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Introduction
Primary cilia, solitary projections found on the surface of most 
cells in our bodies, are complex organelles that detect and inter-
pret a variety of extracellular signals (Gerdes et al., 2009). Work 
in several systems has suggested that the dynamic movement of 
receptors and other proteins into and out of cilia regulates the 
activity of signaling complexes that ultimately trigger responses 
in the cell (Corbit et al., 2005; Haycraft et al., 2005; Wang et al., 
2006; Rohatgi et al., 2007; Kovacs et al., 2008). Thus, a central 
challenge in the field is to understand how transmembrane pro-
teins are targeted to cilia and how this targeting can be regulated 
by signals. The trafficking of proteins to the primary cilium, a 
tiny structure <5 µm long and <1 µm wide, presents a formida-
ble challenge: in a cultured fibroblasts, the base of the cilium 
(the target zone for proteins sent to cilia) has a surface area that 
is >2,000-fold smaller than the rest of the plasma membrane.

Current models for membrane protein trafficking to pri-
mary cilia highlight the importance of directed vesicular traf-
ficking from the Golgi apparatus along microtubule tracks to 
the base of the cilium (Fig. 1; Rosenbaum and Witman, 2002; 
Pazour and Bloodgood, 2008). This model is supported both by 

the physical proximity of the Golgi to the basal body (Sorokin, 
1962) and by functional studies showing that the transport of 
rhodopsin to specialized primary cilia, the outer segments of 
photoreceptors, is blocked by disruption of Golgi membranes 
with the drug Brefeldin A (Deretic and Papermaster, 1991; Moritz 
et al., 2001). Recent efforts have focused on discovering the 
protein machinery that sorts proteins at the Golgi into vesicles 
that are directed to the base of the primary cilium (Follit et al., 
2006; Omori et al., 2008).

Two additional trafficking routes can be envisioned for 
transmembrane proteins movement to primary cilia (Fig. 1). First, 
proteins could be transported laterally from the plasma mem-
brane into the membrane of the cilium by breaching the diffu-
sion barrier postulated to exist at the base of the cilium (the 
“lateral transport pathway”; Musgrave et al., 1986; Hunnicutt  
et al., 1990). Second, proteins located at the plasma membrane 
could move into endocytic vesicles that traffic to the base of the 
cilium (the “recycling pathway”). These pathways would likely 
be regulated by distinct sets of proteins.

To dissect these three trafficking routes to primary cilia, 
we used novel antibody and small-molecule affinity probes 
(Fig. 2 A), in combination with pulse-chase analysis of protein 

The function of primary cilia depends critically on 
the localization of specific proteins in the ciliary 
membrane. A major challenge in the field is to 

understand protein trafficking to cilia. The Hedgehog 
(Hh) pathway protein Smoothened (Smo), a 7-pass 
transmembrane protein, moves to cilia when a ligand is 
received. Using microscopy-based pulse-chase analy-
sis, we find that Smo moves through a lateral trans-
port pathway from the plasma membrane to the ciliary  

membrane. Lateral movement, either via diffusion or 
active transport, is quite distinct from currently studied 
pathways of ciliary protein transport in mammals, 
which emphasize directed trafficking of Golgi-derived 
vesicles to the base of the cilium. We anticipate that this 
alternative route will be used by other signaling pro-
teins that function at cilia. The path taken by Smo may 
allow novel strategies for modulation of Hh signaling in 
cancer and regeneration.
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distinguish Smo on the plasma membrane from Smo on the  
ciliary membrane, so the location of Smo was also determined by 
microscopy. We reasoned that Smo on the cell surface would be 
labeled by an antibody against an epitope on the N-terminal region 
of the protein (Fig. 2 A). When smo/ cells producing Smo 
tagged at its N terminus with YFP (YFP-Smo cells; Rohatgi et al., 
2009) were exposed to an anti-YFP antibody, surface-exposed Smo 
could be readily detected before and after Shh addition (Fig. 2 C). 
The polyclonal anti-YFP antibody cross-linked surface YFP-Smo 
into aggregates visible over the entire plasma membrane, with-
out any evidence for enrichment in a particular plasma membrane 
domain. YFP-Smo was detected at cilia only after Shh addition 
(Fig. 2 C, right). In control experiments, anti-YFP did not label 
smo/ cells producing Smo fused to a different tag (Fig. S1 A). 
An antibody directed against an intracellular part of Smo (anti-
SmoC; Rohatgi et al., 2007) did not label intact cells (Fig. S1 B). 
Thus, we conclude that Smo is present on the plasma membrane 
of both Shh-treated and untreated cells, which is consistent with 
the lateral transport or recycling models for transport.

