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Abstract: Background: An accurate prediction of ventricular arrhythmia (VA) origins can optimize
the strategy of ablation, and facilitate the procedure. Objective: This study aimed to develop a
machine learning model from surface ECG to predict VA origins. Methods: We obtained 3628 waves
of ventricular premature complex (VPC) from 731 patients. We chose to include all signal information
from 12 ECG leads for model input. A model is composed of two groups of convolutional neural
network (CNN) layers. We chose around 13% of all the data for model testing and 10% for validation.
Results: In the first step, we trained a model for binary classification of VA source from the left or
right side of the chamber with an area under the curve (AUC) of 0.963. With a threshold of 0.739,
the sensitivity and specification are 90.7% and 92.3% for identifying left side VA. Then, we obtained
the second model for predicting VA from the LV summit with AUC is 0.998. With a threshold of
0.739, the sensitivity and specificity are 100% and 98% for the LV summit. Conclusions: Our machine
learning algorithm of surface ECG facilitates the localization of VPC, especially for the LV summit,
which might optimize the ablation strategy.

Keywords: machine learning; ventricular arrhythmia; localization; catheter ablation

1. Introduction

Patients with a high burden of ventricular arrhythmia (VA) such as ventricular tachy-
cardia (VT) or ventricular premature complex (VPC) are more prone to experience deterio-
ration of left ventricular ejection fraction (LVEF) and incidence of heart failure (HF) as well
as sudden cardiac death (SCD) [1]. Catheter ablation (CA) has emerged as a therapeutic
method to treat VA, with a low procedural complication risk and a high success rate of
cure [2]. Although most idiopathic VA originates from the right ventricular outflow tract
(RVOT) or left coronary cusps, in some cases, the VA might originate from the LV summit.
VA originating from this region could be more challenging for catheter ablation, and the fail-
ure rate in previous reports was relatively high due to the coverage of epicardial fat and the
proximity of main coronary arteries if the percutaneous epicardial approach is planned [3].
VA arising from these locations mostly presents with a unique pattern on 12-lead surface
ECG [4,5]. Distinguishing the right or left side of origin before the procedure is helpful in
terms of guiding access for catheter ablation. Furthermore, an accurate prediction of VA
origins can optimize the strategy of ablation, such as the LV summit, reduce procedural
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time, and avoid pre-procedural complications. Previous studies proposed several methods
to estimate the origins of ventricular arrhythmias [6–12]. However, the accuracy has been
limited by the number of patient studies, generalizability of the models, and efficiency of
application [13]. On the other hand, trained by finding subclinical patterns in huge datasets,
Artificial Intelligence (AI) has transformed the ECG into a screening tool and predictor of
cardiac and non-cardiac diseases [14]. Furthermore, Hussain et al. demonstrated that AI
could also be integrated into a cyber-physical cardiac monitoring system for stroke manage-
ment and assist in the quantitative evaluation of neurological outcomes after stroke [15,16].
In this study, we aimed to develop a deep learning model to predict VA with origins on
both sides of the ventricle and distinguish the origin of LV summits in particular, with
clinical-grade precision.

The contribution of the current study was as followed:

(1) This present study has the largest cohort for deep learning to localize idiopathic VAs.
(2) Among the studies trying to solve VAs localization with deep learning or machine

learning methods, our study has the largest number of cases for testing.
(3) We are among the first studies to used 2D-CNN for VAs localization.
(4) With violin plot, we can identify that VAs from the cusp area are the main source

of errors.
(5) This is the first study for a deep learning algorithm to differentiate VAs from LV

summit, with a sensitivity of 100% and a specificity of 98%.
(6) Accurate prediction of VAs from LV summit before the procedure would be helpful

for the operator to optimize the whole procedure.

2. Method
2.1. Study Design

Between January 2015 and December 2020, a total of 397 patients with symptomatic
and drug-refractory idiopathic VAs referred to Taipei Veterans General Hospital for ab-
lation were enrolled. This study was approved by the institutional review board of the
Taipei Veterans General Hospital (IRB:2022-03-001BC). The study was conducted by the
Declaration of Helsinki. Patients with a medical history of cardiomyopathy and structural
or congenital abnormalities were excluded. All of the 12-lead ECGs during the catheter
ablation procedure had been recorded and stored on the LABSYSTEM™ Pro EP Recording
System (Boston Scientific, Marlborough, MA, USA). The signals were recorded at a sam-
pling frequency of 2000 Hz and were filtered with a low-frequency digital filter cutoff of
0.05 Hz and a high-frequency digital filter cutoff of 100 Hz. We manually identified the
single VPC and exported it for further analysis. The VPC was initially identified as LVOT
but shown to be outside of the cusp area after ablation was removed for simplicity.

