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A B S T R A C T   

We report the case of a 28-year-old man, diagnosed with a non-secreting, non-metastatic suprasellar germinoma 
treated with chemoradiation who developed, four months after completion of radiation therapy, multiple 
discrete demyelinating lesions mimicking multiple sclerosis (MS). The patient had no previous diagnosis of MS 
and the neuroimaging studies performed both at the time of diagnosis and after chemotherapy, pre-irradiation, 
showed no evidence of white matter lesions. He remained asymptomatic, with no focal neurological deficits. 
Biochemical analysis of the CSF was positive for the intrathecal synthesis of IgG with oligoclonal bands. Follow- 
up MRI six months later showed a spontaneous decrease in lesion size and resolution of associated inflammatory 
signs, with lesions remaining stable in number. We discuss the potential origin of these white matter lesions, 
which may correspond to MS-like late-delayed demyelination secondary to chemoradiation therapy, in a pre-
viously predisposed patient.   

1. Introduction 

Chemotherapy and radiation therapy-induced neurotoxicity is a 
well-known secondary effect in cancer patients with both treatments 
having a negative impact upon neural precursor cells, mainly of oligo-
dendrocyte lineage affecting axonal myelination [1,2]. 

Recent research has shown that chemotherapy depletes oligoden-
drocyte lineage cells in humans and leads to a persistent try-glial dys-
regulation via microglial activation and induction of a chronic 
inflammatory state that disrupts the gliogenic microenvironement and 
glial homeostasis [1]. This mechanism resembles other neurological 
diseases featuring myelin dysfunction such as MS [3] and Alzheimer’s 
disease [4]. Activated microglia blocks the proliferation and dysregu-
lates the differentiation of oligodendrocyte precursor cells (OPCs) 
leading to dysmyelination. Moreover, the activation of reactive astro-
cytes, promotes oligodendrocyte death increasing neurotoxicity [1]. 

A similar process takes place after radiation exposure with cranial 
irradiation inducing chronic microglial inflammation and leading to 
decreased hippocampal neurogenesis [7,8]. 

Radiotherapy can lead to necrosis of white matter tracts, axonal 
degeneration and vascular injury [9]. Demyelination, one of the hall-
marks of this radiation-induced neurotoxicity, is presumed to result 

from the enhanced radiosensitivity of OPCs [2,10]. Moreover, radiation- 
induced damage to the microvasculature, prompting to hemorrhagic 
and ischemic events, local necrosis and blood-brain-barrier disruption 
(with resulting vasogenic edema), facilitates CNS influx of inflammatory 
cells, further contributing to a pro-inflammatory state and persistent 
demyelination [9]. 

A diffusion tensor MR imaging study has shown that early demye-
lination is dose-dependent, affecting regions exposed to high radiation 
doses, up to three months after radiotherapy. However, this process is 
continuous and progressive diffuse demyelination, not limited to high- 
dose volumes, can be seen 4 to 6 months following radiotherapy [11]. 
This case report concerns a patient with no prior clinical or radiological 
signs of MS who, 4 months after being treated with chemoradiation for a 
suprasellar germinoma, developed demyelinating lesions diagnostic of 
MS, according to MAGNIMS criteria [12]. 

To the best of our knowledge MS-like demyelinating plaques have 
not been previously described as a direct consequence of chemotherapy 
and/or radiotherapy in non-MS patients. 

2. Case report 

The patient is a previously healthy 28 year-old-man who presented 
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with progressive fatigue, polyuria, polydipsia and anejaculation. His 
neurological and neuroophthalmological exams were unremarkable and 
his family history was non-contributory. Laboratory investigation dis-
closed hypopituitarism including diabetes insipida, hypogonadothrophic 
hypopituitarism and central hypothyroidism. 

Magnetic resonance imaging (MRI) of the brain, sella turcica and 
neuroaxis (Fig. 1) revealed a mass lesion in the pituitary infundibulum 
and pituitary stalk, showing moderate enhancement after gadolinium 
administration. The brain parenchyma was unremarkable and there 
were no signs of subependymal or leptomeningeal enhancement to 
suggest cerebrospinal fluid (CSF) seeding. 

