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Abstract

With the advent of next-generation sequencing technology, rare variant association analysis is increasingly being conducted
to identify genetic variants associated with complex traits. In recent years, significant effort has been devoted to develop
powerful statistical methods to test such associations for population-based designs. However, there has been relatively little
development for family-based designs although family data have been shown to be more powerful to detect rare variants.
This study introduces a blocking approach that extends two popular family-based common variant association tests to rare
variants association studies. Several options are considered to partition a genomic region (gene) into ‘‘independent’’ blocks
by which information from SNVs is aggregated within a block and an overall test statistic for the entire genomic region is
calculated by combining information across these blocks. The proposed methodology allows different variants to have
different directions (risk or protective) and specification of minor allele frequency threshold is not needed. We carried out a
simulation to verify the validity of the method by showing that type I error is well under control when the underlying null
hypothesis and the assumption of independence across blocks are satisfied. Further, data from the Genetic Analysis
Workshop 17 are utilized to illustrate the feasibility and performance of the proposed methodology in a realistic setting.
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Introduction

Genome-wide association studies (GWAS) have been extremely

successful in identifying a bounty of common genetic variants

linked to complex diseases and traits in the human population.

While the identification of many novel variants associated with

many traits has been a great accomplishment of GWAS, these

genetic variants usually have small effect sizes and only account for

a small proportion of the phenotypic variation. For example,

height has been a well-known heritable quantitative trait with an

estimated 80{90% of the variation attributed to genetic factors

[1], yet recent studies detected quite a number of loci that together

only account for approximately 45% of the overall height variance

[2]. Such observations have led to the hot topic of ‘‘missing

heritability’’ [3,4] and demonstrated the necessity of exploring

other types of genetic variation that may account for unexplained

heritability. With the ability to sequence the entire genome deeply,

researchers have been looking beyond common sequence differ-

ences and interrogating rare single-nucleotide variations (rSNVs),

i.e. variants of low minor allele frequency (MAF), that can

contribute substantially to complex diseases. Therefore, many

recent studies have focused on the possible contribution of rSNVs

and they have hypothesized that some portion of this rare

variation underlies much of the unexplained heritability of many

complex traits [5].

Although assessing the role of rare variants in complex diseases

is becoming increasingly feasible, detecting associations with rare

variants still remains a challenging problem since rare variants are

hard to pick up due to their low frequencies. Standard GWAS

methods such as single-marker association tests are not appropri-

ate strategies for detecting these low-frequency variants due to the

fact that power diminishes with decreasing allele frequencies. As a

result, a bevy of creative algorithms targeting rare variants have

emerged. Such tests ‘‘collapse’’ information from rSNVs within a

gene, a genomic region, a pathway, or some other defined

properties. Without loss of generality and for ease of reference, we

use genomic region when discussing such tests. Burden tests

constitute a big portion of the existing literature [6–9]. These

methods aim to maximize the power to detect causal variants by

combining information across variants in a target genomic region

which may be a gene or other functional unit. These tests provide

a significant improvement over single-marker tests since each

individual rare variant can make only a small contribution to the

overall disease prevalence or trait variance, whereas their

aggregate effect may constitute a significant attributable risk.

While each of these burden tests differs in form, they all suffer

from power loss when both protective and risk variants are present

in the region of interest. Consequently, several methods that are

robust to the direction and magnitude of the effects of causal

variants have been proposed such as data-adaptive methods [10]

and variance component based method (SKAT) that test the

variance rather than the mean [11]. Recently, Lee et al [12] have

proposed an unified approach that maximizes power by adaptively

using the data to optimally combine the burden test and the non-

burden SKAT test.
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Investigators often use either population-based or family-based

sampling designs to study the genetic basis of complex diseases. A

population-based design samples affected and unaffected individ-

uals who are unrelated, such as case-control samples. Almost all

the methods proposed in the literature for detecting rare variant

associations, including those discussed above, are for case-control

studies. On the other hand, a family-based design treats a family as

a sampling unit, which can be as simple as trios or as complex as

large extended pedigrees with potentially multiple affected

individuals per pedigree. For family studies, half of the offspring

are expected to inherit a copy of the minor allele from a parent

who has a copy of it. Therefore, variants that are rare in the

general population could be quite common in certain families and

are potentially more informative. Aggregation-based rare variant

tests for analyzing family-data, however, are very limited and in

fact only a handful have been proposed to date. Zhu et al. (2010)

[13] propose a two-stage method that utilizes part of the data set to

co-classify rare risk haplotypes either by unrelated-case or affected

sibpair design, while the rest is used for association testing. It was

demonstrated that the affected sibpair design has better power to

co-classify rare risk haplotypes than the unrelated-case design due

to the risk haplotype frequencies being more enriched in affected

sibpairs than in affected cases. Similarly, Feng et al [14] developed

a sibpair-based weighted sum statistic to detect both rare and

common risk variants residing in a gene or a genomic region.