Furthermore, to increase our training data size, we also included the online datasets
presented in a previously published study [17]. This data set is composed of 334 patients
which are gathered at Chapman University and Ningbo First Hospital of Zhejiang Univer-
sity, Ningbo, China. The main difference between this data set from ours is that it lacks
VPCs other than ventricle outflow. The overview of the study design is shown in Figure 1.
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Figure 1. Overview of study design and data allocation.

2.2. Mapping and Ablation Procedure

The electrophysiological study, mapping, and RFCA were performed as described
previously [3,18–20]. Antiarrhythmic agents (except amiodarone) were discontinued for a
minimum of five half-lives before RFCA. We performed a standardized electrophysiological
study for all patients in the fasting state without sedation. In the absence of spontaneous
VA, rapid ventricular pacing, and/or programmed stimulation of up to three extrastimuli
were attempted from the right ventricular apex. If VA was still not inducible, intravenous
isoproterenol 1–5 µg/min was infused to achieve at least a 20% heart rate increment. If
clinical VAs were not induced during pharmacological provocation, the induction pro-
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tocol was repeated. The QRS morphologies of spontaneous and/or induced VAs were
compared with those of clinical VAs. The localization of arrhythmogenic foci was detected
conventionally or using a 3D mapping system (Ensite NavX, St. Jude Medical, Inc., St.
Paul, MN, USA, or CARTO 3, Biosense Webster, Diamond Bar, CA, USA). To identify
the origin and optimal ablation site of VA, we performed activation mapping, defined
by the earliest local electrical signals, and/or pace mapping, aiming for at least 11 of 12
leads matching with clinical VAs. (Figure 2) During mapping of the left side, intravenous
heparin was administered to maintain an activated clotting time of >250 s. Radiofrequency
energy was delivered in a temperature-controlled mode at 50–60 ◦C with a pulse duration
of 60 s for each point; maximal power was 50 W for the non-irrigated catheter and 30–35
W for the irrigated catheter with a maximum electrode-tissue interface temperature of 43
◦C, targeting for an impedance decrease of 10 Ω. If the VA was suppressed within 30 s,
radiofrequency energy would be maintained for a total of 120–300 s. Repeat mapping was
performed if VA suppression and/or elimination were not observed. Acute procedural
success was defined as the complete elimination of spontaneous or inducible VAs under
the infusion of isoproterenol (up to 5 µg/min), following the same induction protocol for
30 min to exclude acute recurrences. The successful ablation site was defined by the point
w an elimination of targeted VA with radiofrequency energy application.
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Figure 2. Activation map and fluoroscopic map for ventricular premature complex originating from
the right coronary cusp (RCC). The local activation map showed the earliest activation site (−36 ms)
at the RCC and catheter ablation in this area (red spots) could eliminate the ventricular arrhythmia.

The VA origin was defined as the ablation site where the VA/VPC was eliminated or
suppressed by at least 80% of a burden if not eliminated. The classification of VA origins are
shown in Table 1 [21]. VA origins were also classified into two groups: the right or left side
of the heart. This was used for binary classification in machine learning. If several chambers
were ablated, the elimination site was considered to be the origin except for the LV summit.
The VA originated from the LV summit were according to the following criteria: (1) The
earliest activation site within the LV summit (great cardiac vein/anterior interventricular
vein (GCV/AIV) or epicardium) was identified based on fluoroscopy and electroanatomic
map when VPCs were mappable. (2) For unmappable VA (e.g., VPCs that occurred too
infrequently to allow for detailed activation mapping or were hemodynamically unstable),
the best pace mapping sites, defined as 95% pace mapping score or 12/12 lead matching,
were located within the LV summit region (GCV/AIV or epicardium) by assessing the
response to ablation at the best pace mapping site with evidence of VA elimination [3].
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Table 1. Composition of Ventricular Premature Contraction source of training/validation data and testing Data.

