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Regarding the common use of calcium silicate cements (CSCs) in root canal therapy, their position in the context of past and
present dentistry agents can provide a better understanding of these materials for their further improvement. In this context, the
present review article addresses a wide range of recent investigations in the field of CSC-based products and describes details of
their composition, properties, and clinical applications. /e need for maintaining or reconstructing tooth structure has increased
in contemporary endodontic treatment approaches. /is research thus discusses the attempts to create comprehensive data
collection regarding calcium ion release, bond strength, alkalinizing activity and bioactivity, and the ability to stimulate the
formation of hydroxyapatite as a bioactive feature of CSCs. Sealing ability is also highlighted as a predictor for apical and coronal
microleakage which is crucial for the long-term prognosis of root canal treatment integrity. Other claimed properties such as
radiopacity, porosity, and solubility are also investigated. Extended setting time is also mentioned as a well-known drawback of
CSCs. /en, clinical applications of CSCs in vital pulp therapies such as pulpotomy, apexification, and direct pulp capping are
reviewed. CSCs have shown their benefits in root perforation treatments and also as root canal sealers and end-filling materials.
Nowadays, conventional endodontic treatments are replaced by regenerative therapies to save more dynamic and reliable hard
and soft tissues. CSCs play a crucial role in this modern approach./is review article is an attempt to summarize the latest studies
on the clinical properties of CSCs to shed light on the future generation of treatments.

1. Introduction

Calcium silicate-based cements (CSCs) are self-setting hy-
draulic cements encompassing mineral trioxide aggregate
(MTA). CSCs are commonly used in endodontic procedures
involving pulpal regeneration and hard tissue repair, such as
pulp capping, pulpotomy, apexogenesis, apexification,
perforation, repair, and root-end filling [1, 2]. /e suitability
of biomaterials used in the endodontic procedure depends
on their mechanical properties, shelf life, sustainability, and
above all, biocompatibility. /e reported literature

confirmed that biomaterials utilized in endodontics fulfilled
all the mentioned requirements except for biocompatibility
[3, 4]. CSC sealing ability and biocompatibility, as well as
their physicochemical interaction with the local environ-
ment, are considered key determinants of their applicability
in the aforementioned clinical scenarios [5, 6]. Biodentine
(Septodont, Saint-Maur-des-Fosses, France), BioAggregate
(Innovative Bioceramics, Vancouver, Canada) [7], Endo-
Sequence Root Repair Material (Brasseler USA, Savannah,
GA, USA), Calcium-enriched mixture cement (Bionique-
Dent, Tehran, Iran), Nano Fast Cement (Vista, Shiraz, Iran)
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[8], and/eraCal (Bisco, Schamburg, IL, USA) are examples
of new commercially available CSCs. /e properties and
applications of calcium silicates are reviewed in this study
due to their importance.

2. Calcium Silicate-Based Cements (CSCs)

Calcium silicate (CaSi) cements are one of the most widely
used dental materials, which are also known as mineral
trioxide aggregate (MTA) cements. /e specifications of
dicalcium and tricalcium silicates confer particular prop-
erties, leading to their extensive applications [9–13].

/e first calcium silicate cement, called Portland ce-
ment, was introduced in Roman times when lime was
ground with a volcanic substance in Puteoli (so-called
Pozzolana). /anks to its Pozzolana content, Roman
concrete can be formed quickly even upon immersion in
water, making it possible to build various buildings. After
forgetting the techniques of making cement during the
Middle Ages, the correct cement ratio was achieved for the
second time in the 18th century with the combination of
clay and limestone by a British engineer named John
Smithton. In 1824, Joseph Aspadin, an English mason,
patented a process to produce what he referred to as
Portland cement. One of the largest early buildings made of
Portland-Pozzolanic cement is the first United States Great
Bridge constructed in the late 19th century. Currently,
Portland cement is made by mixing lime, silica, alumina,
and iron oxide, followed by heating. Pozzolana has been
continuously used in many Portland cements [1, 14]. In the
last two decades, calcium and silicate-based cements have
found significant applications in modern dentistry. Mineral
trioxide aggregate (e.g., ProRoot MTA, Dentsply Sirona,
York, USA) and Biodentine (Septodont, St. Maur-des-

Fossés, France) are some examples of silicate-based ce-
ments whose structure is based on Portland cement (cal-
cium, iron, and aluminum silicates) [1].

To improve the clinical properties of CaSi-based ce-
mentitious materials, some additives such as modifiers,
radiopaque agents, and drugs are also added (Table 1)
[15–18]. Regarding the improvement of biological, me-
chanical, and physicochemical properties of materials at the
nanoscale, their incorporation into endodontic materials
like CSC could be useful [19–21].

Endodontists originally use CaSi cements as root-end
filling materials. Currently, these materials are widely used in
processes such as hard tissue repair and pulpal regeneration,
including apexogenesis, pulpotomy, pulp capping, repair of
root perforations, and root canal filling [13, 22–24] (Table 2).

/e diverse capabilities of CaSi cements have led to their
acceptance by researchers for their biological properties and
by dentists for their excellent sealing and biocompatibility
[22–24]. Novel calcium silicate-based sealants (CSBSs) are
currently developed and marketed. Different products have
been manufactured by companies to make the highest impact
and eliminate flaws such as tough handling, long formation
time, and high cost. A variety of CaSi products have been
introduced based on the original formulation and/or with
minor changes relative to current clinical practice [1].

/e hydraulic properties of calcium silicate cements lead
to their spontaneous setting upon exposure to water [25].
Moreover, they are the only dental materials that can release
calcium continuously for a long time after setting in the
desired location and the vicinity of water [23, 25–28]. Tri-
calcium silicate and dicalcium silicate are the main compo-
nents of CaSi that have provided promising evidence for its
widespread use in various aspects of endodontic surgery.
Hydration of tricalcium silicate strongly affects the setting and

Table 1: Calcium silicate-based cements used in endodontics [15–18].