Neither method models phenotypic or genetic correlations

between related individuals and they cannot be used to analyze

pedigree samples. Natural extensions of existing tests for popula-

tion-based designs to family designs have also taken place in the

literature. Two recent studies extended the idea of SKAT to family

data [15,16], but they only deal with quantitative traits. There is

also an extension of a popular family-based association test (FBAT)

to test for variants jointly over a region of interest [17]. Although

the method can be used for both quantitative and qualitative traits,

it relies on sometimes unrealistic assumption that all variants have

effects in the same direction.

Due to low allele frequencies, it is hypothesized that rare

variants do not exhibit strong linkage disequilibrium (LD) with

either rare or common SNVs [18,19]. Therefore, it has been argued

in the last few years that rare rSNVs are independent, however,

recent studies revealed that such an assumption is extremely liberal

and can lead to significant inflation of type I error [20]. On the other

hand, collapsing all rSNVs over a wide region and correcting for

their dependence in an ad-hoc manner can lead to loss of power,

since distant rSNVs are likely to exhibit independence, or at least

such an assumption is not grossly violated. To balance the two

extremes so that distant independence can be harnessed without

sacrificing type I error, in this paper, we propose a blocking

approach by assuming distant SNVs (i.e. SNVs between different

blocks) are independent whereas dependency of SNVs within a

block is taken into account. The proposed methodology does not

require any assumptions about the directions of effect or the effect

sizes of rare genetic variants in the region. Further, the approach

can analyze all SNVs (rare or common) within a genomic region to

avoid a preset threshold for rare variants. This is clearly an

advantage over methods that require the specification of such a

threshold as such methods are shown to be sensitive to the selection.

Another important advantage of the proposed method inherited

from family-based designs is its robustness to population stratifica-

tion. The blocking approach is developed for two popular family-

based common variant association tests for binary traits: PDT and

FBAT. We evaluated the proposed methods based on simulation

and application to the Genetic Analysis Workshop 17 data.

Comparisons with two FBAT extensions to rare variants by De

et al. [17] were also carried out.

Materials and Methods

Family-based Association Tests - PDT and FBAT for a
Single SNV

In this subsection, we first briefly describe two popular family-

based tests, Pedigree Disequilibrium Test (PDT, [21]) and Family-

Based Association Test (FBAT [22]), that are applicable to general

pedigree data for testing for association in the presence of linkage.

At the end of this subsection, we also describe two recent

extensions of FBAT [17] for testing the aggregate effects of rSNVs.

Table 1. Type 1 error and power results for the simulation based on a data set with 80 families.

Type I Power

Method Option b~(0,0,0)0 b~(2,2,2)0 b~(2,{2,2)0 b~(3,3,3)0 b~(3,{3,3)0

Option 1 0.014 0.538 0.385 0.896 0.868

Option 2 0.005 0.108 0.107 0.638 0.615

rbPDT

Option 3 0.017 0.138 0.116 0.717 0.687

Option 4 0.007 0.366 0.245 0.802 0.765

1 Block 0.037 0.487 0.328 0.544 0.579

Option 1 0.132 0.475 0.269 0.718 0.628

Option 2 0.017 0.495 0.452 0.862 0.788

rbFBAT

Option 3 0.046 0.488 0. 344 0.834 0.756

Option 4 0.011 0.758 0.542 0.945 0.915

1 Block 0.170 0.250 0.130 0.486 0.412

v1 (weighted) 0.008 0.155 0.027 0.837 0.555FBAT

v0 (0.005) 0.008 0.098 0.024 0.561 0.379

v0 (0.01) 0.007 0.091 0.028 0.623 0.413

v0 (0.05) 0.005 0.170 0.040 0.767 0.533

The nominal a{level is set to be 0:01. The between-block independence structure holds under Option 4.
doi:10.1371/journal.pone.0086126.t001

Rare Variant Analysis for Family Data
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Our proposed rare blocking methods (rbPDT and rbFBAT) will be

presented in the next subsection.

Let N be the total number of pedigrees and ni be the number of

non-founders in the ith pedigree. Let Yij and Xij denote the trait

value and the genotype score at the given SNV of the jth non-

founder in the ith pedigree, respectively, where i~1,2, . . . ,N;

j~1,2, . . . ,ni. We assume that all N pedigrees in the data set are

independent. In this study, we consider a binary trait where 1 is case

and 0 is control. At each SNV, genotype score is coded as 0, 1 and 2
to represent 0, 1 or 2 copies of minor allele.

The general test statistic for FBAT uses the covariance between

the traits and the genotypes as a measure of association. Specifically,

TFBAT~

PN
i~1 UiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i~1 Var(Ui)

q

where Ui~
Pni

j~1 Yij(Xij{E(XijjSi)) with Si representing the

sufficient statistic for parental genotypes, Var(Ui)~

P
j,j0 YijYij0cov(Xij,Xij0 jSi,Yij,Yij0 ) and the covariance in the

formula is computed conditional on the traits and the sufficient

statistic assuming the null hypothesis is true. Under the null

hypothesis of no association, TFBAT follows the standard normal

distribution for large samples.