Locations
Training/Validation Data Testing Data - Training/Validation Data Testing Data

Subject Number
(TPE/ZJ)%

Wave Number
(TPE/ZJ)%

Subject Number
TPE (%)

Wave Number
TPE (%)

Detailed Location
Subject Number

(TPE/ZJ) %
Wave Number

(TPE/ZJ) %
Subject Number

TPE (%)
Wave Number

TPE (%)

LVOT Cusp 15 (27.27) 139 (28.90)

Supravalvular LCC 56 (17/39) 9.52
389 (232/148)

10.70
6 (10.90) 49 (10.19)

Supravalvular RCC 15 (8/7) 2.55 108 (76/32) 2.98 3 (5.45) 24 (4.99)
Supravalvular

LCC/RCC junction
20 (13/7) 3.40 172 (138/34) 4.74 5 (9.09) 62 (12.89)

Infravalvular AMC 18 (0/18) 3.06 88 (0/88) 2.43 1 (1.82) 4 (0.83)

111 (40/71)
18.88

750 (448/302)
24.23

Supravalvular
Septo-parahisian

2 (2/0) 0.0 2 (2/0) 0.06 0 (0.0) 0 (0.0)

LV Summit
69 (64/5)

13.73
641 (625/16)

17.67
10 (18.18) 103 (21.41)

LVOT Epicardial
AIV/CGV

69 (64/5) 11.73 641 (625/16) 17.67 10 (18.18) 103 (21.41)

LV chamber 3 (5.45) 70 (14.55)

MA 4 (4/0) 0.68 12 (12/0) 0.33 1 (1.82) 55 (11.43)
PPM Anterolateral 6 (6/0) 0.68 28 (28/0) 0.77 0 (0.0) 0
PPM Posteromedial 1 (1/0) 0.17 10 (10/0) 0.28 1 (1.82) 9 (1.87)

Crux 1 (1/0) 0.17 4 (4/0) 0.11 0 (0.0) 0
Fascicular Left

posterior fascicle
3 (3/0) 0.51 14 (14/0) 0.39 0 (0.0) 0

24 (22/0)
3.74

199 (199/0)
5.49

Fascicular Left
anterior fascicle

9 (9/0) 1.53 131 (131/0) 3.60 1 (1.82) 6 (1.25)

RVOT
226 (135/91)

38.44
1273 (930/343)

35.09
17 (30.91) 99 (20.58) RVOT 226 (135/91) 38.44

1273 (930/343)
35.09

17 (30.91) 99 (20.58)

RV chamber 10 (18.18) 70 (14.55)

Parahisian 2 (2/0) 0.34 2 (2/0) 0.06 1 (1.82) 1 (0.21)
TA 13 (13/0) 2.21 99 (99/0) 2.73 3 (5.45) 4 (0.83)

PA 144 (24/120) 24.49
645 (196/449)

17.78
4 (7.27) 24 (4.99)

167 (40/120)
27.21

765 (316/449)
21.09

PPM 1 (1/0) 0.17 19 (19/0) 0.52 2 (3.63) 41 (8.52)
total 588 3628 55 481 - 588 (301/287) 3628 (2518/1110) 55 481

The composition of data use for training and validation and testing data are shown. The left half of the table shows the cluster’s location of VPC with five different groups. The right side
of the table shows a more detailed VPC location. TPE: Data from Taipei General Hospital, ZJ: Data from Chapman University and Ningbo First Hospital of Zhejiang University. The
shaded column indicated training data.
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2.3. Data Preprocessing

The raw ECG data containing potential recording from 12 leads range from 4 s to
nearly one minute. VPC waves are extracted manually by marking out the beginning and
end of a single VPC wave as shown in the left upper part of Figure 3. Only non-continuous
waves were used for training. Continuous VT waves were excluded to simplify the analysis.
As a result, the number of VPC waves extracted from each patient varied, and ranged from
one to 20 to feed the CNN model, the dimension of the input is fixed at 12 × 1024. We
further extended the tail of the data along the time axis with the last value of recording up
to the length of 1024 since not all VPC waves have the same length. For waves with more
data points, we trimmed the tail off to fix the length to 1024.
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Figure 3. Data preprocessing and model structure demonstrated with feature maps The upper part
of the figure demonstrates a simplified workflow to extract VPC (ventricular premature contraction)
waves from the raw data. The 12 cropped VPC waves will be further stacked together to form a
12 × 1024 matrix for model input. The lower part of the figure demonstrates a simplified structure
of the model with feature maps passed through the model. The red square is the kernel of each
CNN layer. The number of feature maps and the ratio of feature maps are modified for better
demonstrations. C1−C6 is the label for each CNN layer, which matches the maker used in Table 2.

