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Abstract
New trans- and cis-o-stilbene-methylene-sydnones 3a,b were synthesized by transforming the trans- and cis-o-aminomethyl-

stilbene derivative, obtained by reduction of corresponding o-cyano derivatives, into glycine ester derivatives (43 and 31% yield)

followed by hydrolysis (90 and 96% yield), nitrosation and ring closure with acetic acid anhydride (30 and 40% yield). The prod-

ucts were submitted to photochemical and thermal intramolecular [3 + 2] cycloadditions to afford diverse heteropolycyclic com-

pounds. Photochemical reactions afforded cis-3-(4-methylphenyl)-3a,8-dihydro-3H-pyrazolo[5,1-a]isoindole (11, 12.5% yield) and

trans-3-(4-methylphenyl)-3a,8-dihydro-3H-pyrazolo[5,1-a]isoindole (12, 5% yield). Thermal reactions afforded 3-(4-methyl-

phenyl)-3,3a,8,8a-tetrahydroindeno[2,1-c]pyrazole (14, 50% yield) and 11-(4-methylphenyl)-9,10-diazatricyclo[7.2.1.02,7]dodeca-

2,4,6,10-tetraene (15, 22% yield).
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Introduction
Sydnones belong to the group of five-membered heterocyclic

compounds referred to as being "mesoionic" and have been

widely studied since their discovery [1-5]. They can be repre-

sented as hybrids of a number of mesomeric ionic structures

(Figure 1).

One of the most characteristic reactions of sydnones is the inter-

molecular 1,3-dipolar cycloaddition. In the presence of

acetylenic or ethylenic dipolarophiles, sydnones undergo cyclo-

addition reactions, which can be induced thermally [4,6,7] or

photochemically [8-17], giving different pyrazole and/or pyra-
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Figure 1: Resonance structures of the sydnone ring.

zoline derivatives, depending on the applied dipolarophile

(Scheme 1). Namely, sydnones are masked 1,3-dipoles that by

photolysis give nitrile imine intermediates, or in thermal reac-

tions react as cyclic azomethine imines.

Scheme 1: Thermal and photochemical intermolecular [3 + 2] cycload-
ditions.

Intramolecular 1,3-dipolar cycloadditions of sydnone deriva-

tives have not been as thoroughly investigated, and so far only a

few examples are known [18-20]. Photochemically induced

intramolecular 1,3-dipolar cycloadditions have been studied on

3,4-disubstituted sydnone derivatives [18,19] (Figure 2, A and

B), wherein indolopyrazole and pyrazolobenzoxazine struc-

tures are formed (Figure 2, C and D).

Heimgartner and coworkers also carried out the thermally

induced reaction of 3-(o-allylphenyl)-4-phenylsydnone (A) and

obtained the cycloadduct E (Figure 2) with the oxycarbonyl

group remaining in the structure [18].

We have been studying photochemical reactions of conjugated

heterostilbene derivatives in which the sydnone moiety is part

Figure 2: Illustration of intramolecular [3 + 2] cycloadditions.

Figure 3: Styryl-sydnone 1 and stilbenyl sydnone 2 and their photo-
products F and G, respectively; target molecules 3 in this work.

of a heterostilbene [17] (1, Figure 3) or is directly attached at

the ortho position to the stilbene 2 [21-23]. Upon photolysis of

compound 1, where the sydnone moiety is part of a heterostil-

bene system, cis–trans isomerization was the main process, and

no intramolecular cycloadducts were found owing to the

unfavourable conformation of the formed intermediate in the

trans configuration. The existence of the nitrile imine inter-

mediate as a result of competitive photolysis of the sydnone

moiety was confirmed on irradiation of 1 in the presence of

acrolein and isolation of the pyrazoline derivative (F, Figure 3)

[17]. In the case of stilbenylsydnones 2, where the sydnone

moiety is directly connected to the ortho position of the stil-

bene, the cyclization of the formed nitrile imine intermediate

leading to benzodiazepine ring closure (G, Figure 3) was the
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Scheme 2: Synthesis of the target molecules 3a and 3b.

main intramolecular process [22]. In a continuation of our

interest in the synthesis of heteropolycyclic compounds we

extended our research to new stilbene-sydnone derivatives 3

(Figure 3). In such a system, where two chromophores, stilbene

and sydnone, are divided by a methylene bridge, an intramo-

lecular 1,3-dipolar cycloaddition and the formation of diverse

polycyclic compounds could be expected. Herein we describe,

for the first time, the synthesis of cis- and trans-3-(stilbenyl-

methyl)sydnones and their photochemical and thermal intramo-

lecular transformations to heteropolycyclic structures.