The PDT considers trios and discordant sibpairs in each

pedigree. For a given SNV with two alleles M1 and M2, we define

XT m~(#M1 parental alleles transmitted)-(#M1 parental alleles

not transmitted), for the mth trio with an affected child and

XSm~(# M1 alleles in affected sib)-(# M1 alleles in unaffected

sib) for the mth discordant sibpair. Then the PDT test statistic is

TPDT~

PN
i~1 ViffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i~1 Var(Vi)

q

where Vi~
Pnt(i)

m~1 XT mz
Pns(i)

m~1 XSm, dVarVar(Vi)~V2
i , and nt(i)

and ns(i) denote the number of informative nuclear families

(consisting of one affected child and two parents) and discordant

Figure 1. rbPDT results using different blocking options: (a) Option 1 with block size 2, 3, 4, 5, or 6 kb; (b) Option 2 with number of
blocks 2, 3, 5, 7, or 10; (c) Option 3 with blocks including 2, 3, 5, 7, or 10 SNVs; (d) Option 4 with number of blocks 2, 3, 5, 7, or 10.
doi:10.1371/journal.pone.0086126.g001

Rare Variant Analysis for Family Data

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e86126



sibpairs (consisting of one affected sibling and one unaffected

sibling), respectively, for the ith pedigree. Under the null

hypothesis of no association, TPDT follows the standard normal

distribution.

Family-based Rare Association Tests -FBAT for Multiple
SNVs

As in population-based approaches, single-SNV statistics may

lack power to detect associations with rare variants. De et al [17]

recently proposed a method that extends the FBAT statistic to test

for rare variants by collapsing variants within a genomic region.

More specifically, if there are p variants within the region, then

TFBAT (k) represents the value of the FBAT statistic for SNV

k~1,2, . . . ,p and the modified FBAT statistic for rare variants is

defined as the sum of these p statistics. The standardized test

statistic is obtained by dividing this sum by its standard deviation

which is calculated using the correlation matrix estimate suggested

by Rakovski et al. [23].

De et al. [17] considered analyzing either only rare variants

using a fixed threshold or all variants within the region of interest

using a weighting scheme. In the former, one can use a threshold

value based on allele frequencies to identify a subset of variants as

rare and consider the analysis on only that subset. Although 1%
and 5% are the most conventional choices, setting the threshold

too low may exclude some rare causal variants (those whose

frequencies are above the threshold), yet setting it too high may

include too many non-causal variants. Either way can potentially

lead to loss of power. There may be further power loss if there are

common causal variants. Alternatively, a weighting scheme based

on allele frequencies is also proposed for joint analysis of common

and rare variants. Throughout this paper, fbatv0 and fbatv1 denote

the fixed threshold (using only rSNVs) and the allele frequency

weighted (using all SNVs) approaches, respectively.

rbPDT and rbFBAT - Blocking Approaches for Multiple
SNVs

We propose a novel collapsing idea that can be incorporated

into standard family-based tests PDT and FBAT. The idea is to

balance the two extreme assumptions (all independence, or all

dependence, of SNVs) that existing methods rely on by

hypothesizing that distant SNVs are independent while depen-

dency exists among nearby SNVs. In this approach, a genomic

region is divided into blocks and SNVs within each block are

aggregated to arrive at a statistic. Further aggregation is then

performed across blocks but the block statistics are now assumed to

be independent in the second layer of aggregation. The approach

analyzes rare and common SNVs jointly and does not require a

particular MAF threshold selection.

Suppose there are B blocks spanning the genomic region within

which aggregate effect of the SNVs will be assessed. Details of the

how to construct these blocks will be provided in the following

subsection. Now consider block b,b~1, � � � ,B, and assume that

there are p SNVs within the block. We consider a family-based test

statistic (i.e. FBAT or the PDT) for the ith pedigree and kth SNV as

described in the previous section and denote it as Dik,

i~1,2, . . . ,N; k~1,2, . . . ,p. Then we define Qb
i ~

Pp
k~1 (Dik)2

as the aggregate statistic for pedigree i in block b. Note that by

squaring the statistic for each SNV, one can prevent effects of

deleterious and protective variants within the block to cancel out

each other. Under the null hypothesis of no association, E(Dik)~0

implying that E(Qb
i )~

Pp
k~1 Var(Dik): The pooled variance of

the Dik’s provides an estimate for E(Qb
i ), and is denoted as ÊE(Qb

i ).

We define Qb�

i ~Qb
i {Ê(Qb

i ), then

Tb~

PN
i~1 Qb�

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1 (Qb�

i )2
q

denotes the standardized statistic utilizing information from all

SNVs within block b for all pedigrees, which follows a standard

normal distribution approximately assuming N is sufficiently large.