If surface Smo undergoes transport into cilia, the aggrega-
tion of YFP-Smo by the anti-YFP antibody could block its 
movement to cilia, which is analogous to blocking the lateral 
diffusion of neurotransmitter receptors by antibody cross-linking 
on the surface of neurons (Ashby et al., 2006). Surface cross-
linking should have little effect if delivery of Smo to the cilium 
involves exocytosis from internal pools upon addition of Shh. 
Consistent with the first possibility, treatment of cells with anti-
YFP during the period of Shh exposure largely prevented trans-
port of YFP-Smo to cilia (Fig. 2 D).

localization by fluorescence microscopy, to monitor the move-
ment of the transmembrane protein Smoothened (Smo) to pri-
mary cilia. Smo, which is encoded by a human proto-oncogene, 
is a component of the Hedgehog (Hh) signal transduction path-
way. Hh signaling is a cilium-associated pathway that plays 
fundamental roles in development, stem cell function, and 
carcinogenesis. The binding of the ligand Sonic Hedgehog (Shh) 
to its receptor Patched 1 (Ptc1) triggers the accumulation of Smo 
within the ciliary membrane and the activation of signaling 
(Corbit et al., 2005; Rohatgi et al., 2007). Drugs targeting Smo 
are being tested in human cancer patients and some of these com-
pounds function by blocking Smo transport to cilia (Rohatgi et al., 
2009; Scales and de Sauvage, 2009). In addition to shedding 
light on the problem of ciliary protein trafficking, an under-
standing of the molecular mechanisms underlying Smo accu-
mulation in cilia will shed light into how this potentially 
oncogenic protein is activated.

Results and discussion
Smo is present on the cell surface  
and translocates to primary cilia after  
Shh stimulation
The recycling and lateral transport pathways (Fig. 1) require that 
Smo should be present on the plasma membrane of cells, which has 
been difficult to detect by simple fluorescence (Rohatgi et al.,  
2007). Using non–cell-permeable biotinylation, endogenous 
Smo could be readily detected on the surface of NIH3T3 cells 
(Fig. 2 B) before and after Shh addition. This assay cannot  

Figure 1. Three models for Hh-induced Smo 
transport to the primary cilium. (1) Direct traf-
ficking from the Golgi to the base of the cilium. 
(2) Transport to the cell surface followed by 
lateral transport into the cilium. (3) Surface 
localization followed by internalization into a 
recycling pathway.

http://www.jcb.org/cgi/content/full/jcb.200907126/DC1
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the cell surface to concentrate in cilia, a result that is consistent 
with lateral transport or recycling models but not with directed 
vesicular transport. Controls excluded the possibility that in-
completely washed anti-SmoN in the culture medium labeled  
YFP-Smo after its movement to cilia (Fig. S1 D).

Surface Smo enters cilia before 
intracellular Smo in response to Shh
Antibodies can alter the trafficking behavior of proteins, so we 
used a completely independent method to label Smo and follow 
its transport. Smo was tagged at its N terminus with the SNAP 
tag protein, a modified version of the enzyme O6-alkylguanine- 
DNA-alkyltransferase, which can be rapidly and covalently 

Because anti-YFP induced the aggregation of YFP-Smo, 
it could not be used to monitor the movement of surface Smo 
to the cilium. We generated an antibody (anti-SmoN) that rec-
ognized the N-terminal cysteine-rich domain of Smo and, im-
portantly, did not cross-link Smo into aggregates (Figs. 2 E and  
S1 C). YFP-Smo cells were surface-labeled with anti-SmoN and 
extensively washed to remove free antibody. Before addition  
of Shh, nonaggregated YFP-Smo labeled with anti-SmoN was 
below the limit of detection, likely because it was dispersed over 
the entire plasma membrane. In contrast, after the cells were 
treated with Shh, YFP-Smo labeled with anti-SmoN was seen 
localized in primary cilia (Fig. 2 E). The most parsimonious ex-
planation for this result is that Shh causes Smo dispersed over 