Lumbar puncture disclosed normal opening pressure and crystalline 
CSF. Cytologic analysis was negative for neoplastic cells and biochem-
ical analysis showed the presence of intrathecal synthesis of IgG with 
oligoclonal bands (IgG 3.78 mg/dl, Freedman pattern 2). Bacteriologic 
and virologic CSF testing were also negative. Seric and CSF levels of 
α-fetoprotein and β-HCG were normal. 

Surgical biopsy of the pituitary stalk mass, performed under neuro-
navigation revealed a germinoma. 

With a diagnosis of a non-secreting, non-metastatic supra-sellar 
germinoma the patient was treated according to the SIOP (Interna-
tional Society of Paediatric Oncology) protocol with a 3 multidrug 
chemotherapy regimen including carboplatin, etoposide and ifosfamide 
followed by radiation therapy. 

MRI performed 10 days after completing the chemotherapy regimen 
showed a complete macroscopic response and no signs of complication 
(Supplementary Fig. 1). 

The patient then received whole-ventricular irradiation (24 Gy given 
in 15 fractions of 1.6 Gy/cycle/day) using Volumetric Modulated Arc 
Therapy (VMAT) with concomitant memantine. 

According to Common Terminology Criteria for Adverse Events 
(CTCAE), toxicity included grade 1 hepatotoxicity, grade 3 neutropenia 
and grade 4 thrombocytopenia during CT and grade 2 headache and 
vomiting during RT. 

Four months after completing the treatment protocol, MRI of the 
brain and spine (Fig. 2) showed complete tumor response and was 
remarkable for the interval appearance of multiple discrete white matter 

lesions affecting the posterior fossa and supratentorium, distributed 
throughout the deep and periventricular white matter with a typical 
orientation perpendicular to the body of the lateral ventricles and 
involving the calloso-septal interface (“Dawson’s fingers”). Some of 
these lesions showed a subtle halo of restricted diffusion and perilesional 
edema suggesting inflammatory activity. No lesions were found in the 
spinal cord or optic nerves. 

A second lumbar puncture continued to show oligoclonal bands and 
intrathecal synthesis of IgG in the CSF (IgG 2.01 mg/dl, Freedman 
pattern 2) with no additional biocytochemical changes. Panel of infec-
tion, autoimmunity, including autoimmune encephalitis and anti- 
neuronal antibodies (Ab), were negative. Visual evoked potentials 
(VEP) showed normal amplitude and median latencies of the main peak 
(P100) with no asymmetries. 

Clinical evaluation did not reveal focal neurological deficits. The 
patient complained of mild memory impairment recalling words, diffi-
culty concentrating which prevented him from resuming his profes-
sional life and, although he was a sportsman before, he had no thrive for 
sports. No active treatment was deemed appropriate and the patient 
remained under surveillance. 

Subsequent MRI, performed 10 months after treatment (Supple-
mentary Fig. 2), showed a slight decrease in the size of the largest 
demyelinating lesion located in the peri-atrial white matter and reso-
lution of the associated vasogenic edema and restricted diffusion. No 
new demyelinating lesions and no evidence of tumor recurrence were 
seen. 

On the last follow up visit, one year after treatment, the patient 
remained asymptomatic with no focal neurologic deficits, specifically 
denying memory and concentration difficulties. He resumed his full- 
time job and his normal social habits. 

3. Discussion 

This case is remarkable for the appearance of a neuroimaging picture 
compatible with MS, 4 months after chemoradiotherapy (CRT) for a 
suprasellar germinoma, in a previously healthy young adult with no 
family history of MS and no previous white matter lesions, showing 