Table 2. Detailed parameter of the model used in this study.

Marker Input Size Layer Output Size Number of
Feature Maps Kernel Size Stride Activation

- - ECG in 2D 12 × 1024 - - - -
C1 12 × 1024 Convolution 16 × 12 × 1024 16 1 × 129 1 ReLU
C2 16 × 12 × 1024 Convolution 16 × 12 × 1024 16 1 × 129 1 ReLU
- 16 × 12 × 1024 Average pooling 16 × 12 × 512 16 - 2 -

C3 16 × 12 × 512 Convolution 16 × 12 × 512 16 1 × 65 1 ReLU
- 32 × 12 × 512 Average pooling 16 × 12 × 256 16 - 2 -

C4 32 × 12 × 256 Convolution 32 × 12 × 256 32 1 × 33 1 ReLU
- 64 × 12 × 128 Average pooling 64 × 12 × 64 64 - 2 -

C5 128 × 12 × 64 Convolution 128 × 1 × 64 128 12 × 1 1 ReLU
C6 128 × 1 × 64 Convolution 128 × 1 × 64 128 1 × 3 1 ReLU
- 128 × 1 × 64 Average pooling 128 × 1 × 64 128 - 2 -
- 1 × 8192 Fully connected 1 × 1024 - - - ReLU
- 1 × 1024 Fully connected 1 - - - Sigmoid
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For simplicity, we only include the VPC waves composed of complete QRS and T
waves. We excluded the continuous VT, which is difficult to determine the start and end
of each excitation. In total, we identified 2518 waves of VAs from 356 patients at Taipei
General Hospital, Taiwan. For online data which is gathered from Chapman University
and Ningbo First Hospital of Zhejiang University, we identified 1110 waves of VPC from a
total of 287 patients. The overall composition of the data is shown in Table 1.

2.4. Input Format and Model Structure

As observed from previous clinical experience, the assessment for the source of VPC
required more than one lead information. For example, the earlier the precordial transition
indicated an RVOT origin. Based on this intuition, we choose to include all signal informa-
tion from 12 ECG leads for model input. The 12 leads ECG signals are stacked together to
form a 2Dimage-like a matrix for model input as shown in Figure 3. The horizontal axis
will be the time step, and the vertical axis will be the lead with the order I, II, III, aVR, aVL,
aVF, V1, V2, V3, V4, V5, V6, from top to button.

We construct our CNN model from scratch without any pre-trained models. The model
is composed of two groups of convolutional neural network (CNN) layers, which is inspired
by a previous study [22]. The first group of CNN layers contained a temporal kernel for
feature extraction along the time axis of the data. This part of the model contained three
blocks. Each block contained convolution, average pooling, and batch normalization. When
the data passes through these layers, the vertical dimension stays the same. The second
group of CNN layers contained two blocks. The first block contained a cross-leads kernel to
extract spatial information. Each block also contained convolutional, average pooling, and
batch normalization. The vertical dimension of the data shrinks to one after passing through
the first block. This block is followed by another CNN layer with a temporal kernels, as
shown in Figure 2. Activation map and fluoroscopic map for ventricular premature complex
originating from the right coronary cusp (RCC), the temporal kernel l has a larger size along
the time axis while the cross-lead kernel has a larger axis along the lead axis. After the
CNN layer, two fully connected layers were used. The sigmoid activation is used for the
output from the last layer of the model. Details of the parameter of each layer are shown
in Table 2. Dropout layers were used as follows by every convolution layer with 10% the
input value set to zero. Batch normalization is used following every average pooling layers.

2.5. Data Allocation

We choose around 8% of all the data for model testing and 10% for validation. To make
sure the label accuracy, we only used data from the Taipei Veteran General Hospital. There
are 11 classes of location based on the classification system we use, and can be viewed from
Table 1 [21]. For testing data, we did not just randomly select cases from the total data
set. We specifically picked cases from all of the 11 classes to generate testing data set that
has a more even distribution of cases. Otherwise, certain classes might not have a case to
be tested. To test data as variable as possible, we randomly selected cases from the class
with more than two cases. The distribution of the selected cases is shown in Table 1. We
also intentionally increased the number of cases over LV summit, since these testing data
are also used for testing the model for distinguishing LV summit. To prevent imbalanced
testing data, we specifically chose the data with VPC from different heart ventricles. The
result is that the VPC from the left and right side of the heart is 49.1% and 50.9% (by
patient number).