We then sum over information from all B blocks to arrive at the

following overall test statistic:

T~
XB

b~1

(Tb)2:

Assuming the Tb’s are independent, the statistic T follows a chi-

square distribution with B degrees of freedom. If the ith pedigree

PDT statistic (Vi) for the kth SNV is used as Dik, then the resulting

method is called rare-blocking PDT, or rbPDT, while the one that

uses the ith pedigree FBAT statistic (Ui) for the kth SNV is termed

rbFBAT.

Blocking Schemes
Sliding-window approach that considers several neighboring

SNVs together within a window frame is a popular strategy for

collapsing methods. We borrow this simple idea by arranging all

SNVs of interest into ‘‘independent’’ blocks. Each block can be

viewed as a ‘‘window’’, while the window (block) size is determined

by either the number of base-pairs (bp; the typical sense of a

window) or by the number of SNVs (a novel concept).

Determination of a good window size in either definition is an

important but difficult problem as its choice can be influenced by

factors such as LD patterns and MAF of the causal SNVs. Since it

is not feasible to investigate the relationship between optimal

window size and these factors analytically, we consider several

reasonable options and evaluate how blocking schemes may affect

the performance of rbPDT and rbFBAT empirically.

Although multiple genes (in the thousands) are being considered

in this study, for simplicity, each blocking scheme with multiple

window sizes are applied to all genes to gain an understanding of

the overall performance so that general recommendation can be

made. For example, if the window size is set to be 5 kb, then all

genes are partitioned into 5 kb blocks. Note that this blocking

scheme may result in different number of blocks for different genes

since gene lengths vary. Another possible approach is to specify the

number of blocks and divide each gene (large or small) into that

many blocks. Unlike the former approach, this may result in blocks

of difference sizes in different genes, also depending on gene

lengths. Similar phenomenon applies to the scenario when

‘‘window size’’ is defined as the number of SNVs it contains.

One way of constructing such blocks is to fix the number of SNVs

in each block (e.g. 2 SNVs per block). Note that this will result in

different number of blocks depending on the gene size and SNV

density. Another way is to fix the number of blocks and partition

all SNVs into the specified number of blocks so that each block has

the same number of SNVs. This may result in different sizes (i.e.

different number of SNVs in each block) across genes. These ideas

lead to the following four options that are employed in the analyses

carried out in this paper. The numbers in parentheses specify the

number of blocks or window size (which can either be in bp or in

number of SNVs depending on which definition of window size is

being used).

Rare Variant Analysis for Family Data
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Option 1: Each gene is divided into blocks of equal length in

bp (e.g. 5 kb);

Option 2: Each gene is divided into fixed number of blocks of

equal length in bp (e.g. 5 blocks);

Option 3: Each gene is divided into blocks containing equal

number of SNVs (e.g. 5 SNVs per block);

Option 4: Each gene is divided into fixed number of blocks

containing equal number of SNVs (e.g. 5 blocks).

To further clarify and deal with unconventional situations, we

note that Options 1 and 2 use bp to define a window size whereas

the window size used in Options 3 and 4 is number of SNVs. In

each case, one can either fix the number of blocks or the window

size when constructing blocks. If the gene length (either in bp or in

number of SNVs) is less than or equal to a specified window size,

then only one block is formed for Options 1 and 3. When Option 2
is employed, only blocks containing at least one SNV are kept for

further analysis since some blocks may not contain any SNVs. If

the number of SNVs within a gene is less than the specified

number of blocks under Option 4, it constructs blocks to have one

SNV in each block. That is, the number of blocks for that gene is

set to be equal to the number of SNVs within the gene. Therefore,

for fixed number of blocks options (both 2 and 4), it is possible that

some genes are divided into fewer number of blocks than the pre-

specified number. A comprehensive comparison of these blocking

strategies will be provided in the Results section.

Genetic Analysis Workshop 17 Data
The Genetic Analysis Workshop 17 (GAW 17) mini-exome data

contain genotypes for 697 unrelated individuals on 24,487 variants

(in 3,205 genes) from the 1000 Genomes Project. The workshop

also distributed data on 8 extended pedigrees composed of 697
individuals. Of the 202 founders, their genotypes were assigned

based on a random sample from the 697 unrelated individuals,

which turned out to include 12 CEPH (European-descent

residents of Utah), 18 Denver Chinese, 19 Han Chinese, 28

Japanese, 50 Luhya, 66 Tuscan, and 9 Yoruban individuals. As

such, there exists population admixture. These genotypes are then

dropped down to form the genotypes of non-founders, leading to

Figure 2. rbFBAT results using different blocking options: (a) Option 1 with block size 2, 3, 4, 5, or 6 kb; (b) Option 2 with number of
blocks 2, 3, 5, 7, or 10; (c) Option 3 with blocks including 2, 3, 5, 7, or 10 SNVs; (b) Option 4 with number of blocks 2, 3, 5, 7, or 10.
doi:10.1371/journal.pone.0086126.g002

Rare Variant Analysis for Family Data
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some of the rare variants (such as private variants that only appear

once in the 697 unrelated individuals) being enriched in the family

sample. Based on the fixed genotype data, 200 sets (replicates) of

binary disease phenotypes were simulated according to a model

that portraits 162 causal SNVs in 36 genes, with approximately

75% of these causal variants having MAF less than or equal to

0:002152. The first and third quartiles of the causal variant

percentages within 36 causal genes were 19:5% and 42:5%,

Table 2. List of p-values for six causal genes for different options with a variety of partitioning choices.