Results and Discussion
In the investigation of 3-{2-[2-(4-tolyl)ethenyl]phenyl}methyl-

sydnones, 3a (trans) and 3b (cis), were prepared by a sequence

of reactions (Scheme 2) starting from o-cyanotoluene (see

Supporting Information File 1 for full experimental data). Bro-

mination of o-cyanotoluene afforded 2-(bromomethyl)benzoni-

trile (4) [24], which was transformed to triphenylphosphonium

salt 5 [25] followed by Wittig reaction with 4-methylbenzalde-

hyde to 2-(4-methylstyryl)benzonitrile (6a,b) [26]. The product

was obtained as a mixture of 6a (trans isomer, 40%) and 6b (cis

isomer, 60%).

The isomers were separated by column chromatography and

further treated separately to achieve the final products in cis and

trans configurations. Reduction of 6a (trans) or 6b (cis) with

LiAlH4 in anhydrous ether afforded amino derivative 7a (trans,

94%) or 7b (cis, 93%). In the 1H NMR spectra new signals

from the methylene protons appeared at 3.88 ppm (7a) and

3.62 ppm (7b) confirming the reduction. By further nucleo-

philic substitution, from 7a (trans) or 7b (cis) and ethyl

bromoacetate, the ester 8a (trans) or 8b (cis) was prepared. On

purification by column chromatography, the byproducts,

obtained by disubstitution reaction of the amino compound,

were separated, and the pure 8a (43%) or 8b (31%) was

isolated. The obtained esters showed the presence of the carbon-

yl group at ~1740 cm−1 in the IR spectra and the carbonyl

carbon at ~172 ppm in the 13C NMR spectra. The esters 8a or

8b were hydrolysed to the amino acid 9a (trans, 90%) or 9b

(cis, 96%). The obtained amino acids were transformed to

N-nitroso glycine 10a or 10b and, without isolation or further

purification, were submitted to dehydration with acetic acid

anhydride to give sydnone 3a (trans) or 3b (cis). After column

chromatography the pure 3a (30%) or 3b (42%) was isolated.

The best indication that the sydnone structures were formed was
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Scheme 3: Photolysis of cis- or trans-3.

given by the singlet at ~6 ppm in the 1H NMR spectrum, char-

acteristic for the proton H-4 in the sydnone ring, as well as

those in the 13C NMR spectrum, namely the CH and CO

sydnone carbons at ~94 and ~169 ppm, respectively.

The irradiation experiments with the trans isomer (3a) or cis

isomer (3b) were performed in ~10−3 M benzene solution in a

Rayonet reactor at 300 nm under anaerobic conditions (purged

with argon). The absorption maximum of trans isomer (3a) is at

300 nm (ε 37453) and of cis isomer (3b) at 291 nm (ε 16228),

thus upon irradiation both isomers were excited. The irradiation

of the isomers was performed until full conversion. The irradi-

ation of either the trans or cis isomer, or of the mixture of

isomers, resulted in the formation of two products in the same

mutual ratio, along with large amounts of unidentified high-

molecular-weight products. Separation by column chromatog-

raphy in combination with thin layer chromatography gave di-

hydropyrazolo-isoindoles, 11 (12.5%) and 12 (5%) (Scheme 3).

The structure of the photoproducts was determined by spectro-

scopic methods. The molecular ions of 11 and 12, m/z 248 in

the mass spectra, indicate that the structures have lost CO2 rela-

tive to the starting compound. In the 1H and 13C NMR spectra,

the signals are found in an area which is characteristic for satu-

rated cyclic compounds. The major product is assigned to com-

pound 11 based on the following data: In 1H NMR spectrum the

signals at 4.98 ppm and 4.43 ppm are doublets with coupling

constants of 15.6 Hz and are assigned to geminal protons G-1

and G-2. The other two signals at 4.92 and 4.24 ppm are also

doublets but with coupling constants of 10.8 Hz. Based on the

interaction of the proton at 5.88 with the proton at 4.92 ppm in

the NOESY spectrum, the doublet at 5.88 is assigned to proton

H-5, the doublet at 4.92 ppm to proton B and the doublet at 4.24

to proton C. Interaction of proton H-5 with proton B is also

visible in HMBC spectrum. The signal at 6.53 ppm was

assigned to proton A based on COSY interaction with proton C.