2.6. Model Training
2.6.1. For Binary Classifying Right- and Left-Sided VPC Source

With the model structure described above, we trained the first model for binary
classification of VPC sources from the left or right side of the chamber. The training and
testing data sets are shown in Table 1. For class prediction, a model output value closer to
zero will be classified as the left side.
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2.6.2. For Classifying Summit of Ventricle from Other VPC Sources

We further trained a model using the same structure to identify VPC arising from
the LV summit. We used the same training and testing data set as shown in Table 1,
but we modified the label to separate the left ventricle summit from the rest of the other
locations. For class prediction, a model output value closer to one will be classified as a left
ventricle summit.

2.6.3. Hyperparameter Tuning, Training Policy, and Other Training Methods Used

Hyperparameters such as batch size, number of convolution layers, and number of
neurons in the fully connected layers were tuned based in the performance of the model on
the validation data set. For the training rate schedule, a cyclic training rate with exponential
decay is used [23]. The step size was set at 32 with base learning of 1 × 10−4 and maximum
learning of 0.01. To prevent overfitting, early stopping policy is applied. We tolerated up to
four epochs if the loss of the validation data was higher than the training data.

Most idiopathic VPCs usually arise from the RVOT (70–80%). LVOT only accounts for
less than 20%. For the imbalanced data issue, we applied weighted sampling to increase
the chance of VPC arising from the 11 different sub-classes. For classifying the summit of
the ventricle from another VPC source, we also performed weighted sampling to amplify
the ratio of VPC arising from the summit being used for training.

For overfitting, we applied data augmentation by randomly stretching the wave from
0 up to 20%. Signals from each lead were also vertical drifted randomly from −200 mV to
200 mV. VPC waves were randomly trimmed from the tail and head up to 100 steps.

2.7. Model Evaluation

The receiver operating characteristic curve (ROC) is used for model evaluation. The
accuracy, F-score, sensitivity, specificity, and positive-predict value are also provided.
To further identify the source of error, we performed subgroup analysis by plotting the
distribution of model output from different VPC sources. The distribution is shown with a
violin plot.

2.8. Combining Two Models for VPC Site Identification

We further combined the model for left-right classification and LV summit classifica-
tion to test the potential in a clinical scenario. Thresholds were chosen to obtain the best
g-mean for both models. Testing data were first classified by model for left-right ventricle
source identification. For the cases classified on the left side, they will be further processed
with a second model to establish whether it is from the LV summit.

2.9. Implementation of Model Building, Training, and Model Evaluation

The model was trained with NVIDIA RTX 3070 GPU. The framework used for model
building, training, and testing was made with Pytorch 2.0 [24]. The training time for
each epoch was around 5 s. Further evaluation with Receiver operating characteristic
(ROC) curve and violin plots were constructed with scikit-learn library in conjunction
with matplotlib.

3. Results
3.1. Study Population

Our study merged data from two datasets. The first one is an open-source data set
from Chapman University and Ningbo First Hospital of Zhejiang University, China, which
consisted of VPC ECG recordings from 334 patients. The second is from Taipei Veterans
General Hospital, Taiwan. Table 3 shows the baseline characteristics of the enrolled study
population from Taipei Veterans General Hospital. The mean age was 49.6 ± 15.6 and 49.8%
of patients were male in patients from Taipei Veterans General Hospital. Hypertension was
the most common underlying disease, followed by dyslipidemia and type 2 DM. More
details of the other open-source data sets can be found in the report of J Zheng et al. [17].
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Table 3. Clinical characteristics of the study population.