Option Gene INSIG1 LPL PIK3C2B RRAS HIF3A PRKCB1

#SNVs 5 20 71 6 21 20

Width(kb) 6.62 14.02 28.49 1.29 28.24 383.77

1 2 kb 0.211(2) 0.076(7) 0.022(18) 0.044(1) 0.008(6) 0.266(14)

3 kb 0.211(2) 0.064(5) 0.008(14) 0.044(1) 0.008(6) 0.266(14)

4 kb 0.211(2) 0.033(4) 0.005(12) 0.044(1) 0.008(6) 0.266(14)

5 kb 0.211(2) 0.019(3) 0.006(9) 0.044(1) 0.004(5) 0.208(13)

6 kb 0.211(2) 0.019(3) 0.003(8) 0.044(1) 0.003(5) 0.208(13)

2 2 blocks 0.211(2) 0.018(2) 0.011(2) 0.131(2) 0.011(2) 0.028(2)

3 blocks 0.211(2) 0.019(3) 0.007(3) 0.131(2) 0.006(3) 0.024(3)

5 blocks 0.211(2) 0.076(5) 0.001(5) 0.112(3) 0.005(4) 0.062(5)

7 blocks 0.374(3) 0.069(6) 0.003(7) 0.112(3) 0.008(6) 0.019(6)

10 blocks 0.374(3) 0.111(7) 0.002(10) 0.199(4) 0.008(6) 0.025(7)

3 2 SNVs 0.374(3) 0.114(10) 0.198(36) 0.112(3) 0.058(11) 0.072(10)

3 SNVs 0.211(2) 0.061(7) 0.033(24) 0.050(2) 0.022(7) 0.027(7)

5 SNVs 0.078(1) 0.058(4) 0.002(15) 0.131(2) 0.010(5) 0.009(4)

7 SNVs 0.078(1) 0.036(3) 0.001(11) 0.044(1) 0.014(3) 0.006(3)

10 SNVs 0.078(1) 0.018(2) 0.003(8) 0.044(1) 0.030(3) 0.023(2)

4 2 blocks 0.211(2) 0.018(2) 0.011(2) 0.050(2) 0.011(2) 0.023(2)

3 blocks 0.374(3) 0.036(3) 0.006(3) 0.112(3) 0.014(3) 0.006(3)

5 blocks 0.682(5) 0.052(5) 0.001(5) 0.220(5) 0.020(5) 0.016(5)

7 blocks 0.682(5) 0.061(7) 0.002(7) 0.320(6) 0.022(7) 0.027(7)

10 blocks 0.682(5) 0.114(10) 0.000(10) 0.320(6) 0.038(10) 0.072(10)

Number of the blocks (degrees of freedom) are provided in the parentheses.
doi:10.1371/journal.pone.0086126.t002

Figure 3. SNV base-pair locations for two-causal genes: (a) RRAS: the average distance between two successive SNVs is 0:3 kb with a
maximum distance of 0:9 kb; (b) PRKCB1: the average distance between two SNVs is 20 kb with a maximum distance of 152 kb.
doi:10.1371/journal.pone.0086126.g003
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respectively. A more complete description of the GAW 17 data is

provided by Almasy et al. (2011) [24].

Our numerical analysis starts with a simulation study designed

to evaluate type I error and power for rbPDT, rbFBAT, fbatv0 and

fbatv1 under different scenarios. In this simulation, we generated

genotype and phenotype data utilizing the same pedigree

structures as in the GAW 17 data. After the simulation

demonstrating the validity of the proposed methodologies, we

performed two sets of analyses of the GAW 17 data. In the first set

of analyses, we investigate how blocking schemes with various

window sizes and block numbers may affect the outcomes of

rbPDT and rbFBAT by using only the first replicate of simulated

phenotypes. This analysis also provides an evaluation of the

effectiveness of rbPDT and rbFBAT for detecting rare variants using

a realistic data set. The second set of analyses is carried out to

compare the performances of rbPDT and rbFBAT with those of

fbatv0 and fbatv1 using phenotype data from all 200 replicates. For

each gene, we set its length to equal the difference between the

largest and the smallest base-pair locations of SNVs contained in

the gene. With this definition, the majority of these 3,205 genes

have length less than 105 kb with 30 or fewer SNVs.