The rather large high-field shift of the aromatic proton H-5 can

be explained by an anisotropic effect of the tolyl group and thus

confirms the cis orientation of protons B and C.

The structure of the minor photoproduct 12, different from the

structure 11 only in trans orientation of the protons B and C,

was also evident from NMR spectra by using 2D NMR tech-

niques. The doublets at 4.90 ppm and 4.37 ppm with a coupling

constant of 15.6 Hz are assigned to geminal protons G. The

singlet at 6.57 ppm is assigned to proton A. The chemical shift

of proton A is the same as in structure 11. The other two signals

at 3.97 ppm and 4.70 ppm appear as singlets, and they are

assigned to protons C and B, respectively, based on weak inter-

actions in the COSY and NOESY spectra. Nevertheless, the

proton H-5 of the fused benzene ring in structure 12 is in the

multiplet together with other aromatic protons, which is in

accordance with the proposed structure.

The structure of the photoproducts was confirmed by an ad-

ditional experiment on the crude reaction mixture with DDQ

(Scheme 4) in which, as expected for the predicted structures,

the aromatization reaction took place forming the pyrazolo-

isoindole 13. Compound 13 arose also on silica gel during the

purification of either 11 or 12.

Scheme 4: Aromatization with DDQ.
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Scheme 5: Possible mechanism for the formation of the photoproducts.

The irradiation of 3a or 3b until full conversion, as previously

mentioned, produced a mixture of 11 and 12 along with decom-

position and high-molecular-weight products. On shorter irradi-

ation time (10 min, in benzene or acetonitrile) 3a (trans isomer)

afforded, according to 1H NMR, the photomixture of predomi-

nantly 3b (cis isomer) with only traces of starting 3a and

tricyclic photoproducts 11 and 12. Under the same irradiation

conditions, 3b (cis isomer) as starting compound gave a

photomixture of cis isomer and the newly formed product 11 in

1:1 ratio with only traces of 3a (trans isomer), along with some

unidentified side products. The experimental results show that

the trans-(3a) and cis-(3b) isomerize and react with different

efficiency, and that the isomerization, as in the case of stilbene

itself [27], is shifted toward the cis isomer. It follows that the

reaction is stereospecific and that photoproduct 11 is formed

from the cis configuration of the stilbene moiety and the photo-

product 12 from the trans configuration, although the forma-

tion of 12 via epimerization of 11 could not be eliminated. It is

also evident that there are several competitive processes, which

are summarized in Scheme 5.

On irradiation of 3a (trans) or 3b (cis) parallel competitive

processes are in operation, namely, trans–cis and cis–trans

isomerization of the stilbene moiety, and photolysis of the

sydnone ring resulting in the formation of the nitrile imine inter-

mediate. The nitrile imine species is, in intramolecular dipolar

[3 + 2] cycloaddition, trapped by the cis- or trans-double bond

of the stilbene, giving cycloadducts 11 or 12, respectively.

We also performed the thermal intramolecular reactions with

the starting compounds 3a and 3b. Theoretically the intramo-

lecular 1,3-dipolar cycloaddition of the sydnone moiety, acting

as a masked azomethine dipole, and the double bond of the stil-

bene moiety could proceed in different ways. The orientation of

the sydnone ring toward the π bond of the stilbene in combina-

tion with the double bond configuration can give various formal

[3 + 2] intramolecular cycloadducts.

On heating of 3a (trans) in toluene until full conversion (4 h)

one product in 50% yield was isolated from the reaction mix-

ture after column chromatography. From the molecular ion

(m/z 248) of the product and its 13C NMR spectrum it was

obvious that in the cycloaddition CO2 elimination took place.

Fragmentation of the product and the presence of an ion at m/z

220 suggests a structure in which the expulsion of nitrogen is

possible. The structure 14 (Scheme 6) was determined by ad-

ditional NMR techniques, NOE and HMBC interactions, and by

single crystal X-ray structure analysis (Figure 4) of the crystal

formed in an NMR tube by slow evaporation of the solvent.

Scheme 6: Thermal reaction of trans-3.