Clinical Features Taipei Veterans General
Hospital (n = 397)

Chapman University and
Ningbo First Hospital of

Zhejiang University (n = 334)

Age (years) 48.7 ± 15.6 46.1 ± 13.1
Male (n,%) 173 (43.6%) 104 (32%)

Dyslipidemia (n,%) 43 (10.8%) -
Diabetes mellitus (n,%) 29 (7.3%) -

Hypertension (n,%) 85 (21.4%) -
Chronic Kidney Disease (n,%) 5 (1.3%) -

Old stroke (n,%) 3 (0.8%) -
Atrial Fibrillation (n,%) 13 (3.3%) -

OSAS (n,%) 8 (2.1%) -

3.2. Training and Testing Data Descriptions

Details of the VPC source distribution over the raining and testing datasets are shown
in Table 1. Left ventricular outflow tract (LVOT) and RVOT combined account for the
largest portion of the training data, which is about 70%. For locations outside the outflow
tract, they account for the remaining 30%. For the ratio between location over left or right
ventricle, 49.1% is from the left side, and 50.9% is from the right side (by patient number).

3.3. Model Performance for Classifying Right- and Left-Sided VPC Source

After training, we obtain a model with an area under the curve of ROC of 0.963.
(Figure 4A). The threshold of the best geometric mean (g-mean) between sensitivity and
specificity is 0.739. With this threshold, the sensitivity and specificity are 90.7% and 92.3%
for identifying left side VPC. In addition, for accuracy and F1-score, they are 0.91 and 0.88
respectively. Further subgroup analysis, a violin plot is shown in Figure 4B. All the model
output from different VPC locations shows a range between 0.0–1.0, which means there
were always certain misdiagnosed cases regardless of the threshold chosen. The VPC from
coronary cusps shows a suboptimal distribution with most of the cases evenly distributed
across values ranging from 0.0 to 1.0. This result indicates that most of the errors in the
prediction come from the VPC of the cusp region.

3.4. Model Performance for Identifying VPC from LV Summit

The performance of the model for predicting VPC from the LV summit shows excellent
results (Figure 4C). The area under the ROC curve is 0.998. The threshold of the best
geometric mean (g-mean) between sensitivity and specificity is 0.699, which has a sensitivity
of 100% and specificity of 98% for LV summit detection. In addition, accuracy and F1-score
were 0.99 and 0.99 respectively.

3.5. Data Size and Model Performance

To evaluate the effect of data size on the model performance, we train models for
Left-Right classification with different data sizes. We observed a trend of increasing model
performance with the increase in data size. An early stopping policy was applied and
validation data size was fixed. In addition, with the implementation of weighted sampling
and data augmentation, the accuracy much improved, as shown in Figure 5.
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Figure 4. Receiver operating characteristic (ROC) of models for classifying ventricular premature
contraction and distribution of model output from a different location. (A) The ROC of the model
for distinguishing VPC from the left or right ventricle. The red dot indicates the best geometrical
mean (g-mean) of sensitivity and specificity. (B) The vertical line of each group indicates the range of
the values. The width of the plot indicates the ratio of data with this value. (LV summit: VPC from
left ventricle summit, Cusp: VPC from right coronary cusp, left coronary cusp, right and left cusp
junction. Left chamber: VPC from the aorto-mitral curtain, Left anterior fascicle, mitral annulus, left
ventricular papillary muscle, RVOT: VPC from right ventricle outflow tract. Right chamber: VPC
from right ventricular parahisian, pulmonary artery, right ventricular moderator band, tricuspid
annulus). (C) The ROC of the model for identifying VPC from the summit of the left ventricle. The
red dot indicates the best geometrical mean (g-mean) of sensitivity and specificity.

3.6. Combining Model for Left-Right Classification and LV Summit Identification

We further combined the first and second models into a diagnostic workflow as shown
in Figure 6. The positive prediction rate for left side VPC and right side VPC were 90% and
92%, respectively. As for the positive predicted rate of LV summit, it is 99%.
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4. Discussion
4.1. Previous Studies of Manual Measurement and Machine Learning in the Localization of
Ventricular Arrhythmia

Several ECG parameters were proposed to distinguish the origin of idiopathic ven-
tricular arrhythmia (Table 4). In 2007, Yang et al. found that the earliest onset or first
peak/nadir in V2 and early initial peak/nadir in the inferior leads suggested an RVOT
focus [25]. Yamada et al. demonstrated that a right bundle-branch block, transition zone,
R-wave amplitude ratio in leads III to II, Q-wave amplitude ratio in leads aVL to aVR,
and S waves in lead V6 could predict the origin of LV summit [26]. Later, the transitional
zone index was introduced to be a more useful marker for differentiating RVOT origin
from left coronary cusp origin [27]. One previous study showed that the V2S/V3R index
outperformed other ECG criteria to differentiate left from right outflow tract origins in-
dependent of the site of the precordial transition [28]. Furthermore, He et al. established
an ECG diagnostic model that consisted of two ECG algorithms-the transition zone (TZ)
index and V2S/V3R index, with a sensitivity of 90% and a specificity of 87% [8]. Although
these studies have favorable accuracy, the sample size and reproducibility of manual ECG
measurement could impact the results.