Figure 2. Smo present on the cell surface 
translocates to the primary cilium after Shh 
stimulation. (A) Extracellular domains of Smo 
are recognized by anti-YFP (YFP tag), anti-
SmoN (cysteine-rich domain), or the SNAP 
substrate (SNAP tag). An intracellular region 
of Smo is recognized by anti-SmoC. (B) Cell 
surface proteins were biotinylated, isolated on 
streptavidin beads, and examined for the pres-
ence of Smo or a control intracellular protein 
(p38) by immunoblotting. (C–E) Live YFP-Smo 
cells (Rohatgi et al., 2009) were exposed to 
anti-YFP (C and D) or anti-SmoN (E) accord-
ing to the timeline shown to the left of each 
panel. (C) Insets (enlarged views of the boxed 
regions) show cilia visualized as shifted over-
lays of the color channels. (D) Intensity of Smo 
fluorescence at cilia, shown as fold increase, 
after treatment with Shh in cells pretreated with 
anti-YFP or anti-SmoC (control). Data indicate 
mean ± SEM. (E) Shh was added after cells 
were treated with anti-SmoN. Both the main 
panels and insets (enlarged views of the boxed 
regions) showing cilia are shifted overlays. 
Bars, 5 µm.
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Figure 3. Pulse-chase labeling: surface-derived Smo enters cilia before intracellular Smo in response to Shh. All parts of the figure use cells expressing 
SNAP-tagged Smo. (A) Cells pretreated with Shh were labeled with the non–cell-permeable SNAP substrate BG-547. Shifted overlay shows that the BG-547 
signal is coincident with cilia and the total SNAP-Smo protein detected with anti-SmoC. (B) Cells prelabeled with BG-547, washed, then treated with Shh 
show BG-547-labeled Smo localized at cilia. (C) To track Smo on cell surfaces, cells were treated as in B for the indicated periods of time. BG-547–labeled 
SNAP-Smo entered and then dissipated from the cilium. (D) To track intracellular Smo, SNAP-Smo on the cell surface was rendered invisible by treating 
cells with a non–cell-permeable block substrate (CBG block). After Shh treatment (times indicated), intracellular Smo that had translocated to the cilium was 
detected with BG-547 before fixation. Data from C and D were analyzed by plotting either the mean (±SEM) BG-547 and anti-SmoC fluorescence (E) or 
the mean BG-547/anti-SmoC fluorescence ratio (F) at various times after Shh treatment. Bars, 5 µm.
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labeled with fluorescent small-molecule substrates (Fig. 2 A; 
Gautier et al., 2008). The SNAP-Smo protein retained func-
tional activity because it restored Shh-induced target gene 
transcription to smo/ cells and it translocated to cilia in re-
sponse to Shh or Smo agonist (SAG; Fig. S2, A and B). SNAP-
Smo present in the ciliary membrane of Shh-treated cells was 
readily labeled by BG-547, a non–cell-permeable substrate 
(Fig. 3 A). BG-547 labeling was specific: no labeling was seen 
in cilia lacking SNAP-Smo (not depicted), the BG-547 signal 
colocalized with anti-SmoC staining (Fig. 3 A), and quenching 
the SNAP tag with a nonfluorescent “blocking” substrate com-
pletely prevented BG-547 labeling (Fig. S2 C).

To determine whether the plasma membrane pool of Smo 
moves to cilia, surface SNAP-Smo was selectively labeled 
with BG-547 for 15 min and chased with a blocking substrate  
(Fig. 3 B). BG-547–labeled SNAP-Smo was detected at cilia  
after Shh treatment, so at least some of the Smo that entered 
cilia originated from the plasma membrane pool. BG-549, a more 
highly charged SNAP substrate, gave the same result (Fig. S2 D). 
Control experiments established that BG-547, BG-549, and the 
blocking substrates were not cell permeable (Fig. S2, E and F).  
This result again supports the lateral transport or recycling  
models for Smo transport to cilia because direct trafficking alone 
implies that no surface Smo moves to cilia.

