpose of real network design, we set the adjusting parameter w = 0.8. In our opti-
mization model this is also a well-considered trade-off which is discussed in the part of vulner-
ability-cost relationship of the network. Fig 1A shows that the objective function is much
smaller after optimization for all values of 1. The optimized capacity allocation pattern does
perform better than the initial model pattern. To get a full scenario, Fig 1B and 1C show the
vulnerability and cost of the network, respectively. The network’s vulnerability decreases
monotonously as the maximum cost increases in both optimized and non-optimized situa-
tions, which is in agreement with the intuition that more redundancy results in lower vulnera-
bility. The optimized networks are always less vulnerable than the initial ones. Regarding the

PLOS ONE | DOI:10.1371/journal.pone.0141360 October 23, 2015 5/12



@’PLOS ‘ ONE

Optimal Allocation of Node Capacity in Cascade-Robustness Networks

— T T T " T T T 1 1ol T T T 1 '”I v |— 1ol T 'Hl — T v T 6
0819 ~Q@- Initial Q ~@- Initial —@— Initial /
\ —@— Optimized L \ @ Optimized | | @ Optimized Q
9 /
- @ 0.8 o \ 41 08} Q -
\ " /@
- |0 o o\ it @
S 06} | 1z \ /@
B =06 9@ { o6} @ 9
c \ Q \ 0 — /
Z o 9 S A\ 3 / o
2 s [ 9o 1° Qe
B x > - } N - = / -
% 0 \Q\ 04 Q Q\ 04 /o o
®) 04+ \ " . i C’\ G’\ i | q' /
o 290 2,9, Dt
9 02| 2298 02l Qo 1
K C))G' ] C"C) // /
%00 | | leo -
(a) (b) o (c)
02 " 1 L | " 1 L 1 " | Oo N 1 ' 1 N 1 " 1 N 1 OO " 1 L 1 L | N 1 " 1
0.0 02 04 xo.s 08 10 00 02 04 xo.e 08 1.0 00 02 04 }Lo.s 08 1.0

Fig 1. Performance of the optimized pattern and the initial model pattern under different maximum costs. (a) Objective function. (b) Vulnerability of
the network. (c) Cost of the network. Each point is averaged from 20 different networks. The adjusting parameter is set to w = 0.8. The algorithm runs for

1,000 iterations each time.

doi:10.1371/journal.pone.0141360.g001

cost, the optimized pattern’s cost is only approximately 70% of the initial pattern. Conse-
quently, the optimized networks are more robust at a lower cost.

Cost-efficiency relationship of the network

In order to further investigate the robustness and cost of the network, we set up a cost-effi-
ciency indicator:

(11)

Here H represents the average robustness gain from a unit cost, which is akin to the mar-
ginal utility in economics. Fig 2 shows that the cost-efficiency of optimized pattern is higher
than that of initial pattern, especially when the maximum cost 4 is small. In general terms, if
the resources are allocated in the optimized pattern, the unit cost can produce much more
robustness benefit, and more nodes will be able to survive a cascading failure. Besides, as the A
increases, each homogenous unit cost contribution to the network’s robustness becomes
smaller. This interesting observation is just like the law of diminishing marginal utility. It
shows that it is not wise to invest too much extra cost in protecting facilities when designing a
system.
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Fig 2. The cost-efficiency indicator H of different maximum costs. Each point is averaged from 20 different networks. The adjusting parameter is set to
w = 0.8. The algorithm runs for 1,000 iterations each time.

doi:10.1371/journal.pone.0141360.9002

Capacity-load relationship of the network

Now we investigate the relationship between optimized node capacity and initial node load in
the network reported in Fig 3. The capacity-load relationship in the initial model is linear and
the tolerance parameter ¢; is the same for all nodes. On the contrary, the relationship in the
optimized model is nonlinear and ¢; changes depending on the node. What is more, Fig 3
shows that nodes with large initial loads tend to have less unoccupied capacity in the optimized
model. This interesting phenomenon is due to the fact that the flow fluctuations in heavily
loaded nodes are relatively small when cascading failures occur and flow redistributes. Assign-
ing excessive unoccupied capacity to heavily loaded nodes is actually a waste of resources and
cannot reinforce the robustness of the network greatly. Assigning more resources to some
lightly loaded but fragile nodes or simply taking out these redundancy capacities is a better
alternative. It is worth to note that this finding is consistent with the empirical observations
and results such as airports network, power grids and Internet router network [19, 20].
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Fig 3. Capacity-load relationship of the network. (a) Node capacity as a function of node initial load. (b) Node tolerance parameter a as a function of node
initial load. The adjusting parameter is set to w = 0.8. The maximum cost A = 1.0. The algorithm runs for 1,000 iterations each time.

