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Abstract: Chinese Cordyceps is a valuable source of natural products with various therapeutic
effects. It is rich in various active components, of which adenosine, cordycepin and polysaccharides
have been confirmed with significant immunomodulatory and antitumor functions. However, the
underlying antitumor mechanism remains poorly understood. In this review, we summarized and
analyzed the chemical characteristics of the main components and their pharmacological effects and
mechanism on immunomodulatory and antitumor functions. The analysis revealed that Chinese
Cordyceps promotes immune cells’ antitumor function by via upregulating immune responses and
downregulating immunosuppression in the tumor microenvironment and resetting the immune cells’
phenotype. Moreover, Chinese Cordyceps can inhibit the growth and metastasis of tumor cells by
death (including apoptosis and autophagy) induction, cell-cycle arrest, and angiogenesis inhibition.
Recent evidence has revealed that the signal pathways of mitogen-activated protein kinases (MAPKs),
nuclear factor kappaB (NF-κB), cysteine–aspartic proteases (caspases) and serine/threonine kinase
Akt were involved in the antitumor mechanisms. In conclusion, Chinese Cordyceps, one type of magic
mushroom, can be potentially developed as immunomodulator and anticancer therapeutic agents.

Keywords: Chinese Cordyceps; antitumor; immunomodulatory; bioactive components; mechanism

1. Bioactive Components

According to the epidemiological studies, a high intake of foods rich in bioactive
compounds is beneficial to human health. Well-known as medicinal mushrooms, both
natural and cultured products of Chinese Cordyceps many bioactive components. Over
20 bioactive ingredients have been isolated and their bioactivities/pharmacological effects
have been proven (Table 1), of which, adenosine, cordycepin and polysaccharides are of
significance in antitumor and immune regulation and considered to be the most important
properties of Chinese Cordyceps [1,2]. In addition, Chinese Cordyceps is rich in fatty
acids (including saturated and unsaturated fatty acids), vitamins, metal elements and
other components, which also have positive effects on reducing blood lipids, preventing
cardiovascular diseases, protecting kidneys and improving the essence of life [3,4].

Table 1. Bioactive components and bioactivities of Chinese Cordyceps.

No. Bioactive Components Pharmacological Effects Ref.

1 Adenosine Antitumor activity [5–8]
Attenuation of chronic heart failure [9]
Anti-inflammation [10–14]
Immunomodulatory activity [12,15]

2 Inosine Anti-inflammation [16]
3 Guanosine Seizure prevention [17]
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Table 1. Cont.

No. Bioactive Components Pharmacological Effects Ref.

Immunomodulatory activity [15]
4 Cordycepin Antitumor activity [18–29]

Antibacterial activity [20]
Treatment for ischemic/reperfusion
(IR) injury [21]

Anti-inflammation [22–37]
Immunomodulatory activity [38–40]
Antioxidant activity [41,42]
Cholesterol lowering effect [43]
Anti-fibroblast activity [44]

5 Cordycepic acid Diuretic effect [45]
Attenuating postreperfusion syndrome [46]
Anti-fibrosis and anti-inflammation [47]

6 Polysaccharides Antitumor activity [48–52]
Immunomodulatory activity [48,53–61]
Anti-inflammation [56,62,63]
Antioxidant activity [61,64,65]
Antiviral activity [66]
Protective effects on kidney [67,68]
Hypoglycemic effect [69]

7 Cordymin Analgesic effect [70]
Anti-inflammation [71]
Antioxidant [71]
Hypoglycemic effect [72]

8 Cordycedipeptide A Antitumor activity [73]
9 Tryptophan Sedative hypnotic effect [74]
10 Fibrinolytic enzymes Treatment for thrombosis [75,76]
11 Ergosterol Cytotoxicity [77]

Anti-inflammation [78]
Anti-fibroblast activity [79]
Antiviral activity [80]

12 β-Sitosterol Cytotoxicity [77,81]

13 5α,8α-epidioxy-22E-ergosta-6,22-dien-
3β-ol Cytotoxicity [77]

14 5α,8α-epidioxy-22E-ergosta-6,9(11),22-
trien-3β-ol Cytotoxicity [77]

15 5α,6α-epoxy-5α-ergosta-7,22-dien-3β-ol Cytotoxicity [77]
16 H1-A Cytotoxicity [82]
17 Cordysinin A Anti-inflammatory [83]
18 Cordysinin B Anti-inflammatory [83]
19 Cordysinin C Anti-inflammatory [83]
20 Cordysinin D Anti-inflammatory [83]
21 Cordysinin E Anti-inflammatory [83]

1.1. Adenosine and Cordycepin

Adenosine is regarded as an important marker reflecting the quality of Chinese Cordy-
ceps in Chinese Pharmacopoeia [84,85]. The molecular weight (MW) of cordycepin is
267.245 Da, molecular formula C10H13N5O4 and structure is shown in Figure 1A. The con-
tent of adenosine in Chinese Cordyceps ranges from 0.28 to 14.15 mg/g [86]. Cordycepin,
another important nucleoside, is a purine alkaloid and confirmed as 3′-deoxyadenosine,
similar in structure to adenosine except for lacking a hydroxyl group in the 3′ position
of its ribose moiety (Figure 1B). The MW of cordycepin is 251.24 Da, molecular formula
C10H13N5O3. The content of cordycepin ranges from 0.006 to 6.36 mg/g in O. sinensis [87]
and can reach 2.28 mg/g in cultured C. militaris [88].