Name of ingredients (%) Portland
cement Biodentine MTA Angelus

MTA
White
MTA

Nano
WMTA BioAggregate Grey

MTA
Grey Angelus

MTA
Calcium silicate oxides
(Ca3SiO5 and Ca2SiO4)

94.9 80.1 75.6 74.5 34.1 65 65 30.3 30.1

Magnesium phosphate
(Mg3(PO4)2)

— — — — 0.9 — — 2.3 —

(Bi2O3) — — 21.6 14.0 56.7 17 — 58.8 38.8
Calcium carbonate (CaCO3) — 14.9 — — 0.9 — — — 3.9
Calcium phosphate
(Ca3(PO4)2)

— — — — 1.6 — 6 1.0 ∗∗∗

Calcium silicate (Ca2SiO4) — — — — 1.7 — — 1.0
Calcium magnesium
aluminum (Ca2MgO.
2AlFeO. 6SiO.2O5)

— — — — — — — 2.9 4.2

Barium zinc phosphate
(BaZn2(PO4)2)

— — — — — — — — 3.4

Tantalum pentoxide (Ta2O5) — — — — — — 25 — —
Silicon oxide (SiO2) — — — 0.5 — — 4 — —
Zirconium oxide (ZrO2) — 5.0 — — — — — — —
Tricalcium aluminate
(Ca3Al2O6)

0.8 — — 2.0 — 4 — — —

Calcium oxide (CaO) — — — 8.0 — — — — —
Strontium carbonate (SrCO3) — — — — — 3 — — —
Gypsum (CaSO4•2H2O) — — — — — 5 — — —
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establishment of initial strength, whereas dicalcium silicate
hydrates much slower and offers secondary strength [29–32].
As mentioned, calcium silicate cements undergo hydration
reactions upon exposure to water. /e CaSi cement class
(CSBS) consists of a group of premixed CSBSs requiring an
external water supply and a group of two separate CSBS
components with an internal water source. /e reactions of
both substances are identical. /e first reaction is hydration
observed in two different types (A, B) [33]:

2[3CaO·SiO2] + 6H2O⟶ 3CaO·2SiO2·3H2O+
3Ca(OH)2(A)
2[2CaO·SiO2] + 4H2O⟶ 3CaO·2SiO2·3H2O+
Ca(OH)2(B)

/is hydration reaction is followed by a calcium phos-
phate precipitation reaction:

7Ca(OH)2 + 3Ca(H2PO4)2⟶ Ca10(PO4)6(OH)2 +
12H2O.

Table 2: Types of HCSCs and some calcium hydroxide materials for the endodontic process [13, 22–24].

Materials Uses Manufacturer Composition

Biodentine PC, Ag, REA,
RP

Septodont, Saint-Maur-des-
Fossés, France

Powder: tricalcium silicate
Liquid: aqueous calcium chloride solution and excipients

Harvard MTA Caps PC, Ag, REA,
RP

Harvard Dental International
GmbH, Hoppegarten, Germany Powder: mineral trioxide aggregate and bismuth oxide

Ledermix MTA PC, Ag, REA,
RP, Af Riemser, Riems, Germany Powder: various mineral oxides

Liquid: water

MM-MTA PC, Ag, REA,
RP, Af Micromega, Besancon, France Powder: tricalcium and dicalcium silicate, calcium carbonate

Liquid: H2O

MTA Angelus PC, Ag, REA,
RP, Af

Angelus dental solutions,
Londrina, PR, Brazil

Powder: SiO2, K2O, Al2O3, Na2O, SO3, CaO, Bi2O3, MgO,
insoluble CaO, KSO4, NaSO4, and crystallized silica

Liquid: H2O

MTA Plus PC, Ag, REA,
RP, A, RCS

Prevest DenPro Limited,
Jammu, India

Powder: tricalcium and dicalcium silicate
Liquid 1: H2O
Liquid 2: gel

ProRoot MTA PC, Ag, REA,
RP, Af

Dentsply tulsa, Johnson City,
TN, USA

Powder: white Portland and bismuth oxide
Liquid: H2O

Tech Biosealer capping PC, Ag Isasan srl, Rovello porro, Co,
Italy

Powder: mixture of white CEM, calcium sulfate, calcium
chloride, and montmorillonite

Liquid: DPBS (Dulbecco’s phosphate buffered saline)

/eraCal PC, Ag Bisco Inc, Schaumburg, IL, USA
Paste: 45 wt.% mineral material (type III Portland cement), 10
wt.% radiopaque component, 5 wt.% hydrophilic thickening

agent (fumed silica), and 45% methacrylic resin

BioAggregate RP Innovative BioCeramix Inc,
Vancouver, Canada

Powder: aluminum-free calcium silicate, monocalcium
phosphate, and tantalum oxide

Liquid: deionized water

EndoSequence
Bioceramic REA, RP Brasseler, Savannah, GA, USA

Powder: calcium silicate, calcium phosphate monobasic,
calcium hydroxide, zirconium oxide, tantalum oxide, filler,

and thickening agents
Liquid: H2O

Retro MTA REA, RP BioMTA, Seoul, Republic of
Korea

Powder: tricalcium silicate, dicalcium silicate, tricalcium
aluminate, tetracalcium aluminoferrite, free calcium oxide,

and bismuth oxide
Liquid: deionized water

Tech Biosealer root-end REA, RP Isasan srl, Rovello Porro, Co,
Italy

Powder: mixture of white CEM, calcium sulfate, calcium
chloride, bismuth oxide, and montmorillonite

Liquid: DPBS (Dulbecco’s phosphate buffered saline)
iRoot SP, iRoot BP and
iRoot BP Plus RCS, Af Innovative BioCeramix Inc,

Vancouver, Canada
Paste: aluminum-free calcium silicate, calcium phosphate,
calcium hydroxide, niobium oxide, and zirconium oxide

MTA Fillapex RCS, Af Angelus dental solutions,
Londrina, PR, Brazil

Paste: salicylate resin, diluting resin, natural resin, bismuth
trioxide, nanoparticulated silica, MTA, and pigments