Figure 4. Dynamin-dependent endocytosis is not required for Smo localization in the cilia. (A) Dominant-negative dynamin mutants (K44A and I690K) 
did not block the translocation of endogenous Smo to cilia in Shh-treated (4 h) NIH3T3 cells. Transfected cells are outlined and were identified by GFP 
fluorescence (not shown for clarity), and insets show magnified views of cilia in the boxed regions (the ciliary marker acetylated tubulin is shown only in the 
insets as shifted overlays of two color channels). No Smo was detected at cilia in the absence of Shh in cells expressing any of the proteins (not depicted). 
(B) To establish that dominant-negative dynamin mutants can block the endocytosis of Smo, NIH3T3 cells were cotransfected with a SNAP-Smo gene and 
a gene encoding either wild-type dynamin or a dominant-negative dynamin. To follow the endocytosis of SNAP-Smo, cells were surface-labeled with non-
permeable BG-547, washed to remove unreacted BG-547, and fixed immediately (top) or after incubation at 37° for 60 min to allow internalization (bottom). 
Cells transfected with wild-type dynamin but not dominant-negative dynamin show clear evidence for the internalization of BG-547-labeled Smo into a 
perinuclear compartment (indicated by arrows). The lack of perinuclear accumulation indicates that dominant-negative dynamin mutants (K44A and I690K) 
blocked the endocytosis of overexpressed Smo. Despite these differences in internalization, Smo is present in cilia under all conditions. Bars, 5 µm.

http://www.jcb.org/cgi/content/full/jcb.200907126/DC1
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Figure 5. The cAMP–PKA pathway promotes Smo entry into primary cilia. (A and B) Smo is localized to primary cilia of NIH3T3 cells after treatment  
(4 h) with Shh or Fsk but not the inactive analogue dideoxy-Fsk (ddFsk). Representative images are shown in A, and mean (±SEM) ciliary Smo fluorescence 
is shown in B. (C) The labeling of surface SNAP-Smo (in SNAP-Smo cells) with non–cell-permeable BG-547 before treatment with Shh or Fsk shows that Fsk, 
like Shh, induces accumulation of BG-547-labeled Smo (surface Smo) in cilia by 1 h. The experiment timeline is as in Fig. 3 C. Images are shifted overlays 



371Transport of Smoothened to the cilium • Milenkovic et al.

The lateral transport model posits that Smo follows a path 
from internal vesicles to the plasma membrane, and finally to the  
cilium (internal Smo → surface Smo → ciliary Smo). In compar-
ison, the recycling model suggests that Smo moves from the sur-
face into internal vesicles and then to the cilium (surface Smo →  
internal Smo → ciliary Smo). The critical difference is that after 
Shh addition, the initial source of Smo that enters primary cilia in 
the lateral transport model is from the plasma membrane; in the 
recycling model, it is from intracellular vesicles (Fig. 1). Pulse-
chase analysis allowed us to establish the temporal order in which 
surface and intracellular Smo pools moved to cilia. To track sur-
face Smo, SNAP-Smo cells were surface-labeled with BG-547 
and exposed to Shh for various times (Fig. 3 C). To selectively 
track intracellular Smo, surface SNAP-Smo was reacted with a 
non–cell-permeable blocking substrate (Fig. 3 D), rendering this 
pool invisible. Cells were then treated with Shh for various periods 
and labeled with BG-547 immediately before fixation. BG-547 
could label only SNAP-Smo molecules that had been intracellu-
lar and thus not accessible to the block. This strategy allowed us 
to use the same SNAP substrate to label surface and intracellular 
pools of Smo, thus avoiding possible artifacts caused by using 
different substrates. In both experiments, cells were also labeled 
with anti-SmoC to detect total Smo protein at cilia after fixation. 
Using quantitative microscopy, the BG-547 signal and the total 
Smo signal were measured for each individual cilium (Fig. 3,  
E and F). As expected, total Smo at cilia steadily increased after  
the addition of Shh (Rohatgi et al., 2007). Levels of surface- 
labeled SNAP-Smo peaked in cilia 1 h after Shh stimulation but 
then declined (Fig. 3, E and F), probably because the Smo pro-
tein at cilia was turning over. Smo protein has a half-life of about  
2 h (Fig. S3 A). In contrast, intracellular SNAP-Smo reached cilia 
after a lag phase, which is consistent with delayed entry com-
pared with the surface pool (Fig. 3, E and F). The delayed entry 
of intracellular Smo was confirmed in an independent experiment 
using a cell-permeable SNAP substrate to selectively label the 
intracellular pool before Shh stimulation (Fig. S3 B).