Both adenosine and cordycepin belong to nucleosides, and nucleosides can be dis-
solved with water, methanol and ethanol [84], while they are insoluble in benzene, ether
or chloroform. Usually, Chinese Cordyceps is ground into powder and extracted with
methanol aqueous solution or distilled water using an ultrasonic machine or a soxhlet
extractor to obtain nucleosides [80,89]. Additionally, phosphate-buffered saline (PBS) is
used as the solvent.

1.2. Polysaccharides

Polysaccharides are another important biologically active component of Chinese
Cordyceps, with a content of 3–8% of the total weight [47]. The structure of polysac-
charides is currently inconclusive, and a large amount of work was performed to try to
explore its structure characteristic. It is reported that medicinal fungal polysaccharides with
immunomodulatory and antitumor effects are most common glucans linked by various
glycosidic bonds, such as (1→3)-, (1→6)-β, or (1→3)-, (1→4)-, (1→6)-α-glucans [90], and
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heteropolysaccharides are very important bioactive polysaccharides in Chinese Cordy-
ceps [91]. Figure 1C shows the common structures of Chinese Cordyceps polysaccharides.
Moreover, the pharmacological activity of polysaccharides is corelated to its MW. The larger
the MW (10–1000 kDa) of the polysaccharides, the greater the water solubility and the
better the biological activity [3]. It is reported that fungi polysaccharides have antitumor
activity only when the MW is greater than 16,000 Da [47]. Usually, polysaccharides are
colorless and odorless, and stably dissolved in water [92]. Polysaccharides have good water
solubility, and water extraction combined with alcohol precipitation is a very effective
method to extract active polysaccharides. Cordyceps polysaccharides include two forms:
extracellular polysaccharide (EPS), mainly sourced from the fermentation broth of sub-
merged Cordyceps spp., and intracellular polysaccharide (IPS), mainly resourcing from the
fruiting bodies of Chinses Cordyceps and cultured mycelium. The chemical structure and
immunomodulatory and antitumor activities of Polysaccharides originated from Cordyceps
spp. are shown in Table 2.
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Figure 1. Chemical structure of adenosine (A), cordycepin (B) and polysaccharides (C) of
Cordyceps spp. Illustration of the chemical structure of several Cordyceps polysaccharides:
(a) (α1→4)-glucan; (b) (α1→6)-branched, (α1→4)-glucan; (c) (β1→6)-branched, (β1→4)-
galactomannan; (d) (β1→4)-(β1→6)-branched, (β1→2)-(β1→6)-galactomannan; (e) (β1→4)-(β1→6)-
(α1→6)-branched, (α1→3)-galactoglucmannan; (f) (β1→4)-branched, (β1→6)-galactoglucmannan;
(g) (α1→4)-(β1→6)-branched, (α1→6)-galactoglucmannan.
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Table 2. Polysaccharides that originated from Cordyceps spp.: chemical structure and immunomodulatory and antitumor activities.

No. Name MW Components Glycosyl Linkage and Branches
(Characteristic Signals) Bioactivities Source Ref.

1 AEPS-1 36 kDa Glcp:GlcUp = 8:1 (M ratio),
plus a trace amount of mannose

A main chain of (1→3)-linked α-D-Glcp with
α-D-Glcp and α-D-GlcUp branches attached
to the main chain by (1→6) glycosidic bonds
at every seventh α-D-Glcp unit

Anti-inflammatory;
immunomodulatory

Mycelial fermentation of
C. sinensis (Cs-HK1) [93]

2 EPS 104 kDa Man:Glc:Gal = 23:1:2.6 (M ratio) Immunomodulatory Mycelial fermentation of
C. sinensis (G1) [58]

3 NCSP-50 976 kDa Glucose A main chain of (1→4)-linked α-D-Glcp with
α-D-Glcp branch attached to the C-6 Immunomodulatory C. sinensis [59]

4 CSP 28 kDa
Gal:Glc:Man:Ara:GalA =
36.40:28.99:24.81:3.34:7.55
(percentage ratio)

A main chain of (1→4)-linked α-D-Glc and
(1→4)-linked α-D-Gal Antitumor Cultured mycelia of C. sinensis [51,65]