Ortho MTA RCS, Af BioMTA, Seoul, Republic of
Korea

Powder: tricalcium silicate, dicalcium silicate, tricalcium
aluminate, tetracalcium aluminoferrite, free calcium oxide,

and bismuth oxide
Liquid: deionized water

Tech Biosealer Endo RP, RCS, Af Isasan srl, Rovello Porro, Co,
Italy

Powder: mixture of white CEM, calcium sulfate, bismuth
oxide, montmorillonite, and sodium fluoride

Liquid: DPBS (Dulbecco’s phosphate buffered saline)
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/e spontaneous setting of the CaSi cements mentioned
earlier is the consequence of gradual hydration reaction of
orthosilicate ions (SiO44–). An amorphous nanoporous
calcium silicate gel forms on cement following the reaction
between water molecules and calcium silicate particles. At
this point, calcium hydroxide enters the pores of the gel.
Over time, the CSH gel is polymerized, resulting in a strong
network that improves mechanical strength [34]. Ca (OH)2
is released from the cement surface, making the environ-
ment more alkaline [27, 35]. /e CSBS setting time under
wet conditions is approximately 40–120min. /erefore, the
initial and secondary settings take 40–50 and 120–170min,
respectively [33, 36–39].

Such a long setting time is one of the main drawbacks of
CSBS. /e optimal setting time for many clinical applica-
tions is between 3 and 10min. For example, apical surgery
requires the shortest setting time possible due to the risk of
wash-out with blood flow. Newer products such as Bio-
dentine, MTA Plus, and light-curable /eraCal offer shorter
setting times [9, 35, 36].

/anks to their setting ability and the remarkable bio-
logical properties in wet environments (water, blood, and
saliva), extensive efforts have been devoted to developing
CSCs for clinical applications where other materials failed
[1].

3. Properties of Calcium Silicates

3.1. Sealing Ability. /e marginal sealing capability of the
applied retro filling material can be exploited to inhibit
bacterial growth in surgical endodontic therapy. Following
apical surgery, infection and inflammation can reduce the
pH level and alter the status of surrounding tissue [40].
Water-immersed CSCs can decline the setting time while
enhancing the expansion and improving the sealing ability
against the oily environment or even phosphate-buffered
saline and fetal bovine serum. Serum proteins might be
absorbed into cement, thus, decreasing the size of surface
porosities [41]. Nanjappa et al. compared MTA, Biodentine,
and Chitra-calcium phosphate cement (CPC) under a
confocal laser scanning microscope using Rhodamine B dye
with regard to sealing ability as a root-end filling material.
Microleakage investigations showed a maximum of 0.45,
0.85, and 1.05mm for Biodentine, MTA, and Chitra-CPC,
respectively, suggesting the superior sealing ability of Bio-
dentine in restoration of root-end cavities [42].

In comparison to ProRoot, MTA Biodentine and
Endocem MTA considerably declined the ratio of the filled
volume in acidic conditions than in the saline media.
Moreover, the packing ability of Endocem MTA and Bio-
dentine was more favorable during periapical surgery, while
high adhesion of ProRootMTA to the instrument resulted in
its coming out, even after being packed into the cavity [43].

Numerous methods and devices have been developed to
assess apical or coronal microleakage, namely, fluid filtra-
tion, dye extraction and dye penetration, bacterial leakage
models, and protein leakage model. Among the mentioned
methods, the fluid filtration system has shown great promise
in endodontics [44]. A fluid filtration approach enables

quantitative measurement of root canal leakage. Moreover,
leakage could be frequently measured in a specific duration
in the absence of any root specimen destructions. Evidence
proved that a calcium silicate-based sealer (MTA Fillapex)
had higher sealing capability than an epoxy resin sealer (AH
Plus) by utilizing a fluid infiltration approach. Some char-
acteristics of MTA Fillapex such as a water absorption
property could be advantageous in providing appropriate
sealing because it facilitates slight expansion in the material
(Figure 1) [46].

Dye penetration is another simple technique that can
evaluate microleakage [46]. In addition to being inexpensive
and nontoxic, dye penetration is the most widely used
method, and it is also able to detect low concentrations of
pollutants [47]. Recently, it has been shown that Biodentine
attenuated penetration of dye while providing perforation
repair through furcation and enhancing its sealing capability
against the resin-modified glass ionomer cement group and
ProRoot MTA. Despite a statically insignificant difference
between the ProRoot MTA group and the Biodentine group
[46], an investigation estimated the sealing capability of
Biodentine and ProRoot MTA by infiltrated nitrate solution
with a microcomputed tomography analysis which reported
better outcomes for Biodentine. /is procedure offers ex-
traordinary benefits such as complete three-dimensional
fidelity that enables the quantitative interfacial adaptation
assessment in any direction and location (Figure 2) [48].

3.2. Compressive Strength. As one of the prime physical
characteristics of hydraulic cements, compressive strength
mainly indicates the hydration method and settings of hy-
draulic cements. To be applied in vital pulp treatments,
cement must be able to endure indirect masticatory forces
and impede the set cement failure. Moreover, no changes
must occur in physical properties due to acid etching before
the placement of composite restoration [48]. /e acid
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Figure 1: A bar chart of the mean apical microleakage mea-
surements for both trial groups after 1 day, 1 week, and 4 weeks.
/e error bars demonstrate standard deviation from the mean
value [46].
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etching process [49], as well as saliva and blood from the oral
cavity [50], had no negative impacts on Biodentine and
ProRoot MTA compressive strength, and these calcium
silicate-based cements seem to be better options.

Moreover, no negative impact was observed in the
compressive strength of MTA and Biodentine upon their
exposure to saliva and oral cavity blood [51].

Some studies stated considerably higher compressive
strength of ProRoot MTA and Biodentin than that of MTA

Angelus [52, 53]; this physical property can be enhanced
with mechanical mixing through an amalgamator and ul-
trasonic agitation (Table 3) [50].