Results

Simulation Study: Type I Error and Power
To verify the validity of the proposed blocking methods and to

compare them with recently proposed state-of-art methods for

family-based studies in a controlled setting, we perform a

simulation study in which the family structure from GAW 17
data is replicated 10 times to create 80 families so that the sample

size is sufficiently large to draw definitive conclusions, especially on

the type I error. We simulated 1000 sets (replicates) of genotype

data for the founders, which consists of 20 SNVs modeled after the

LPL gene provided in the GAW 17 data and with linkage

disequilibrium (LD) setting that utilizes a block diagonal correla-

tion matrix assuming there are 5 independent blocks. Within each

block containing 4 SNVs, LD correlation between farther SNVs

decays following an autoregressive model with r~0:7. Under this

Figure 4. 200 replicate results: ROC curves for fbatv0, fbatv1, (a) rbPDT and rbFBAT with Option 1; (b) rbPDT and rbFBAT with Option 2;
(c) rbPDTand rbFBAT with Option 3; (d) rbPDT and rbFBAT with Option 4.
doi:10.1371/journal.pone.0086126.g004
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setting, the optimal blocking is the one that divides the SNVs in

groups of 4 SNVs, i.e. Option 4 of our blocking schemes with 5
blocks, as it preserves the independence assumption across blocks.

Haplotypes for unrelated founders with desired MAF and LD

structure are simulated using the same procedure as in HapSim

[25], then we passed down the haplotypes to the remaining

individuals assuming no recombination. For each set of genotypes,

the binary disease status for each individual was simulated using

the model

Logit(P(Yi~1jXi))~b0zXi
0 b, ð1Þ

where Xi and Yi denote the genotype and trait values for the ith

individual. Type I error was calculated using the model with

b0~{log(10) and b~0, while b is set to be either (2,2,2),
(2,{2,2), (3,3,3) or (3,{3,3) for three (as in the LPL gene)

randomly selected causal variants. This process is repeated 1000
times to create 1000 data sets to investigate the size and power

under settings with different effect size and directions. Results for

fbatv1 using allele frequency weights, fbatv0 with three different

MAF thresholds (0:005, 0:01, and 0:05), rbPDT and rbFBAT with

one specification for each option (i.e., 5 kb for Option 1, 5 SNVs

for Option 3, and 5 blocks for Options 2 and 4) are reported in

Table 1 with the significance a-level set to be 0:01. We also include

the one-block (i.e. no blocking) option as a comparison. Since the

actual type I error rates are not comparable across different

methods, we adjusted the critical value so that all tests have the

same 1% error rate to compute the power reported in Table 1.

The results indicate that type I error is maintained with a

nominal a{level of 0:01 when the between-block-independence

assumption is satisfied (Table 1, Option 4 for both rbPDT and

rbFBAT). When the assumption of independence between blocks is

violated (as in Options 1–3), there can be some inflation of type I

error (especially Option 1 under rbFBAT). However compared to

the one-block approach, the type I error is better under controlled.

On the other hand, The fbatv0 with all MAF thresholds and fbatv1

are a bit conservative. As expected, power increases with effect

sizes in all methods. When SNVs have opposite effect directions,

substantial power loss is observed for fbatv0 and fbatv1, while the

power based on blocking approaches remains comparable with the

power of the same direction effect sizes.

Analysis of GAW 17 Data
Analysis I. In the first analysis, different blocking options with

various specifications are compared utilizing the disease status

from the first replicate. Specifically, two fixed window size and two

fixed number of blocks are used with varying window size and

number of blocks: Option 1 (2,3,4,5 or 6 kb), Option 2 (2, 3, 5, 7,

10 blocks), Option 3 ((2, 3, 5, 7, 10 SNVs) and Option 4 (2, 3, 5, 7,

10 blocks).

The results are provided in Figures 1 and 2. Here, true positive

rate (TPR; power) is defined as the proportion of all causal genes

Figure 5. 200 replicate results: Boxplots of the area under the ROC curves for 200 replicates using fbatv0, fbatv1, and rbPDT and
rbFBAT with four options.
doi:10.1371/journal.pone.0086126.g005
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that are found to be significant, i.e. (total number of true