5 CME-1 27.6 kDa Man:Gal:Glc = 39.1:59.2:1.7 (M ratio) A backbone of (1→4)-linked β-D-Man with
Gal branches attached to the O- 6 Antitumor Cultured mycelia of C. sinensis [49]

6 APSP Man:Glc:Gal = 3.5:1:1.5 (M ratio) Immunomodulatory Mycelia of liquid cultured
C. sinensis [53]

7 PLCM
(CPSN Fr II) 36 kDa

Man:Gal:Glc:Protein:Hexosamine:Uronic
acid = 65.12:28.72:6.12:0.20:0.06:0.29
(percentage ratio)

A backbone of (1→2)-, (1→6)-linked
β-D-Man with (1→4)-linked β-D-Gal
branches attached to the O- 6

Immunomodulatory C. militaris liquid culture broth [55,94]

8 CMP-III 4.796 × 104 kDa Glc:Man:Gal = 8.09:1.00:0.25 (M ratio)
A backbone of (1→4)-linked α-D-Glc with
(1→4,6)-linked α-D-Man and
(1→2,6)-α-D-Man branches attached to the O-
6

Immunomodulatory Cultured fruiting bodies of
C. militaris [54]

9 CMPB90-1 5.8 kD Gal:Glc:Man = 3.04:1:1.45 (M ratio)

A main chain of (1→6)-linked α-D-Glc and
(1→3)- linked α-D-Glc, with branching at O-6,
which consists of (1→4)-linked β-D-Man and
(1→6)-linked α-D-Glc, respectively, and
β-D-Man as the terminal unit

Immunomodulatory Cultured fruiting bodies of
C. militaris [95]

10 CPMN Fr III 210 kDa Glc:Gal:Man = 9.17:18.61:72.22 (M ratio)
A backbone of (1→6)- linked β-D-Man and
(1→6)- linked β-D-Glc with branches of
(1→4)- linked β-D-Man terminated with
D-Gal and D-Man, respectively

Immunomodulatory Cultured mycelia of C. militaris [50]

11 HS002-II 44 kDa

D-Man:D-Rib:L-Rha:D-GlcUA:D-
GalUA:D-Glc:D-Gal:D-Xyl:L-Ara =
6.47:2.27:1.25:0.69:0.42:65.89:16.17:2.13:4.26
(M ratio)
polysaccharide:protein = 57.9:42.1
(percentage ratio)

A long backbone of (1→3)-linked α-D-Ribf,
(1→4)-linked α-D-Xylp and approximately
1/31 of (1→4)-linked β-D-Glcp, which was
substituted at C-6. The two branches were
(1→6)-linked β-D-Manp and (1→6)-linked
β-D-Galp terminated with α-L-Arap,
respectively

Immunomodulatory
Mycelial fermentation of
Hirsutella sinensis Liu, Guo,
Yu and Zeng

[96]

12 P70-1 42 k Da Man:Gal:Glc = 3.12:1.45:1.00 (M ratio)

A backbone of (1→6)-linked α-D-Manp with
branching points at O-3, and the branches
composed of (1→4)-linked α-D-Glcp and
(1→6)-linked β-D-Galp, and terminated with
β-D-Galp and α-D-Glcp

Antioxidant Fruiting bodies of cultured
C. militaris [97]

13 CPS-1 23 kDa Rha:Xyl:Man:Glc:Gla =
1:6.43:25.6:16.0:13.8 (M ratio)

Composed of (1→2)-linked Man,
(1→4)-linked Xyl and (1→2)-linked or
(1→3)-linked Rha or Gal

Anti-inflammatory Cultured C. militaris [63]

14 AIPS 1.15 × 103 kDa Glucose α-D-(1→4) glucan Antitumor Mycelial fermentation of
C. sinensis (Cs-HK1) [98]

Ara, arabinose; Arap, arabinopyranosyl; Gal, galactose; GalA, galacturonic acid; GalUA, galacturonic acid; Glc, glucose; Glcp, glucopyranose; GlcUA, glucuronic acid; GlcUp,
pyrano-glucuronic acid; Man, mannose; Manp, mannopyranosyl; MW, molecular weight; Rha, rhamnose; Rib, ribose; Ribf, ribofuranosyl; Xyl, Xylose; Xylp, xylopyranosyl.
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2. Antitumor Activities and Their Participation in Molecular Mechanisms
2.1. Enhancing Antitumor Immune Responses

Studies have shown that the occurrence and development of tumors are closely related
to immune surveillance. Immunotherapy has been proved to be an effective method to
treat a variety of cancers [99] and increasing data has shown that antitumor effects of
enhancing immunity may be associated with its action for the regulation of the tumor
immune environment [100,101]. Immune cells show different phenotypes in response to
various environmental cues (microbial products, damaged cells, cytokines, etc.). Chinese
Cordyceps has a biphasic regulatory effect on the immune-cell phenotype and can increase
antitumor immune activity in the tumor immune microenvironment (TIM): increasing the
proinflammatory phenotypic while reversing the suppressive phenotype (Table 3).