3.3. Push Out Bond Strength. Noteworthy, an endodontic
biomaterial should properly adhere to root canal dentine to
provide sufficient assistance for preserving the integrity of
the root filling-dentine interface against inert conditions and
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Figure 2: Microleakage evaluation by a micro-CT analysis. (a) Micro-CT images representing the silver nitrate solution volume which
infiltrated root canals in each of the studied groups. (b) Quantitative assessment of nitrate solution volume which infiltrated root canals.
(c) Quantitative assessment of nitrate solution depth which infiltrated root canals. ∗∗P< 0.01 and ∗∗∗P< 0.001 [48].
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resisting the filling material luxation in the course of op-
erative practice. Concerning bond strength, this attribute
can be assessed in vitro through the push-out test. Prior
addition of calcium hydroxide to distilled water intracanal
placement can raise dispossession calcium silicate cements
resistance [54], although smear layer elimination is harmful
to bond strength [55]. A Contemporary calcium silicate-
based sealer establishes rapid and easier obturation and
displays appropriate bond strengths [55]. Additionally, the
use of various chelating agents did not impress calcium
silicate-sealer push-out bond potency [56].

Quick-setting MTA and pozzolan-based cements
(ENDOCEM MTA and ENDOCEM Zr) have been recently
developed with less tooth discoloration in comparison with
MTA [57]. Besides, they showed an appropriate bond
strength performance comparable to the bond strength of
white MTA [58].

3.4. Radiopacity. Cement enhancement and its distin-
guishability from enclosing anatomical structures require
the incorporation of radio-pacifying material into calcium
silicate-based cements. /is makes cement identifiable
during radiographic procedures [59]. As an opacifier, bis-
muth oxide is mixed with white and gray ProRoot MTA and
MTA Angelus [60]. Meanwhile, numerous investigations
have demonstrated that bismuth oxide could have negative
impacts on biocompatibility [61] and physical characteristics
of the system [62]. Recent calcium silicate-based cement,
named Biodentine, includes zirconium oxide as a radio-
pacifier although its radiopacity was lower than ProRoot
MTA [63, 64]. /e EndoSequence BC sealer encompasses
the same opacifier with lower radiopacity than the AH Plus
sealer [65].

3.5. Setting Time. Calcium-silicate cements suffer from the
long setting time, particularly when utilized as a root-end
filling material to provide structural durability of the re-
construction and supply appropriate potency to elude lux-
ation during restorative processes [66]. Diverse additives
have been employed to speed up the setting time of MTA
[67, 68]. /e incorporation of 1% methylcellulose and 2%
calcium chloride into ProRoot MTA leads to ∼30% faster
setting time [69]. Moreover, an amalgamation of 8% and
10% of nano-SiO2 to MTA accelerated the hydration process
and reduced the setting time with no adverse impacts on the
compressive and flexural strength of MTA [70]. Some

recently commercialized types of calcium silicate cements
(e.g. Biodentine and Endocem MTA) displayed shorter
setting time than ProRoot MTA which can result in clinical
advantages in vital pulp therapy procedures, declining
provisional restoration leakage and eliminating the need for
the 2nd appointment for complete restoration [41, 71].
Calcium chloride available in Biodentine liquid serves as a
setting time accelerator and water-reducing agent [72].

3.6. Calcium and Ion Release. Ionic dissolution-manufac-
tured particles have been regarded as crucial elements of the
biological activities of calcium silicate-based materials [73].
/e hard tissue formation action of MTA can be assigned to
its ability to release Ca2+ and create alkaline pH [36]. Higher
contents of calcium and silicon ions may provide osteoblasts
to develop and differentiate and also produce high pH
environments, further promoting the periapical healing
processes [74]. In apical surgery and perforation repair,
calcium silicate cements may confront an acidic environ-
ment; therefore, some studies measured their ion release at
low pH and showed that bioactive materials released higher
amounts of Ca2+ at lower pH [68, 75].

3.7. Alkalinizing Activity. Due to the dehydration proce-
dure, MTA cements are known to possess high alkaline pH.
Hydration reactions are mainly due to entailing dicalcium
and tricalcium silicate cements during setting time [76].
/eir antibacterial or bacteriostatic activity can also be
attributed to the alkaline pH, which makes an undesirable
situation for any remaining bacteria [77]. /e pH of
ProRoot MTA was 10.5 and 12.9 after 3 hours, which was
similar to calcium hydroxide with adequate antimicrobial
activity [23]. Compared to ProRoot MTA, the pH of MTA
Angelus was moderately higher [78]. Moreover, MTA-
based sealers showed higher values of pH than resin-based
sealers [77]. /e alkaline property of Bioceramic sealers for
an extended period of time enhanced the solubility. /is
property of the Bioceramic sealer can promote its biological
and antibacterial outcomes, whereas its constant solubility
may affect its ability to impede apical leakage [79]. /e
minimum pH of MTA Fillapex sealers was nearly 7.5 after 3
and 24 hours, which rose over time [80]. Both iRoot SP and
EndoSequence BC Sealers showed high pH values [81].
Furthermore, Endoseal exhibited higher alkalinity than AH
Plus [28].

Table 3: Minimum, maximum, mean, and standard deviation of the compressive strength of the groups [50].

MTA type Mixing/placement technique Mean SD Minimum Maximum
G1 ProRoot MM+US 101.71 18.64 81.90 129.41
G2 ProRoot MM 90.85 25.25 50.69 125.22
G3 ProRoot Man M+US 90.78 33.60 36.88 147.26
G4 ProRoot Man M 90.77 27.21 58.86 143.57
G5 Angelus MM+US 81.36 24.94 50.97 124.03
G6 Angelus MM 74.14 28.43 30.61 117.86
G7 Angelus Man M+US 54.96 17.47 32.55 81.10
G8 Angelus Man M 53.47 22.31 24.75 89.64
Man M: manual mixing; MM: mechanical mixing; US: ultrasonication.
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3.8. Porosity. /e porosity may be beneficial to the hy-
dration procedure of HCSCs and their capacity to release
bioactive ions [82]. /ere is a moderate negative associa-
tion between the porosity and flexural strength and sealing
ability, which weakens materials [83–85]. /e porosity of
the mixture increased by enhancing water proportion [69].
Comparing manual mixing with mechanical mixing in
terms of total porosity and flexural strength, mechanical
mixing of encapsulated cements showed considerable ad-
vantages over manual mixing [86]. Biodentine attains less
porosity than ProRoot MTA, as demonstrated by micro-CT
(Figure 3) [87]. No significant differences were observed
between the other new calcium silicate cements and MTA
[88, 89].