Table 4. Comparison with previous studies for localization of Idiopathic Ventricular Arrhythmias.

Method Type Methods Classification Cases for
Testing

Accuracy
Sensitivity/Specificity

%
Reference

Deep Learning CNN Left vs. Right side 55 91/92 Current Study

Deep Learning CNN LV summit vs. others 55 100/98 Current Study

Deep Learning CNN Left vs. Right side 21 100/92 Ref. [29]

Machine Learning SVM Left vs. Right side 21 100/82 Ref. [29]

Machine Learning SVM LVOT vs. others 117 64/? * Ref. [30]

Machine Learning ECG Feature
extraction + SVM LVOT vs. RVOT 42 96/100 Ref. [31]

Manual Rules

RBBB pattern,
aVL/aVR amplitude
ratio and S wave in

V5 or V6

LV summit vs. others 27 87/100 Ref. [26]

Manual Rules The earliest onset of QRS
and peak/nadir in V2 LVOT vs. RVOT 45 92/88 Ref. [25]

Manual Rules Combined TZ index and
V2S/V3R LVOT vs. RVOT 695 90/87 Ref. [8]

Manual Rules V2S/V3R index ≤1.5
predicting LVOT origin LVOT vs. RVOT 207 89/94 Ref. [28]

Manual Rules Transition zone index <0
predicting LVOT origin LVOT vs. RVOT 112 88/82 Ref. [27]

Left vs. Right side: Indicate that the VPC being studied in this study includes the location of all the ventricles not
only the outflow tract. LVOT vs. RVOT: Indicate that the study only focuses on the classification of outflow tract
VPC. * Due to the study design, the specificity is unknown. Ref.: Reference.

As artificial intelligence (AI) emerged from the surface, machine learning and deep
learning have been applied in the identification of ECG features, as shown in Table 4. Recent
studies showed that support vector machines (SVM) could be used in clinical settings to
automatically analyze ECG data before and during the procedure [29,30]. By comparison,
Zheng et al. demonstrated that CNN supplied with ECG features extraction could attain
clinical-grade precision of prediction for localizing the origin of ventricular arrhythmia [31].



J. Pers. Med. 2022, 12, 764 13 of 17

4.2. The Current Study in Comparison with Previous Artificial Intelligence Studies

Since the data for idiopathic ventricular arrhythmia is very limited, the data size for
the previous study is usually small, ranging from a few dozen up to one hundred [4].
Studies that have a few hundred cases are very limited. This is probably why we could
only find only a few studies trying to solve the VPC localization problem with machine
learning and deep learning at present.

One study group from China (the one from which we obtained the open data), com-
bined a designed featured extraction method and use a Support Vector Machine (SVM)
to classify left and right outflow tract ventricular tachycardia [31]. The features being
measured included the height of each wave from different leads, the width of each wave,
and more. With a training data size (patients) of 340 and a testing data size of 42. The
model showed high accuracy and a high F1-score (97.62 and 98.46). However, the real
performance of the method in the real world is still questionable since their testing dataset
is relatively small and seriously biased to RVOT with only nine LVOT cases, amounting
to 42 patients. Another study used a very similar study design to ours that use the CNN
model to distinguish left from right ventricle VPC [29]. However, they used 1D-CNN rather
than a 2D-CNN. They attach a single VPC wave signal from 12 leads head to tail into a
1-dimensional signal. Then, they trained a one-dimensional CNN model and SVM with a
data size of 77 patients and test on 21 subjects. With this setting, they achieved accuracy
and F1-score of 0.94 and 0.94 for SVM. For CNN, the accuracy and F1-score are 0.87 and
0.87. They also have a relatively small data set of 21 patients. VPC from the left side only
accounts for 29%.

In comparison with these two studies, one of our major advantages is that we have the
largest and most balanced testing data set, which can provide a more accurate assessment
of the model. We also developed a model that can identify VPC from the summit area with
very high accuracy, which can be of high clinical application, comparing only separating
left from right VPC. This is probably a benefit of our larger dataset.