Table 3. Antitumor immunity effects and mechanisms of Chinese Cordyceps in various models.

Bioactive
Component Pharmacological Effects Models Major Mediating

Signaling Pathways Mechanism of Action Ref.

Cordycepin

↑Antitumor immunity
responses
↓CT 26 cell migration
↑CT 26 cell apoptosis

CT 26 cells in mice

↑CD4+ T, CD8+ T cells
↑NK cells
↑M1 macrophages
↑CD11b+, F4/80+

↓CD47

[38]

JLM 0636
(cordycepin-enriched
extract of C. militaris)

↑Th 1 cells
↑Immune responses
↓Treg cells
↓Immunosuppression

FM3A murine breast
cancer cells, derived
from C3H/He mouse

↑CD8+ T cells
↑IFN-γ
↓CD4+CD25+ T cells
↓IL-2
↓TGF-β

[39]

WECS
(Nucleoside extract
of C. sinensis)

↓MDA-MB-231 cells
↓4T1 cells
↑M1 macrophages
↑Immune responses

MDA-MB-231, 4T1
breast cancer cells
co-cultured with
macrophages

NF-κB

↑CD38
↑iNOS
↑IL-1β
↑IL-12p70
↑TNF-α
↑IL-6
↑IFN-γ
↑NO

[102]

EPSP

↑M1 macrophages
↑Spleen lymphocyte
↑Immune response
↓Tumor migration

B16
melanoma-bearing
mice

↓Bcl-2 [52]

APSF

↑M1 macrophages
↑Immune response
↓M2 macrophages
↓Immunosuppression

Ana-1 mouse
macrophages
co-cultured with H22
cells

NF-κB

↑TNF-α
↑IL-12
↑iNOS
↓IL-10
↓SR
↓MR

[103]

CMPB90-1

↑M1 macrophages
↑Immune response
↓M2 macrophages
↓Immunosuppression

IL-4, tumor cell
supernatant-induced
RAW264.7 cells

NF-κB
Akt
MAPK (p38 and
ERK)

↓IL-10
↓TGF-β
↓Arg-1
↑IL-12
↑iNOS

[48]

Akt, serine/threonine kinase; Arg-1, arginase-1; ERK, extracellular-signal-regulated kinases; IFN-γ, interferon-
gamma; IL, interleukin; iNOS, inducible nitric oxide synthase; IPS, intracellular polysaccharide; MAPKs, mitogen-
activated protein kinases; MR, mannose receptor; NK, natural killer cell; NF-κB, nuclear factor kappaB; NO, nitric
oxide; TGF-β, transforming growth factor-beta; TNF-α, tumor necrosis factor-alpha; SR, scavenger receptor.

Chinese Cordyceps as an immunomodulator has suppressive effects on the immune
system. Cordycepin has demonstrated to inhibit the differentiation of T cells into reg-
ulatory T cells (Treg, a suppressive phenotype of T cells) and delay tumor growth in
tumor-bearing mice [39]. The further investigation reveals that cordycepin decreased the
secretions of interleukin-2 (IL-2) and transforming growth factor-β (TGF-β) which were
essential for Treg cells’ proliferation and differentiation. In addition, macrophages are
the key player in the immune system which can engulf and destroy foreign pathogens
and cancer cells. Tumor-associated macrophages (TAM), taking up 50% of the infiltrated
cells at the tumor site, can be differentiated into two phenotypes: M1 phenotype (classic
activation polarization) or M2 phenotype (alternative activation polarization), based on
the stimulatory signals from the tumor microenvironment (TME) [104]. Macrophages
in the TME are predominantly in an M2 state [105], and currently M2 macrophages are
potential targets for the treatment of cancer. Activated M2 macrophages would suppress
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the immune system and promote tumor progression by releasing immunosuppressive
cytokines (i.e., IL-4 and IL-10) and recruiting Th2 and Treg cells [106,107]. Clinical studies
have proposed a new strategy where reversing M2 into the M1 phenotype is an effective
approach to enhance antitumor immunity [108,109]. Chinese Cordyceps are capable to
of resetting the macrophage phenotype repolarizing M2 to M1 macrophages. A study by
Chen et al. [103] showed that APSF, a polysaccharide isolated from the fruiting bodies of
O. sinensis, reversed M2 to the M1 phenotype through reducing the expression of IL-10 and
increasing the expression of tumor necrosis factor-alpha (TNF-α), IL-12 and inducible nitric
oxide synthase (iNOS), and downregulating the expressions of SR and MR (Scavenger
Receptor and Mannose Receptor, M2 markers), in Ana-1 mouse macrophages co-cultured
with a supernatant of H22 cells. Additionally, a novel polysaccharide CMPB90-1 from
C. militaris was found to remodel TAMs from M2 to the M1 phenotype through decreasing
the mRNA expression level of immunosuppressive cytokines (IL-10, TGF-β and Arg-1
(arginase 1), M2 markers) while increasing the mRNA expression levels of IL-12 and iNOS
(M1 markers). Additionally, a further investigation revealed that the signaling pathways of
p38, extracellular-signal-regulated kinases (ERK), Akt and nuclear factor kappaB (NF-κB)
were activated [48]. These findings demonstrated that Chinese Cordyceps and its bioac-
tive constituents could promote immune cells’ antitumor function by enhancing immune
responses and downregulating immune suppression (Figure 2).
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2.2. Direct Antitumor Effects