Unlike other media, acidic pH significantly reduced the
volume of ProRoot MTA, MTA Angelus, and Biodentine.
Biodentine exhibited the highest loss of volume and density
after treatment in an acidic medium. Porosity formation in
the acidic medium was observed in Biodentine amongst all
materials. /e three-dimensional structures of all materials
changed upon exposure to acidic pH, while fewer changes
occur in the structures of materials treated with blood and
alkaline materials (Figure 4) [90].

3.9. Solubility. As dissolution of materials could result in
their leakage and thus, failure of the treatment, CSCs should
have low solubility in body fluids [88, 91]. Several

Biodentine R

ProRoot MTA
(a)

(a)

(b)

(b)

R

Figure 3: Micro-CTgraphs indicating porosity of Biodentine® and ProRoot® MTA. (a) A 3Dmodel in the presence of endodontic material
and porosity. (b) A cross section demonstrating repair material and porosity of Biodentine® and ProRoot®MTA. Pores are marked with the
white color, while repair materials without porosity appear in gray.
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researchers reported a rise in solubility and porosity upon
increasing the amount of water in the mixture [92, 93].
According to ISO 6876:2001, solubility of Biodentine and
ProRoot MTA is below 3%, i.e., an acceptable range of
weight loss for the solubility test. However, in extended
duration, solubility of Biodentine considerably surpassed
that of ProRoot MTA [85, 94–96]. An investigation carried
out by Gandolfi et al. led to some conflicting outcomes as the
solubility of Biodentine considerably falls behind the solu-
bility of ProRoot MTA, MTA Angelus, and MTA Plus [95].
However, /eraCal showed very low solubility; the lowest

solubility belongs to ProtRoot MTA due to its high resin
content [91]. On the other hand, because of inadequate
biocompatibility and marginal adaptation insufficiency,
/eraCal fails in changing MTA in furcation perforation
repair [68]. Silva et al. performed a systematic review and
meta-analysis in 2021 and assessed whether epoxy resin-
based root canal sealers have higher solubility than calcium
silicate-based root canal sealers. /e meta-analysis dem-
onstrated the lower solubility of AH Plus. Compared to Bio-
C sealer, BioRoot RCS, MTA Fillapex, Plus, and TotalFill BC
sealer, AH Plus displayed lower solubility [97].

(a) (b) (c)

(d) (e)

(f ) (g)

Figure 4: /e volume change of Biodentine in acidic pH. Before scanning with micro-CT, Biodentine was fully set on the retrograde cavity
(a). /e volume loss after exposure to acidic pH (b, c). Density variation of ProRoot MTA observed by the CTVox programme. Before and
after exposure to the acidic medium (d, e). A loss of density was observed. After exposure to acidic pH, internal changes in MTA Angelus
were observed by the CTVox programme. In acidic pH, larger particles converted into smaller ones, which increased the gaps (f, g).
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3.10. Bioactivity. Calcium silicate-based cements can stim-
ulate the formation of hydroxyapatite as a bioactive property
[98]. Apatite formation has been investigated by in vitro and
in vivo studies [10, 99, 100]. Moreover, portlandite

dissolution (calcium hydroxide) and calcite production
(which is calcium carbonate, generally the product of
Ca(OH)2 interaction with atmospheric CO2) are noticed on
setting white Portland cement interaction with simulated
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body fluids [101]. /e apatite layer could be an optimum
environment to substantiate new bone establishment via
differentiation and colonization of stem cells and osteo-
blasts. /e major clinical results of MTA cements are
demonstrated by the synchronization of apatite and epi-
genetic signals to release ions. Moreover, the presence of
apatite on the cement surface is related to cell growth and
cell differentiation [102–104].

/e evaluation of ALP activity (alkaline phosphatase
activity) determines the induction of mineralized tissue
formation in calcium silicate-based sealers (TotalFill BC
sealer) and cements (Biodentine and MTA Plus) during
exposure to human osteoblast-like cells [105, 106]. CeraSeal
and EndoSequence BC sealers show gene expression and
mineralization ability [107].

Numerous in vitro and in vivo studies indicated the
biocompatibility and lower cytotoxicity of MTA and new
CSCs; none of these materials triggered a severe inflam-
matory response [102, 105, 108–110]. Better biological and
mineralization characteristics of calcium silicate-based root
canal sealers were confirmed in an in vitro study while
comparing them with conventional resin-based sealers
(Figures 5 and 6) [111]. Besides, a recent systematic review
and meta-analysis stated that concerning biocompatibility,
bioactivity, and genetic expression regarding SHEDs, MTA,
Biodentine, EndoCem Zr, RetroMTA, and iRoot BP are all
suitable for the treatment of vital pulp in the primary teeth,
indicating their clinical applicability [112].

3.11. Tooth Discoloration. /e tooth discoloration mecha-
nism is mostly theorized based on oxidation due to the
presence of heavy metal oxides (i.e., iron or bismuth) in
cements [113]. Studies have also indicated that blood-con-
taminated CSCs lead to color change due to the penetration
of erythrocytes into the tooth structure and entrapment of
blood components. More recent agents containing zirco-
nium oxide as a contrasting substance did not show great
staining potential [114, 115]. Besides, studies showed that
the replacement of bismuth oxide with zirconium oxide (as a
radiopacifier alternative) can decrease discoloration. In the
absence of blood, ENDOCEM Zr and RetroMTA (which
contain zirconium oxide) demonstrated lower tooth dis-
coloration than ProRoot MTA and MTA Angelus (which
encompass bismuth oxide) [116–118]. In the presence of
blood, however, no considerable difference was observed
among ProRoot MTA, Biodentine, OrthoMTA, and ERRM
[119]. /e radiopacifying material of BioAggregate is tan-
talum peroxide rather than bismuth oxide, which reduces
tooth discoloration compared to ProRoot MTA. However, it
caused higher levels of tooth discoloration compared to
Biodentine. /is trend can be attributed to higher porosity
and greater fluid uptake of BioAggregate [120]. A systematic
review by Możyńska et al. reported that Ortho MTA
(BioMTA, Seoul, Korea), gray and white ProRoot MTA
(Dentsply, Tulsa, OK), and gray and white MTA Angelus
(Londrina, PR, Brazil) demonstrated the staining potential.
Although MTA Ledermix (Riemser Pharma GmbH,
Greiswald-Insel Riems, Germany), MM-MTA (Micro Mega,