Also, when compound 3b (cis) was refluxed in xylene (9 h) or

toluene (19 h) only one cycloadduct 15 was isolated

(Scheme 7), besides decomposition products, in 22% yield. The

structure of 15 was determined by spectroscopic methods.
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Figure 4: ORTEP of compound 14.

Scheme 7: Thermal reaction of cis-3.

In the 1H NMR spectrum two pairs of geminal protons were

found at 4.51 and 4.21 ppm (A, B) and at 3.71 and 3.35 ppm (E,

D). The doublet at 3.95 ppm, coupled with one geminal proton

(D), was assigned to proton C. In the 13C NMR spectrum, one

of the five quaternary carbons is shifted to 176 ppm, which

corresponds to an sp2-carbon in the vicinity of nitrogen. In the

NOESY spectrum the interaction of protons A and B with an

aromatic proton (H-2) at 7.00 ppm is seen, as well as the inter-

action of proton C with protons E and D. Since the NOE inter-

action is seen between protons A and E we concluded that

protons A and E must lie on the same side of the six-membered

ring. In addition, the interaction of proton C with tolyl (H-10)

and H-5 protons was seen.

In order to explain the diverse structures (14 and 15) and their

formation mechanism, we analysed the possible ways of intra-

molecular [3 + 2] cycloaddition relating to the arrangement of

the sydnone ring towards the cis and trans double bond

(Figure 5 and Figure 6).

As presented in Figure 5, the sydnone ring could be oriented to

the double bond in such a way that the bonds are formed at the

C(Sy)–α(St) and N(Sy)–β(St) positions, or, as presented in

Figure 6, at the N(Sy)–α(St) and C(Sy)–β(St) positions. The

favoured arrangement of the sydnone ring toward the cis and

Figure 5: Proposed stereochemical pathway of sydnone ring (CH–N)
and trans- and cis-stilbene (α–β).

Figure 6: Proposed stereochemical pathway of sydnone ring (N–CH)
and trans- and cis-stilbene (α–β).

trans double bond, leading to the products, is the pathway

presented in Figure 5. The regiospecific and stereospecific for-

mation of the products 14 and 15 could be explained by this ap-

proach of the sydnone ring (Scheme 8). The cycloadducts, cA

from trans isomer and cB from cis isomer, lose CO2 under the

reaction conditions to afford intermediates 14A and 14 B, res-

pectively. Owing to the favourable conformation in the case of

biradical 15A, the 1,3-H abstraction and formation of the C–N

double bond in product 15 is possible. In the biradical 14A the

intramolecular hydrogen abstraction is not favourable, but 1,2-

alkyl shift takes place followed by formation of the N–N double

bond in product 14.

Monitoring the reaction by thin layer chromatography revealed

that the [3 + 2] cycloaddition is much faster in the case of the

trans isomer (3a). After the 4 h reflux of the toluene solution of

the trans isomer, the 1H NMR spectrum of the crude reaction

mixture showed complete conversion, while the cis isomer (3b)

under the same conditions showed complete conversion only

after 19 h. This evidence led us to believe that the formation of

the "C–α/Ν–β" adduct cA proceeds via an energetically

favoured transition state due to a possible secondary π–π inter-

action of the tolyl and carbonyl groups.
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Scheme 8: Possible formation of thermal products 14 (from trans-3)
and 15 (from cis-3).

Conclusion
In photochemical and thermal intramolecular reactions the

investigated compounds 3a and 3b, in which the stilbene and

sydnone ring are bridged by a methylene group, show the char-

acteristic reaction for stilbene and sydnone moieties. The stil-

bene moiety photochemically isomerizes and the process of

trans–cis isomerization is in competition with the photolysis of

the sydnone ring. Photolysis of the sydnone moiety leads to a

nitrile imine, followed by its intramolecular trapping by the cis

or trans double bond of stilbene moiety, affording polycyclic

compounds 11 and 12, respectively. The same starting com-

pounds also react thermally: The sydnone moiety in 3a reacts as

a masked azomethine dipole with trans configuration on the

stilbene moiety by intramolecular [3 + 2] cycloaddition, giving

polycyclic compound 14, while the sydnone moiety in the cis

isomer 3b gives polycyclic compound 15. Stilbene-methylene-

sydnones are useful substrates for photochemical and thermal

intramolecular [3 + 2] cycloaddition reactions to heteropoly-

cyclic compounds.
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