To date, increasing studies have shown that Chinese Cordyceps has significant antitu-
mor effects. Although the mechanisms of action are complicated, the possible mechanisms
of antitumor action of Chinese Cordyceps are summarized and presented in Table 4.
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Table 4. Antitumor effects and mechanisms of Chinese Cordyceps in various cancer models.

Cancer Bioactive
Component

Pharmacological
Effects Cell line

Major
Mediating
Signaling
Pathways

Mechanism of Action Ref.

Bladder cancer

Cordycepin ↓Migration and
invasion

TNF-α-induced
5637 and
T-24 cells

NF-κB
AP-1 ↓MMP-9 [23]

Breast cancer

Cordycepin ↑Apoptosis MDA-MB-
231 cells Caspase

↑Bax (mitochondria)
↑Cytochrome c (cytosol)
↑PARP
↑c-caspases-9, -3
↑DNA fragmentation

[19]

Cordycepin ↑Autophagy MCF-7 cells Autophagy
↑LC3-II
↑Autophagosome-like
structure

[19]

Cordycepin ↑Apoptosis MDA-MB-435
and T47D cells

↑DNA fragmentation
↑Histone γH2AX
↓RNA synthesis

[26]

C. militaris
extract ↑Apoptosis MCF-7 cells Caspase ↑Bax/Bcl-2

↑c-caspase-7, -8 [25]

Cordycepin ↑Apoptosis C6 glioma cells A2AR
Caspase

↑Caspase-7
↑p-p53
↑PARP

[110]

Cervical cancer

Cordycepin ↑Apoptosis
↓Cell cycle

SiHa cells
HeLa cells

↓CDK-2
↓Cyclin-E1
↓Cyclin-A2
↑ROS

[111]

CCP
(C. cicadae
polysaccha-
rides)

↑Apoptosis
↓Cell cycle hela cells Akt

↑Bak
↑Bax
↑Caspase-3, -7, -9
↓P21
↓P27
↓CDK2
↓Cyclin E1
↓Cyclin A2
↓Bcl-2
↓Bcl-xl
↓PARP

[112]

Colon cancer

CSP ↑Autophagy,
↑Apoptosis HCT116 cells

Autophagy
mTOR
Caspase

↑LC3B-II
↑Caspase-8, -3 [51,65]

Cordycepin ↓Cell cycle HCT116 cells JNK MAPK

↑p21WAF1
↓Cyclin B1
↓Cdc25c
↓Cdc2

[24]

Colorectal
cancer

C. militaris
extract ↓Cell cycle RKO cells

↑Bax
↑Bim
↑Bak
↑Bad
↑PARP
↑p-p53
↑c-caspase -9, -3

[113]
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Table 4. Cont.

Cancer Bioactive
Component

Pharmacological
Effects Cell line

Major
Mediating
Signaling
Pathways

Mechanism of Action Ref.

Gastric cancer

Cordycepin ↑Apoptosis AGS cells PI3K/Akt
↑Caspase-9, -3, -7
↑Bax
↓Bcl-2

[114]

CECJ
(C. jiangxiensis
extract)

↑Apoptosis
↓Cell cycle SGC-7901 cells Caspase ↑Caspase-3 [115]

Liver cancer

Adenosine ↑Apoptosis HepG2 cells Caspase

↑TNF
↑TRADD
↑TRAIL-R2
↑FADD
↑Caspase-9, -8, -3

[8]

Adenosine ↑Apoptosis BEL-7404 cells Caspase

↑Caspase-8, -9, -3
↑c-PARP
↑Bak
↑Mcl1
↑Bcl-xl

[6]

Adenosine ↑Apoptosis
HuH-7
Fas-deficient
cells

Caspase
↑AMP
↓Caspase-3, -8
↓c-FLIP

[7]

CMF
(C. militaris
extract)

↓Migration and
invasion
↓Tumor growth

SMMC-7721
cells

Akt
ERK

↓p-VEGFR2
↓p-Akt
↓p-ERK

[116]