Besancon Cedex, France), Odontocem (Australian Dental
Manufacturing, Brisbane, Australia), EndoSequence Root
Repair Material (Brasseler USA, Savannah, GA), Portland
cement, Retro MTA (BioMTA), and Biodentine (Septodont,
Saint-Maur-des-Fosses, France) showed the smallest stain-
ing potential through individual studies [61].

4. Clinical Applications of Calcium
Silicate Cements

4.1. Root Perforation Repair Materials. Iatrogenic or path-
ologic communication among the root canal system and the
external root surface is described as perforation [100]. Root
perforations represent an unfavorable predicament of root
canal therapy and necessitate urgent treatment in order to
hinder contamination of periodontal tissue and resorption
of alveolar bone. Nature of the perforation repair material is
a prognostic factor relating to this procedural complication
[121]. Various materials have been proposed for repairing
perforations; notwithstanding, none of them meet all ideal
criteria, and the choice of the repair material is still a
challenge [100, 121]. It was revealed that two calcium sili-
cate-based cements, MTA and Biodentine, result in ap-
propriate periradicular tissue responses as root perforation
materials, and in 30% of the samples, cementum repair had
occurred [122]. Another report stated that tissue response
following implementation of MTA and Biodentine was
agreeable, and both of them formed mineralized tissue
resulting in partial reinsertion of fibers. Interestingly, ap-
plication of MTA could bring about expression of proteins,
which are related to the formation of a cementum-like
mineralized tissue formation [123]. A micro-CT evaluation
of furcation perforation repair elucidated that radiographic
response of MTA and Biodentine was equal, and they
showed equivalent resorption of hard tissue and repair.
Although, in comparison to MTA, Biodentine resulted in
remarkably less inflammation and superior cement repair,
its volume of extruded material was less [124]. In addition,
the sealing ability of the repairing material is a critical factor
for the purpose of blockage of continuing contamination.
/e sealing ability and handling properties of Biodentine
and EndoSequence were superior to MTA Angelus for
repairing perforation of furcations [125]. Interestingly,
Solanki et al. summed up their systematic review study that
its favorable biological properties along with its good sealing
ability make Biodentine a competent retrograde filling
material for clinical use [126]. Besides, CEM cement dem-
onstrated more favorable sealing of furcation perforations
compared to MTA [127].

In order to overcome the flaws of available materials,
many investigations are performed to introduce more
promising materials [100]. On that account, one of the novel
materials for repairing of furcation perforations, NeoMTA
Plus, has been examined recently regarding its biocom-
patibility. It was reported that early biocompatibility of
NeoMTA Plus was superior to MTA Angelus following 1
week of delayed repairing of furcation perforation; however,
the late biocompatibility after 1 and 3months was similar
[121].
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4.2. Pulpotomy. Contemporary, minimally invasive
methods like partial and full pulpotomy have obtained great
acceptance for management of carious exposure of teeth to
preserve the vitality of the dental pulp [128]. A recent
movement towards application of MTA in vital pulp ther-
apies has been observed, and many investigations have been
performed [129]. A 1-year follow-up study reported that
treatment outcomes of partial pulpotomy with ProRoot
MTA, OrthoMTA, and RetroMTA was satisfactory, and no
significant difference was observed between these materials
regarding clinical and radiographic evaluations [129]. In-
terestingly, MTA pulpotomy of cases showing clinical signs
of irreversible pulpitis and the presence of periapical ra-
diolucency resulted in acceptable treatment outcomes with
success rates of 84% and 76%, respectively [130]. A recent
investigation has assessed the efficacy of MTA and Bio-
dentine as pulpotomy agents in carious-exposed vital im-
mature mandibular first permanent molars, and both of
them demonstrated a high success rate [131]. Besides, partial
pulpotomy by ProRoot MTA and Biodentine demonstrated
successful outcomes in permanent teeth with irreversible
pulpitis in patients of age ranging between 6 and 18 years
However, gray discoloration following Biodentine usage was
lower in comparison to ProRoot MTA [132]. Also, MTA and
Biodentine were considered as two suitable pulpotomy
materials for primary teeth, which were exposed due to a
carious lesion, and their long-term retention was crucial
[133]. In addition, long-term follow ups revealed desirable
biocompatibility and antibacterial activity of ProRoot MTA,
OrthoMTA, and RetroMTA in partial pulpotomy of per-
manent teeth with no remarkable statistically difference
among them [134]. A histological comparison between
ProRoot MTA and RetroMTA as partial pulpotomy agents
manifested pulp disorganization, absence of inflammatory
response, and discontinuous mineralization following ap-
plication of RetroMTA, and in spite of the shorter setting
time of Retro MTA, this pulpotomy material was less fa-
vorable than ProRoot MTA [135]. Another investigation has
compared Biodentine and MTA as pulpotomy materials in
the treatment of traumatized immature anterior permanent
teeth. Clinical and radiographic outcomes of both materials
were equivalent; however, prevalence of discoloration was
higher following usage of MTA [136]. Regarding postop-
erative pain consequent to pulp therapy, pulpotomy with
MTA, CEM, and RCT revealed satisfying relief of postop-
erative pain [137, 138]. A recent research study, which has
compared the efficacy of pulpotomy with diode lasers and
MTA and MTA alone, stated that incorporation of diode
lasers in the pulpotomy procedure promoted the success rate
of the treatment and has offered further investigations on the
capability of lasers for advancement of pulpotomy treat-
ments [139].