doi:10.1371/journal.pone.0141360.g003

Vulnerability-cost relationship of the network

There is a critical parameter in the optimal model of allocation of resources, w. It is a trade-

off of the vulnerability and the cost in the objective function. Fig 4 shows the Pareto frontier of
w from 0.01 to (considering that the vulnerability of the network should be taken into account,
w cannot be equal to 0). As we can see, all the solutions of the initial model pattern are domi-
nated by the solutions of the optimized pattern, which means that no matter what the adjusting
parameter w is, the results of the optimized model are always better. When w is relatively small,
the solutions mainly gather in the upper left corner. Networks that follow these node capacity
allocation patterns possess a lower cost as well as a higher vulnerability. When w is relative
large, the solutions tend to distribute evenly. Networks following these allocation patterns are
more robust against cascading failures at a relatively lower cost. Therefore, the parameter w
can be chosen in accordance to the actual demand. It should also be noted that the solutions
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Fig 4. The Pareto frontiers of various values for parameter w. Each point is averaged from 20 different networks. The algorithm runs for 1,000 iterations

each time.

doi:10.1371/journal.pone.0141360.g004

for w = 1 do not lie on the frontier, and they are dominated by other solutions, indicating that
enhancing robustness at all costs is not a good solution. w = 0.6 and w = 0.8 are well-considered
trade-offs of vulnerability and cost.

Noise effect

In reality, nodes capacity is inevitably fluctuant resulting from the outside interference such as
noise. Thus, we are interested in how the presence of noise impacts the cascade behaviors
within our optimized model. Following Ref. [18], the effects of noise are introduced as an erro-
neous assignment of the capacity function. In detail, at a given error probability q (qo and g;
for optimized and initial models, respectively), node ’s capacity is changed from C; to C;:

C; =(1+1)C (12)

where 7(7 € [-0.2, 0.2]) obeys uniform distribution with zero mean. This is plausible in real-
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world applications due to the fact that the ignorance of the true value of the load for each node
often results in an erroneous assignment of that node’s capacity. Fig 5 shows that the vulnera-
bility of both the optimized network and the initial network increases as the error probabilities
qo and gy increase, indicating the negative effects of noise. For the same error probability,
although the redundancy capacity is reduced (please see the inset of Fig 5), the optimized net-
work performs better, especially when A is small. The optimized pattern of node capacity allo-
cation has a stronger ability to resist noise.

Conclusions

In summary, we propose a framework for searching for the most favorable pattern of node
capacity allocation. It is modeled by a large-scale, nonlinear and multi-objective problem and
solved by particle swarm optimization. We demonstrate that the optimized pattern does indeed
make the network less vulnerable while at the same time reducing the cost of assigning capaci-
ties. We also introduce an indicator H to measure the cost-efficiency of the network. It is found
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that the cost-efficiency increases a lot through optimization and approximately follows the law
of diminishing marginal utility. Besides, we found that the capacity-load relationship of the
optimized network is nonlinear: heavily loaded nodes tend to decrease their capacity. Finally,
the effect of noise is investigated, and the optimized pattern of capacity allocation shows a
stronger ability to resist noise.

The optimal framework we propose here is systemic and generally applicable, which can be
easily adopted in other circumstances, with the consideration of different constraints and
objectives. Our results show that it is not wise to invest too much extra cost in protecting facili-
ties when designing a network or a system due to the cost-efficiency is very small at a large
maximum cost. Moreover, assigning less unoccupied capacity to the heavily loaded nodes, and
more extra capacity to some lightly loaded nodes can make the network most robust as well as
least cost. We believe that our work should be helpful in designing infrastructure networks
from an economic point of view.
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