Lung cancer

AECS1, AECS2
(C. sinensis
nucleosides
extract)

↓Tumor growth Lewis xenograft
mouse

Akt
NF-κB

↓p-Akt
↓MMP2
↓MMP9
↓p-IκBα
↓TNF-α
↓COX-2
↓Bcl2
↓Bcl-xl
↑Bax

[117]

CS
(C. sinensis
extract)

↑Apoptosis H157 NSCLC
cells

↓VEGF
↓bFGF [118]

C. militaris
extract

↑Apoptosis
↓Cell cycle NCI-H460 cells

↑P53
↑P21
↑53BP1

[119]

Mouse
melanoma

Cordycepin ↓Proliferation B16-BL6 cells A3R ↑GSK-3β
↓Cyclin D1 protein [28]

CME-1 ↓Tumor
migration B16-F10 cells

NF-κB
MAPK (ERK
and p38)

↓MMP-1 [49]

EPSP ↓Tumor
migration B16 cells

↓c-Myc
↓c-Fos
↓VEGF

[120]

Myeloma
cancer

Cordycepin ↑Apoptosis MM.1S cells Caspase ↑Caspase-9, -3, -8
↓RNA synthesis [8]
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Table 4. Cont.

Cancer Bioactive
Component

Pharmacological
Effects Cell line

Major
Mediating
Signaling
Pathways

Mechanism of Action Ref.

Oral cancer

CMP
(C. militaris
polysaccha-
rides)

↑Apoptosis
↓Cell cycle 4NAOC-1 cells STAT3

ERK

↓ki-67
↓EGFR
↓IL-17A
↓Cyclin B1
↓DNA synthesis

[121]

WECM
(C. militaris
extract)

Apoptosis
↓Cell cycle SCC-4 cells

↓PCNA
↓VEGF
↓Caspase-3
↓c-fos

[122]

Ovarian cancer
CME
(C. militaris
extract)

↑Apoptosis
↓Migration SKOV-3 cells NF-κB

↓TNF-1R
↓Bcl-2
↑Bcl-xl

[123]

↑Autophagy
↓Tumor growth

A2780 and
OVCAR3 cells

ENT1-AMPK-
mTOR

↑LC3II/LC3I
↑p-AMPK [124]

Prostate cancer

Cordycepin ↓Migration and
invasion LNCaP cells PI3K/Akt

↑TIMP-1
↑TIMP-2
↓MMP-2
↓MMP-9

[21]

Testicular
cancer

Cordycepin ↑Apoptosis
↓Cell cycle MA-10 cells Caspase ↑Caspase-9, -3, -7

↑DNA fragmentation [20]

AMP, activated protein kinase; A2AR, adenine 2A receptor; A3R, adenine 3 receptor; c-FLIP, cellular FADD-like
interleukin-1β-converting enzyme inhibitory protein; c-PARP, cleaved-poly ADP-ribose polymerase; COX-2,
cyclooxygenase-2; c-Fos, c-Myc, cellular proto-oncogenes; cyclin B1, Cdc25c and Cdc2, cell cycle regulatory
proteins; ERK, extracellular signal-regulated kinases; FADD, fas-associated death domain; JNK, Jun N terminal
kinase; LC3-II, the lipidated form of LC3B; MMP, mitochondrial membrane potential; mTOR, mechanistic target of
rapamycin; MAPK, mitogen-activated protein kinases; p-Akt, phosphorylated serine/threonine kinase; p21WAF1,
cyclin-dependent kinase inhibitor; TNF, tumor necrosis factor; TRADD, TNF receptor-associated death domain;
TRAIL-R2, TNF-related apoptosis-inducing ligand receptor 2; VEGF, vascular endothelial growth factor.