positives)/36, whereas the false positive rate (FPR; type I error) is

the proportion of all non-causal genes that are found to be

significant, i.e. (total number of false positives)/(3205-36). Figure 1

show the receiver operating characteristic (ROC) curves obtained

by rbPDT for the different options with different size or number of

blocks selections. The a{level significance is between 0 and 1 with

0:01 increments. Different choices of window size result in more

fluctuations for blocking using the fixed number of SNVs (Option

3) than the blocking using fixed number of bp’s (Option 1). One

possible explanation for this might be that since most of the gene

lengths are 105 kb or less, dividing them into 2, 3, 4, 5, or 6 kb

blocks yields similar partitions containing the same set of SNVs

especially if SNVs are densely distributed along the gene. On the

other hand, splitting SNVs of a gene into blocks with different

number of SNVs may result in quite altered separations. Two

fixed number of blocks approaches, Options 2 and 4, produce

more variations compared to their block size counterparts,

Options 1 and 3. This is not surprising since different number of

blocks are more likely to create variations in building blocks

especially when the number of SNVs within the gene or gene

length is large. Nevertheless, despite these variations, all blocking

methods with different size selections yielded very close power and

type I errors especially when FPR is small (lower-left corner of

Figure 1). Results based on rbFBAT are illustrated by ROC curves

in Figure 2. Like rbPDT, rbFBAT results are more stable for Option

1 than Option 3 while both yield less variation than their

counterparts with a fixed number of blocks (Option 1 vs. Option 2,

and Option 3 vs. Option 4). Performances of rbPDT and rbFBAT

are very comparable as shown by the figures. Overall, Figures 1

and 2 indicate that rbPDT and rbFBAT are at par and blocking

scheme selection might have an effect on the results especially

depending on the distribution of gene lengths and number of

SNVs within the genes.

To further investigate the effect of blocking, we select 3 causal

genes (INSIG1, LPL, PIK3C2B) containing small, moderate and

large number of SNVs (5, 20 and 71) and 3 causal genes (RRAS,

HIF3A, PRKCB1) with small, moderate and large lengths (1:29,

28:24, and 383:87 kb). The p-values for these genes obtained from

rbPDT are listed in Table 2 for all options with different size

selections. We omit results from rbFBAT for brevity since the

inferences are quite similar. It can be seen that Option 1 results for

different window sizes vary less compared to Option 3 results,

consistent with the observations made from Figures 1 and 2. We

believe that this is due, in part, to the fact that Option 3 produces

varying number of blocks and thus containing different sets of

SNVs yielding a range of p-values. In general, it appears that for

small to moderate size genes containing small to moderate number

of SNVs, the p-value tends to get larger as the number of blocks

increase, leading to reduction in power. Therefore, for such genes,

blocking schemes leading to a small number of blocks might be a

better option. This is especially true if most of the causal SNVs are

rare and combining as many as possible can strengthen the signals.

These inferences are particularly true for genes INSIG1, LPL,

RRAS. Although HIF3A is also a moderately large gene with

moderate number of SNVs, it is not true that small number of

blocks yield optimal results. When we look at this gene more

closely, we see that SNVs are sparsely distributed along the gene,

so setting a small number of blocks results in including distant

SNVs in the same block. Since, in general, it is more likely to

observe sparsely located SNVs for larger genes, such as PIK3C2B,

options with smaller number of blocks may not work as in small

genes. In such cases, one should consider an option that will

produce a reasonable number of blocks such that distant SNVs are

not combined into same block yet close SNVs are not separated.

This finding shows that, beside the gene length and SNV number

within the gene, how closely SNVs are spaced on the gene is

another important factor that can create variations for different

size selections. In Figure 3, the base pair locations of the 6 SNVs in

the RRAS gene (a small one) and 20 SNVs in the PRKCB1 gene (a

larger one) are plotted. For the RRAS gene, although there are two

visible clusters, as can be seen in Figure 3(a), they are not far

separated since the gene is very small. At the same time, since both

of the causal SNVs are very rare (MAF = 0:001435), constructing

one block (including all 6 SNVs) provides more power than the

two blocks scheme does. On the other hand, SNVs located in

PRKCB1 are very sparse. Obviously, very large number of blocks

(see Option 1 results for PRKCB1) is not a good approach due to its

large degrees of freedom. Very small number of blocks may not be

the right choice either. For instance, the smallest p-value of 0:006
is obtained by Option 4 with three blocks while the p-value for two

block approach is 0:0232. The latter leads to the observation that

there may be power loss if distant non-causal SNVs are grouped

together with causal ones into the same block.

Analysis II. In the second set of analysis, we compare the

performance of rbPDT and rbFBAT with two recently proposed

methods, fbatv0 and fbatv1 [17]. We chose fbatv0 and fbatv1 since

they are also extensions of FBAT and software implementations

are available (beta version of FBAT v2.0.4). We set the MAF

threshold for fbatv0 as 0:01 and use the weighting scheme based on

allele frequencies as described in [17] for the fbatv1. We utilized

all 200 replicates to construct ROC curves for each method. For

rbPDT and rbFBAT, only one representative from each option (i.e.,

5 kb for Option 1, 5 SNVs for Option 3 and 5 blocks for Option 2
and 4) is used. Power is defined as the average percentage of all

causal genes that are found to be significant, i.e. (total number of

true positives)/(36*200), whereas type I error is the average

percentage of all non-causal genes that are found to be significant,

i.e. (total number of false positives)/[(3205-36)*200]. ROC curves

for fbatv0, fbatv1, rbFBAT, rbPDT for options 1, 2, 3 and 4 are given

in Figure 4 (a), (b), (c) and (d) respectively. Overall, fbatv1 is better

than fbatv0, consistent with the original finding by De et al. [17] in

that fixed threshold approach fbatv0 is highly dependent on the

choice of the MAF threshold while weighted no threshold

approach fbatv1 avoids such choice problem and outperforms

fbatv0. On the other hand, both blocking methods, rbFBAT and

rbPDT, perform similarly and are better than the two fbat versions.