Fig. 1. MRI of the brain at diagnosis: Sagittal T1W (A), T2W (B) and CE T1W (C) and coronal CE T1W (D) images demonstrate an enhancing mass lesion in the 
infundibulum and pituitary stalk protruding into the suprasellar cistern (arrows). An incidental peripheral enhancing epiphyseal cyst is also noted (dashed arrows). 
Axial FLAIR images (E) throughout the brain at this stage were unremarkable with no evidence of demyelinating WM lesions. 
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Fig. 2. MRI of the brain 3 months after 
completion of the CRT protocol: Pre- (A) and 
post‑gadolinium (B) axial T1W, axial T2W (C), 
axial FLAIR (D) and DWI images, b1000 (E) and 
ADC maps (F) demonstrate the interval 
appearance of multiple discrete deep and peri-
ventricular white matter lesions hypointense on 
T1 and hyperintense on T2W images, with no 
contrast enhancement on post‑gadolinium T1W 
images, most with facilitated diffusion and a 
few with a thin rim of restricted diffusion. Most 
lesions are located in the deep white matter of 
the centrum semi-ovale, some affecting the 
pericallosal region oriented perpendicular to 
the body of the lateral ventricles (arrows), with 
the largest lesion in the peri-atrial white matter 
on the left side (dashed arrows). This lesion 
shows a peripheral digitiform T2W/FLAIR 
hyperintense rim consistent with peripheral 
edema with no significant mass effect upon the 
ventricular trigone or adjacent sulci. Also noted 
are 2 lesions in the posterior fossa, one in the 
left lateral aspect of the pons and the other in 
the posterior aspect of the middle cerebellar 
peduncle (short arrows) and a lesion in the left 
temporal lobe adjacent to the lateral margin of 
the temporal horn (arrowhead).   

A. Borges et al.                                                                                                                                                                                                                                  



eNeurologicalSci 22 (2021) 100315

4

intrathecal synthesis of IgG and oligoclonal bands in the CSF. 
There are 2 potential explanations for this occurrence: a toxic effect 

from CRT leading to an unusual demyelinating pattern simulating MS or 
the coincidental development of a clinically silent MS in a previously 
predisposed patient. The following discussion will address the existing 
evidence for both these hypotheses.  

1. CRT-induced toxicity simulating MS 

Neurotoxicity is a well-known side effect of both chemo and radia-
tion therapy and share a common denominator: depletion of oligoden-
drocyte precursor cells and disruption of oligodendrocyte lineage 
dynamics leading to axonal demyelination, triggered by microglial 
activation and inflammation [1]. 

Several chemotherapy agents, in particular antimetabolites and 
alkylating drugs, have been shown to induce an acute and most often 
reversible leukoencephalopathy via microglial activation and inflam-
mation [3,5,6]. Carboplatin and ifosfamide are both neurotoxic 

alkylating agents. The former most often associated with neurovascular 
dysregulation leading to posterior reversible leukoencephalopathy 
[13,14] and, the latter, responsible for a toxic leukeoencephalopathy 
syndrome seen in 10–20% of patients which is not usually associated 
with structural white matter changes on conventional MRI studies 
[15,16]. 

Neuroimaging findings of radiation-induced leukoencephalopathy 
comprise discrete or diffuse and confluent white matter lesions, solid 
contrast enhancing lesions, and necrotic lesions with thick, irregular, 
contrast-enhancing borders eliciting vasogenic brain edema which, in a 
chronic stage, may evolve to cystic porencephaly and brain atrophy 
[17–19]. Advanced diffusion tensor MR imaging techniques, have been 
shown to depict early microstructural white matter changes, related to 
increased vascular permeability and neuroinflammation across all ra-
diation doses, even below 10 Gy [20]. 

In our case the demyelinating lesions disclosed on the MRI scan 4 
months after RT, strongly suggest an acute/subacute inflammatory 
demyelinating process with multiple discrete lesions showing restricted 

Fig. 3. Dose distribution after registration of CT planning upon axial FLAIR images of the follow-up MRI scan obtained 3 months after treatment. The 24 Gy isodose 
curve (red) shows the volume irradiated with the prescribed dose. The 20 Gy isodose curve (blue) represents the volume that received at least 20 Gy. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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diffusion and vasogenic edema. Interestingly, the superimposition of the 
irradiated volumes on the post-RT axial FLAIR MR images (Fig. 3), 
demonstrates that almost all demyelinating lesions lay within the 20 Gy 
isodose curve. Therefore, although the distribution and pattern of the 
white matter lesions resemble that of MS, it is conceivable that they may 
have resulted from the superimposed neurotoxic effect of radiation 
therapy upon an already susceptible ground of microglial inflammation 
induced by the previous chemotherapy.  