2.2.1. Inducing Apoptosis and Autophagy

Apoptosis is a form of programmed cell death and essential for the development
and homeostasis of organisms, and its abnormal regulation is perhaps related to tumor
formulation. Inducing apoptosis involves two major pathways: the intrinsic pathway
(particularly mitochondrial stress) and extrinsic signal pathway. The Fas/FasL system plays
an important role in apoptosis regulation. Fas and its ligand FasL are mainly expressed on
the cell membrane surface. When external FasL is expressed by cytotoxic T lymphocytes
and combines with Fas which is expressed by target cells, Fas-associated death domain
(FADD) will be formed. FADD triggers apoptosis through recruiting extrinsic stimuli
and death receptors (DRs) [125,126]. A study by Lee et al. [127] showed that cordycepin
inhibited proliferation and induced HT-29 colon cancer cells’ apoptosis by increasing
expression of DR3, caspase-8, -1 and -3. Caspases is a family of cysteine proteases and
acts on proteins or enzymes related to the cytoskeleton or DNA and is responsible for
apoptosis. DR3 activated apoptosis through triggering TRADD, FADD and caspase-8 [128],
and caspase-8 further activated downstream effectors caspase-1 and caspase-3, resulting in
cell death [129,130]. Similarly, cordycepin induced apoptosis in human prostate carcinoma
LNCaP cells via the caspase pathway by increasing the expression of Fas, DR5, caspase-8,
-9 and -3, and causing a dose-dependent increase in pro-apoptotic Bax and decrease in anti-
apoptotic Bcl-2 [131]. Changes in Bax and Bcl-2 levels trigger a collapse of mitochondrial
membrane potential and activation of caspase-9 and -3. A study by Balk et al. [132] revealed
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that cordycepin increased the levels of Fas, FasL and TRAIL (related apoptosis-inducing
ligand) of U87MG cells, and decreased Bcl-2 level, indicating that cordycepin induced
apoptosis via the Fas/FasL pathway. Lee et al. [25] found that C. militaris extract induced
apoptosis by increasing the protein expression ratio of Bax/Bcl-2 and the cleavage of
caspase-7, -8 and -9 in MCF-7 cells. In addition, cordycepin has been demonstrated to
inhibit the proliferation of B16-BL6 mouse melanoma cells through combination with
adenosine A3 receptor (A3R) on the B16 cell membrane, reducing expression of cyclin D1
protein and activating glycogen synthase kinase-3β (GSK-3β) [28]. In addition, cordycepin
is also thought to induce apoptosis through A3R and A2AR. The apoptosis induction of
cordycepin is possibly mediated by A3R in human bladder cancer T24 cells since both
overexpression of A3R and cordycepin treatment decreased cell survival since the apoptosis-
inducing effect of cordycepin is abolished with the depletion of adenosine receptors [133].
Moreover, adenosine was found to induce apoptosis and upregulate mRNAs of TNF, FADD,
TRADD, and TRAIL-2 by activating caspase-3, -8 and -9 in human hepatoma HepG2 cells [8].
Ma et al. [6] found a novel apoptosis mechanism that extracellular adenosine could trigger
apoptosis by increasing reactive oxygen species (ROS) production and mitochondrial
membrane dysfunction in BEL-7404 liver cancer cells. Choi et al. [19] found that cordycepin
induced MDA-MB-231 cells’ apoptosis through increasing translocation of Bax in the
mitochondrion and triggering cytosolic release of cytochrome c and activation of caspases-9
and -3. These studies indicate that Chinese Cordyceps induces apoptosis via both the
mitochondrion-mediated intrinsic pathway and extrinsic Fas/FasL and ARs pathways.

Autophagy, mediated by an intracellular suicide program, plays important roles in
antitumor responses. A study by Qi et al. [51] showed that a polysaccharide named CSP
from O. sinensis mycelia inhibited the proliferation of HCT116 human colon cancer cells
through inducing apoptosis and autophagy. On one hand, CSP induced apoptosis by
activating caspase-8 and -3, on the other hand, it inhibited lysosome formation, blocked
autophagy flux and accumulated autophagosomes, resulting in autophagy. The further
investigation revealed that signaling pathways of PI3K-AKT-mTOR and AMPK-mTOR-
ULK1 were all involved. Cordycepin was also found to induce autophagic cell death and
formation of a large membranous vacuole in MCF-7 human breast cancer cells, accompanied
with the increase in autophagosome marker LC3-II levels [19]. Generally, autophagy occurs
before apoptosis under certain stress stimuli, and autophagy will be inactivated when
stress exceeds the intensity threshold or critical duration, followed by the activation of
apoptosis [134].

2.2.2. Blocking Cell Cycle

The cell cycle can be mainly divided into four phases, of which G1, S and G2/M
phases are crucial checkpoints in the cell cycle processes. Cell cycle arrest in the G1, S
and G2/M phases can lead to the inhibition of tumor cells’ proliferation and induction of
apoptosis. Adenosine, cordycepin and polysaccharides were found to cause cell cycle arrest
at certain checkpoints. Cordycepin inhibited the growth of 5637 and T-24 bladder cancer
cells and HCT116 colon cancer cells, through G2/M cell-cycle arrest. The expression of
p21WAF1 (a universal key inhibitor in regulating cell-cycle progression) was upregulated
and cyclin B1, Cdc25c and Cdc2 (G2/M cell-cycle regulatory proteins) were downregulated,
through the JNK1 signal pathway [50,135]. Cells blocked in the G2/M phase failed to enter
mitosis, resulting in cell growth inhibition. Moreover, cordycepin induced an increase
in subG1 cell number and the decrease in G1 and G2/M cell numbers and cell viability
through inducing caspase-9, -3 and -7 expression as subG1 phase accumulation could be
partly suppressed using a caspase inhibitor, which indicated that the caspase-9 pathway is
involved in cordycepin-induced subG1 phase arrest [20].