Another advantage of our study is that our training data are mainly clinical VA and
we only selected solitary VPCs other than VT. Compared to previous studies, some of the
training data are based on intraprocedural pacing waveforms [32]. The pace mapping
was shown to be misleading, especially in the outflow tract VPC because of the capture of
adjacent myocardium or the presence of preferential conductions. Therefore, the application
of pacing waveforms for training might fail to predict the VPC origin accurately [33–35].

In line with previous studies [31,32], our model showed promising results in differ-
entiating locations of VPC, especially the LV summit. In the subgroup analysis with the
violin plot, most VPCs could be classified into the right or left side accurately. However,
the result for VPC from coronary cusps was barely satisfactory. The reason for a possible
reduction the accuracy of ECG predictive algorithms in the coronary cusp is that VPCs from
this region have preferential conduction to the RVOT, possibly because of myocardial fiber
orientation. Parts of the coronary cusps are adjacent to the RVOT [36]. Yamada et al. [37]
demonstrated that nearly 25% of patients with VAs originating from the coronary cusps,
where the earliest activation was located, had better pace mapping results in RVOT in
comparison to coronary cusps. When mapping the RVOT, the finding of early but far-field
signals may be the consequence of preferential conduction from a deeper LVOT focus.

Furthermore, it was reported that 4% of patients with outflow tract VAs might have a
change in preferential conduction that was observed with alteration of the VPC morphology
following catheter ablation [38]. The phenomenon was suggestive of an intramural origin
of VPC with a shift in the surface breakout due to ablation at the first preferential exit. In
this situation, ablation at RVOT and coronary cusp would be needed occasionally.

During the development of the model, we tried to build a multiclass model to classify
VPC sources directly into five groups (LV summit, coronary cusp, LV chamber, RVOT, and
RV chamber). However, with the same CNN model structure by only replacing the last
output layer, we failed to train a model that has comparable performance to the binary
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classification model. This might be due to a lack of data, or a more complex model is
required. This will require further study.

4.3. Application of Current Findings into Clinical Practice

The accurate prediction of VA origin before the procedure is crucial in the clinical
setting. In terms of VA from the right and left chambers, accurate prediction could con-
tribute to avoiding unnecessary catheter manipulation and therefore reduces the procedure
time and perioperative adverse events. In terms of VA from the LV summit, catheter
ablation is challenging. The origin of these arrhythmias may be the epicardium of the left
outflow tract or the intramural myocardium next to the basal septum, and mapping of
the proximal septal venous perforator can help to make this differentiation. VPCs from
the LV summit can be eliminated by ablation from the coronary venous system or from
adjacent endocardial structures, including septal right ventricular outflow tract, the left
coronary cusp, or the basal endocardium of the left ventricle. In some challenging cases,
bipolar radiofrequency ablation or ethanol infusion into the coronary venous system was
needed due to deeper intramural lesions [39,40]. Thus, accurate prediction of VPC from LV
summit before the procedure would be helpful for the operator in preparation, mapping,
and ablation.

In conclusion, although the source of VPCs prior to ablation can be predicted from an
electrocardiogram, it is sometimes misleading. Our study showed the promising perspec-
tive of the machine learning models that predict the origin of VPC. Further model training
with accumulated samples is warranted to improve the diagnostic efficacy.

5. Study Limitations

First, because we did not have enough well-labeled data to feed a deep learning model,
the algorithm currently only predicts the right, left chamber, and LV summit. Second,
some conditions, such as cardiomyopathies, reentrant VT, coronary heart disease, and
prior structural and congenital abnormalities, are excluded from the study. Thus, the
algorithm potentially has a limitation if applied in such scenarios. Third, the data used
for training and testing is still relatively small. The dataset might not cover people with
different anatomical differences, such as different heart locations, different torso shapes,
body sizes, different body muscles and fat composition, which are all known to affect
heart potential measurements from the body surface. Fourth, we only enrolled the Asian-
pacific population, so our algorithm might not be able to apply to different populations.
In the future, our algorithm needs to be evaluated for online detection of VPCs and other
ventricular arrhythmias.

6. Conclusions

To the best of our knowledge, currently, this is the largest cohort for machine learning
to localize VAs. Based on surface ECG signals, a non-invasive method is helpful to facilitate
VA localization. The proposed method could be important to optimize ablation strategy
and may help to improve ablation outcomes.
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