These findings are further substantiated by the boxplots shown in

Figure 5, in which area under the ROC curves (AUC) for 200
replicates are shown for each of the method and blocking options.

It can be seen that fbatv0 and fbatv1 are clearly outperformed by

rbPDT and rbFBAT with any of the four blocking options. Further,

rbPDT and rbFBAT continue to be similar evaluated by AUC.

Discussion

Family-based designs have important advantages over popula-

tion-based methods, especially in their robustness to population

stratification. Motivated by this, we extend two popular family-

based association approaches originally proposed for common

variants, PDT and FBAT, to test for association with rare variants.

These approaches (rbPDT and rbFBAT) are based on splitting a

given genomic region (e.g. gene) into blocks under the assumption

that SNVs between different blocks are independent while

dependency among SNVs within a block is being taken into

consideration. A statistic for each block is calculated using the

SNVs located within the block and statistics across these blocks are

combined to arrive at an overall test statistic for the genomic
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region of interest. An inherent assumption for our test statistic to

be valid is that the statistics across blocks that summarize

information from multiple SNVs are independent. However,

dependency among SNVs within a block is allowed and accounted

for. As such, the proposed methodology may be viewed as a

compromise between methods that assume independence of all

rare SNVs and those that depict dependency of all variants within

a region. This compromise can lead to increase in power by

‘‘creating independent data’’ while holding the type I error rate at

base since it still accounts for dependency in a proper fashion. As

an further advantage, our methods do not require an MAF

threshold and can analyze rare and common variants jointly. We

show that, based on ROC (AUC) evaluations, rbPDT and rbFBAT

perform similarly and reasonably well compared to two recently

proposed family-based methods, fbatv0 and fbatv1, for detecting

rare variants. For a fixed significance level (e.g. a~0:01), rbPDT

and rbFBAT may outperform each other under different blocking

options, but they consistently outperform fbatv0 and fbatv1. More

importantly the empirical type I error rates of both rbPDT and

rbFBAT are close to the nominal level specified when the

underlying assumptions for the validity of the asymptotics are

satisfied.

Blocking option and blocking parameter (size or number of

blocks) unquestionably play an important role in the implemen-

tations of rbPDT and rbFBAT. The optimal choice of blocking

depends on mechanisms that are unknown in practice. Our

empirical results indicate that gene length, number of SNVs within

a gene, and density of SNVs are among factors that may affect the

performance of blocking-based methods. As such, we believe that

blocking selection should be done in a data adaptive way. For a

small to moderately sized gene containing a small to moderate

number of tightly scattered SNVs, options with a small number of

blocks should be considered. For a large-size gene including many

SNVs or moderately large gene with sparsely located SNVs, a

large number of blocks will inflate the degrees of freedom whereas

a small number of blocks might lead to blocks with distant SNVs.

In such cases, selecting the right number of blocks is the key.

Another idea in real data analysis (where the underlying truth is

unknown) is to use a hierarchical clustering method based on data

to partition the genomic region into blocks if the sample size is

large and LD within block is strong. We illustrated this by

considering a data set with 200 families (GAW 17 family structure

is replicated 25 times) simulated in the same way as in our validity

study with correlation between adjacent SNVs set to be 0:7. The

output of the average-linkage clustering on the genome data is

displayed graphically in Figure 6, conveying the existence of five

clusters of SNVs 1–4, 5–8, 9–12, 13–16, and 17–20, recovering

the grouping scheme in the simulation. If computational intensity

in a genome-wide study prevents the selection of a blocking

scheme in a data adaptive way, that is automation is desired for

practical purpose, then options with a fixed number of blocks may

be considered since that would allow an investigator to control the

number of blocks.

Another important feature of the proposed methodology is its

suitability for detecting association when a mixture of protective

and risk variants are involved. The proposed methodology squares

the SNV scores before adding them up to prevent cancelation of

opposite effects within a block. The advantage of this feature is

clearly seen in our simulation results displayed in Table 1. That is

rbPDT and rbFBAT outperform fbatv0 and fbatv1, both of which are

susceptible to different directional effects.

There are still many challenges in understanding the involve-

ment of rare variants in complex disease etiology. Given the

limited availability and underdevelopment of statistical methods

for analyzing family data for detecting rare variant association, we

believe that rbPDT and rbFBAT provide much needed and viable

alternatives. Such methods are important in the hunt for rare

variant association given the potential enrichment of rare variants

in family data and their insensitivity to population stratification.
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