In addition, cordycepin is a transcription and polyadenylation inhibitor and affects
RNA synthesis. A study showed that cordycepin caused accumulation of the corresponding
triphosphate derivative, 3′dATP, which might lead to the incorporation of analogue into
nascent nucleic acid oligonucleotides and RNA synthesis inhibition [18,136]. This might
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illustrate that cordycepin affects the cell cycle from another perspective. An extract of
Cordyceps cicadae was identified as a nucleoside mixture containing adenine, adenosine,
uridine and N6-(2-Hydroxyethyl)-adenosine, induced S phase arrest in human gastric
cancer SGC-7901 cells, which was related to downregulation of CDK2 expression and
upregulation of expression of transcription factor E2F1 (cyclin/CDK complexes, regulating
G1/S phase transition), cyclin A2 and cyclin E [137].

2.2.3. Inhibiting Migration, Invasion and Metastasis

Metastasis refers to the movement of cancer cells from primary tumor sites to other
organs and tissues and is the end result of multiple interactions including invasion between
the tumor and host, indicating the uncontrolled spread of the tumor cells. Epithelial–
mesenchymal transition (EMT)-related proteins such as matrix metalloproteinases (MMPs)
play an important role in metastasis. For example, MMP-2 and MMP-9 can lead to the
degradation of extracellular matrix (ECM) components and tissue invasion [138–140]. A
study showed that cordycepin inhibited 5637 and T-24 cells’ invasion through decreasing
MMP-9 expression and the transcriptional activity of activator protein-1 (AP-1), which were
identified by gel-shift assay as cis-elements for TNF-α activation of the MMP-9 promoter via
the NF-κB/MMP-9 pathway [94]. In addition, a novel polysaccharide CME-1 isolated from
O. sinensis was found to inhibit migration of B16-F10 melanoma cells, and the mechanism
was that CME-1 reduced MMP-1 expression and downregulated the phosphorylation level
of ERK1/2 and p38 MAPK [49].

Angiogenesis is vital for organ growth and repair, and essential for tumor growth. The
vascular endothelial growth factor (VEGF) family plays an important role in angiogenesis.
VEGF, a key angiogenic growth factor, has a higher expression level in tumor tissues and
can accelerate the differentiation, proliferation, and migration of endothelial cells. Chinese
Cordyceps has been demonstrated to inhibit the VEGF/VEGFR2 signaling pathway and
exert antiangiogenesis function [116]. Moreover, the overexpression of proto-oncogenes c-
Myc and c-Fos may promote tumor cell proliferation under growth-promoting stimulation.
c-Myc, encoding a ubiquitous transcription factor and promoting cell division, is related
to apoptosis and the occurrence and development of various tumors. c-Fos, essential for
cell proliferation, can upregulate the cell cycle by induction of cyclin D1 [141]. c-Fos is
expressed at a low level in normal cells while it is overexpressed in tumor cells. Yang
et al. [120] found that EPSF isolated from C.sinensis could downregulate the expression of
VEGF, c-Myc and c-Fos, which was the important factor to inhibit tumor growth, invasion
and metastasis.

3. Discussion

In recent years, the traditional therapy for cancer has become an attention direction
of researchers, and many researchers believe that traditional therapy is a potential new
therapy. The pathogenesis of cancer is diverse and complex, and Chinese Cordyceps has
many active ingredients and diverse extracts, which can inhibit the growth of various
tumors and prevent or overcome metastasis through various pathways (Figure 3). It is
well known that improving self-immunity can lay a good foundation for fighting and
treating many diseases. Chinese Cordyceps has a long history of use in China, and much
evidence suggests that Chinese Cordyceps, acting as an immune response activator, is
used for the treatment of a variety of diseases including cancer. Increasing studies have
shown that Chinese Cordyceps has immunomodulatory, anti-inflammatory and antioxidant
activities that affect the immune system and TME in various ways. The polarization and
remodeling of the phenotype of immune cells (such as T cells and macrophages) by Chinese
Cordyceps have effects on cytokine production in TME, which may affect tumor progression.
The anticancer ability of Chinese Cordyceps has been the subject of research for nearly
60 years and its antitumor effect has been confirmed in cancer cells or mouse cancer models
alone or in combination with other drugs. The research on clinical application still needs
more attention.
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4. Conclusions

In conclusion, Chinese Cordyceps has significant antitumor activity and immunomod-
ulatory activity. On the one hand, it can directly act on tumor cells to kill tumor cells
or inhibit tumor growth and effectively attenuate tumor cell metastasis. On the other
hand, Chinese Cordyceps can change the tumor microenvironment and enhance antitumor
immune responses by downregulating the expression of immunosuppressive factors and
upregulating the expression of pro-inflammatory factors, thereby improving the antitumor
function. These findings may provide therapeutic strategies for treating cancer.
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