4.3. Apexification. One of the materials of the choice for
apexification is MTA due to its various desirable properties
[140]. Apexification with MTA had demonstrated favorable
clinical and radiographic outcomes in the open apex teeth
[141]. It was reported that apexification and revascularization

by MTA can retain the function of the teeth and also result in
the resolution of the disease [142]. In addition, regardless of
the prior calcium hydroxide usage, applying MTA as apical
plug-favored apexification and healing of periapical pathosis
[143]. A comparative study reported that following apex-
ification with MTA, barrier was formed in 90.90% of cases,
while application of calcium hydroxide led to barrier for-
mation in 81.81% of cases. Moreover, in cases of immediate
obturation of immature roots with wide-open apices, appli-
cation of MTA seemed promising [144]. Another report
stated that in comparison toNeoMTAPlus, biomineralisation
capability of ProRoot MTA and Biodentine was superior, and
during the first month after application of these twomaterials,
a positive influence on the fracture resistance of dentine was
observed [145].

4.4. Direct Pulp Capping. Direct pulp capping (DPC) is
performed when iatrogenic or traumatic injury has exposed
a healthy pulp [146]. MTA, calcium hydroxide, and Bio-
dentine are the frequently used materials for DPC [147].
Paula et al. conducted a systematic review and meta-analysis
regarding the effectiveness of biomaterials and techniques
used for direct pulp capping. /eir results indicated that
compared to calcium hydroxide cements, a higher success
rate was shown for MTA cements in all parameters. Also, a
lower inflammatory response and more predictable hard
dentin barrier formation were found in MTA cements
compared to calcium hydroxide cements [148]. A recent
study has assessed formation of the reparative dentine bridge
following application of Biodentine as a direct pulp capping
agent. It was concluded that Biodentine is capable of in-
duction of reparative dentin formation in direct pulp cap-
ping, which was assessed through CBCT imaging modality
[149]. It is worth mentioning that the direct pulp capping
material influences the volume of reparative dentin bridge
formation. A report stated that the reparative dentin bridge
formation after application of MTA and Biodentine was
remarkably superior in comparison to single bond universal
[150]. Also, another report recommended usage ofMTA and
Biodentine as substitutes of calcium hydroxide in direct pulp
capping [151]. A comparative study on ProRoot MTA and
Biodentine demonstrated that Biodentine established a
noninferior successful outcome as a direct pulp capping
agent for cariously exposed permanent teeth of 6 to 18-year-
old patients. Furthermore, the possible use of Biodentine
was suggested in the esthetic zone since it did not lead to
grayish tooth discoloration [152].

Lately, the efficacy of novel calcium silicate cement,
nominated as Protooth, in direct pulp capping of primary
molars has been evaluated. /e results indicated that this
novel cement has favorable properties as a direct pulp
capping material, such as biocompatibility, hydrophilicity,
fast setting time, and adequate tensile strength, which make
this agent promising for implementation in pediatrics [153].

4.5. Root-End Filling Material. Recently, an investigation
evaluated marginal adaptation of MTA, Biodentine, and
amalgam. SEM analysis indicated favorable marginal

International Journal of Dentistry 11



adaptation of all of these root-end filling agents; however,
MTA and Biodentine were superior to amalgam [154].
Another recent study has assessed 4 different commercial
root-end filling materials and concluded that in comparison
to ProRoot MTA, physicochemical and mechanical char-
acteristics and cytocompatibility of Endocem MTA, Ret-
roMTA, and DiaRoot Bio MTA are satisfactory, and these 3
root-end filling materials are recommended as auspicious
alternatives to commonly used MTA [155]. μCT evaluation
of physicochemical behavior of 3 retrograde filling materials
over time exhibited dimensional and volumetric stability of
MTA and IRM. Baseline values of porosity and adaptability
of Biodentine were satisfactory, but following immersion in
PBS, its thickness was reduced, and its porosity and interface
voids were increased [156]. Another μCT assessment com-
pared MTA, zinc oxide-eugenol cement, and Biodentine
regarding their physicochemical characteristics. Dimen-
sional change in zinc oxide-eugenol cement was higher
among the experimental groups, and the solubility of Bio-
dentine was greater after 1 week. /e filling ability of Bio-
dentine and zinc oxide-eugenol was higher than MTA.
Besides, after 1 month, volumetric changes in Biodentine
were more than in MTA [157]. In another experiment, a
confocal laser scanning microscope was used to make a
comparison between silver amalgam, resin-modified glass
ionomer cement, Cermet cement, Biodentine, and MTA
Angelus, regarding their sealing ability as root-end filling
materials. It was reported that the most superior sealing
ability was seen in the Biodentine group, followed by MTA,
Cermet cement, resin-modified glass ionomer cement, and
silver amalgam, respectively [158]. Currently, the utilization
of nanotechnology in dentistry is an emerging field where
incorporation of nanoparticles in various filling materials
have enhanced their physicochemical characteristics,
strength, shelf life, longevity, and biocompatibility. In ad-
dition, these filling materials are prepared via biogenic
routes thus, showing their cost-effective nature as well
[4, 159, 160].

A hermetic seal was created to reduce microleakage
influences on the outcome of endodontic therapy. Micro-
leakage of Biodentine and BioAggregate was reported to be
lower than that of MTA Plus and MTA, and as a result,
Biodentine and BioAggregate were advised as more favor-
able retrograde filling materials [161]. Another comparison
mentioned that microleakage of Biodentine and MTA were
lower than that of glass ionomer cement as retrograde cavity
filling materials [162].