2. Coincidental clinically silent MS in a predisposed patient 

The morphology and distribution of the demyelinating lesions dis-
closed on the post-radiation MRI scan have a typical pattern for MS 
according to the MAGNIMS criteria [12]. These neuroimaging findings, 
in an otherwise asymptomatic patient, strongly favor a radiologically 
isolated syndrome (RIS), a clinically silent form of MS. Multiple factors 
(clinical, laboratory and radiologic) have been associated with the 
likelihood to progress from subclinical to clinical MS including the 
presence of OCBs, younger age, male gender, positive family history and 
abnormal visual evoked potentials [21]. On MRI, the presence of 
gadolinium-enhancing and spinal cord lesions are predictors of con-
version to a full-blown MS [12,21]. 

Interestingly, our patient had oligoclonal bands in the CSF prior to 
the development of the WM lesions. While not exclusive for MS, OCBs 
have a reported positive predictive value (PPV) ranging between 61 and 
94% depending on the reference population and on the integration with 
other CSF findings [22]. However, OCBs are present in 6% of cancer 
patients and have been reported in at least 6 cases of germinoma 
[23–25]. 

Although the development of this RIS could have been coincidental, 
the temporal relationship with the CRT is hard to be neglected. Even-
though the effects of brain irradiation in MS patients remain elusive, it 
seems intuitive that MS patients carry a higher risk of chemoradiation- 
induced neurotoxicity as both processes target oligodendrocytes. In 
addition, it is likely that RT-induced BBB disruption, facilitates the 
influx of autoreactive T-lymphocytes in MS-predisposed patients. 

Previous studies have reported an increased susceptibility of MS 
patients to radiation-induced demyelination, in some cases, precipi-
tating disease reactivation in patients with long-lasting quiescent dis-
ease [26–31]. The largest review study found in the literature is a 
retrospective evaluation of 15 MS patients, treated with external beam 
radiation therapy between 1976 and 2014 [32].This study supported the 
impression that MS patients are at higher risk for neurotoxicity 
compared to non-MS patients. Moreover, 3 patients who had probable 
MS, evolved to full-blown MS after irradiation. It is conceivable that 
since the use of more conformal radiotherapy techniques IMRT, VMAT 
and radiosurgery, sparing healthy brain tissue, these results may not be 
reproduced. Large retrospective studies will be required to clarify this 
issue. 

In our case, while irradiating the whole ventricular system, the 
periventricular WM included in the low-dose bath encompasses most of 
the lesions, making it quite likely that radiation therapy was the trigger 
for the development of the white matter lesions following prior chemo- 
sensitization in a potentially predisposed patient (with CSF OCBs). The 
weight of each independent factor is hard to determine. In fact, we favor 
this hypothesis as the most likely explanation for the appearance of the 
demyelinating lesions. 

To our knowledge such a pattern of demyelination has not yet been 
described in association with radiation nor with the chemotherapy 
agents used in this multidrug regimen (etoposide, carboplatin and 
ifosfamide). 

Since the clinical and imaging features and the temporal evolution of 
the demyelinating lesions of our patient did not suggest other demye-
linating diseases such as acute disseminated encephalomyelitis (ADEM) 
or neuromyelitis optica (NMO) we did not search for aquaporin 4 
(AQP4) or myelin oligodendrocyte glycoprotein (MOG) antibodies. In 

fact, an MRI of the neuro-axis excluded spinal cord lesions and the visual 
evoked potentials were normal. However, since MOG antibody- 
associated inflammatory demyelinating diseases represent an oligo-
dendropathy [33,34], it would be interesting to find whether or not 
these antibodies were present in our patient. 

In a short follow-up period of one year, the patient did not develop 
neurological symptoms and there has been no progression of the neu-
roimaging findings. He will remain in close surveillance to ascertain 
whether or not he will evolve to a full-blown MS. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ensci.2021.100315. 
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