4.6.RootCanal Sealers. A research study on cell viability and
cell migration capability of EndoSequence BC sealer, Bio-
Root RCS, and Endoseal MTA demonstrated favorable re-
sults of these 3 calcium silicate-based root canal sealers in
comparison to the control group. Also, in comparison to AH
Plus sealers, mineralization activity was promoted following
the usage of calcium silicate-based sealers [117]. Regarding
the retreatability of the sealers, a comparative study between
EndoSeal MTA, EndoSequence BC sealer, and AH Plus
displayed that the highest amount of remaining sealers

belonged to EndoSeal MTA, particularly in C-shaped root
canals [163]. A comparison between BioRoot RCS, MTA
Fillapex, Endo CPM, and AH Plus sealer revealed that
retreatability of calcium silicate-based sealers was more
favorable than AH Plus sealers, and the amount of
remaining sealers was lower. /e time required for
retreatment was shorter [164]. Furthermore, the sealer
penetration depth of BioRoot RCS is higher in all root
sections in comparison to AH26 sealer. Besides, the pene-
tration depth of BioRoot RCS was greater thanMTA Fillapex
in the apical third in retreatment procedures [165].

Biocompatibility and bioactive capability of MTA Fil-
lapex and NeoMTA Plus have been investigated recently.
/ese two calcium silicate-based sealers demonstrated de-
sired biocompatibility since the primary moderate inflam-
matory response was replaced by thin fibrous capsules,
elucidating structural reorganization of the connective tissue
around these sealers over time. /e observed inflammatory
response lowered more quickly in the NeoMTA Plus group
than in the MTA Fillapex group. Also, two of the sealers
revealed favorable bioactive capability [166]. Cytocompati-
bility of TotalFill BC sealers, a newly introduced bioceramic
sealer, was found superior to MTA Fillapex and AH plus.
However, adhesion, proliferation, migration, and viability of
hPDLSC reduced following application of MTA Fillapex.
Besides, MTA Fillapex demonstrated cytotoxicity, which was
significantly higher than that of BC sealers [167]. Moreover,
Ca2+ ion release and pH of TotalFill BC sealers was more
than those of MTA Fillapex and AH Plus sealers. On the
other hand, MTA Fillapex presented higher values of vol-
umetric changes than TotalFill BC sealer and AH plus sealer
[168]. Postoperative pain after root canal therapy is another
crucial factor, which influences patients’ satisfaction. A
comparison between Endoseal MTA, EndoSequence BC,
and AH Plus sealer demonstrated equal postoperative levels
after usage of these sealers in endodontic treatment [169].
No remarkable difference was shown betweenMTAFillapex,
Endofill, and AH Plus sealer regarding postoperative pain
following root canal obturation [170].

4.7. Management of Root Resorptions. Root resorptions are
classified into two categories including external and internal
root resorptions [171]. Generally, internal root resorption is
a result of trauma or chronic inflammation, and its char-
acterization is dentine progressive destruction along the root
canal walls [172]. Undetected and untreated internal root
resorption can grow larger and ultimately may perforate the
root from inside, which can make its treatment more
challenging. It was demonstrated that a preferable material
for repairing perforating internal root resorptions may be
backfilled using calcium silicate cements (Biodentine, MTA,
MTA Plus), compared to a combination of gutta-percha and
sealer [173]. Considering void formation following obtu-
ration of internal root resorptions, a comparison was per-
formed between Biodentine, MTA, TotalFill BC root canal
sealer (bulk-fill form), and warm gutta-percha with TotalFill
BC sealer. None of these obturation materials were detected
without void formation; however, Biodentine demonstrated
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the least void formation in comparison to the other ex-
perimental groups [174]. Another report stated that obtu-
ration of artificial internal root resorptions resulted in an
optimum outcome using EndoSeal MTA with a warm
vertical technique and a single-cone technique rather than a
single-cone technique using GuttaFlow 2 and EndoSequence
[175]. Also, release of calcium ion, high pH, and favorable
root reinforcement capacity were observed in inflammatory
resorption obturated with Bioceramic sealers like iRoot SP
and MTA Fillapex. So, an initial medication with calcium
hydroxide over a period of 7 days followed by obturation
with gutta-percha and bioceramic sealer was recommended
as an alternative and beneficial treatment modality in
comparison to long-term application of calcium hydroxide
[176]. Interestingly, another study reported that manage-
ment of inflammatory root resorptions with MTA may be
considered as a desirable treatment option due to the ob-
served diffusion of calcium ions through defects in the
dentine obturated with MTA [171]. Moreover, after one
month’s placement of MTA in simulated external inflam-
matory root resorptions, a higher pH value was recorded in
comparison to calcium hydroxide placement [177].

5. Conclusion

Indications of CSCs have been widely supported by clinical
studies due to their favorable properties reviewed in this
paper. Higher sealing ability and lower solubility contributed
to their wide range of applications in regenerative dentistry.
/orough knowledge on different aspects of CSCs will assist
in their successful implementation. Accordingly, further
development of CSCs can significantly modify their physical
properties and expand their clinical application.
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V. Tek, “Fracture resistance of teeth with simulated perfo-
rating internal resorption cavities repaired with different
calcium silicate–based cements and backfilling materials,”
Journal of Endodontics, vol. 44, no. 5, pp. 860–863, 2018.

[174] V. Tek and S. A. Türker, “A micro-computed tomography
evaluation of voids using calcium silicate-based materials in
teeth with simulated internal root resorption,” Restorative
Dentistry & Endodontics, vol. 45, no. 1, p. e5, 2020.

[175] K. A. Yazdi, M. Aminsobhani, and P. Alemi, “Comparing the
ability of different materials and techniques in filling artificial
internal resorption cavities,” European Endodontic Journal,
vol. 4, no. 1, pp. 21–27, 2019.

[176] C. Dudeja, S. Taneja, M. Kumari, and N. Singh, “An in vitro
comparison of effect on fracture strength, pH and calcium
ion diffusion from various biomimetic materials when used
for repair of simulated root resorption defects,” Journal of
Conservative Dentistry, vol. 18, no. 4, p. 279, 2015.

[177] S. Heward and C. M. Sedgley, “Effects of intracanal mineral
trioxide aggregate and calcium hydroxide during four weeks
on pH changes in simulated root surface resorption defects:
an in vitro study using matched pairs of human teeth,”
Journal of Endodontics, vol. 37, no. 1, pp. 40–44, 2011.

International Journal of Dentistry 19