Collectively, the above results are consistent with Smo 
leaving the secretory pathway, moving to the plasma mem-
brane, and undergoing lateral movement into the cilium after 
Shh addition. It is important to note that total Smo protein in 
the cell, and Smo protein localized in cilia, turned over quite 
rapidly, with a half-life on the order of 2 h (Fig. S3). Thus, even 
at early time points, e.g., 1 h after Shh addition, a fraction of 
ciliary Smo was replenished by new protein from the secretory 
pathway. The relatively rapid turnover of surface Smo might ex-
plain why a previous study did not detect movement of surface 
Smo to the cilium (Wang et al., 2009). In that study, localization 
of surface Smo in cilia was examined at a single time point,  
2.5 h after stimulation with Shh, which was significantly later 
than the peak of newly arrived Smo at cilia revealed by our kinetic 
analysis. Based on our measurement of the Smo half-life using  

cycloheximide chase experiments (Fig. S3 A), much of the sur-
face Smo protein will have turned over in 2.5 h, perhaps reduc-
ing its levels to below those required for detection.

Dynamin-dependent endocytosis is not 
required for Smo localization in the cilia
To further distinguish recycling and lateral transport pathways, 
we tested whether inhibition of endocytosis affects Smo entry 
into cilia. Endocytosis should be required for the recycling path-
way but not for lateral transport (Fig. 1). Overexpression of  
either of two well-characterized dominant-negative forms of  
dynamin (Song et al., 2004), the GTPase that drives scission  
of endocytic vesicles, did not block Shh-induced Smo transport 
to cilia, which supports the lateral transport model (Fig. 4 A). 
Control experiments demonstrated that the mutant dynamin  
proteins blocked endocytosis of the model cargo transferrin  
(Fig. S1 H) and blocked endocytosis of overexpressed Smo from 
the plasma membrane (Fig. 4 B). Interestingly, the mutant dyna-
min proteins had little effect on the localization of overexpressed 
Smo at primary cilia in the same cells in which internalization  
of surface Smo was effectively blocked (Fig. 4 B, bottom row), 
reaffirming that ciliary localization is not dependent on endo-
cytosis. These results using dominant-negative dynamin mutant 
proteins were confirmed in independent experiments using a 
cell-permeable peptide that disrupts the interaction between  
dynamin and amphiphysin (Fig. S1, F and G).

The cAMP–PKA pathway promotes Smo 
entry into primary cilia
The lateral transport of proteins to the cilia has not been described 
in mammals, but a Chlamydomonas reinhardtii transmembrane 
protein, agglutinin, moves to flagella by lateral transport through 
a pathway stimulated by cAMP (Hunnicutt et al., 1990). Evi-
dence for a positive role for cAMP and PKA in Smo regulation in 
Drosophila and mammals (Jia et al., 2004; Hallikas et al., 2006; 
Tiecke et al., 2007; Zhao et al., 2007; Wilson et al., 2009) has 
been described, so we tested cAMP and PKA effects on Smo  
localization. Treatment of cells with Forskolin (Fsk), which 
increases cAMP levels, induced translocation of Smo to primary 
cilia through a lateral transport pathway analogous to that regu-
lated by Shh (Fig. 5, A–C). The effect of Fsk is probably medi-
ated by PKA because overproduction of the catalytic subunit of 
PKA also induced Smo accumulation in cilia (Fig. 5, D and F). 
Of the two PKA isoforms tested, PKA-C was more effective 
than PKA-C at inducing Smo movement to cilia. Both isoforms 
were equally effective in inducing the transcription of a cAMP 
response element–luciferase reporter gene (Fig. 5 E). Inhibition 
of PKA activity with two small-molecule inhibitors, H89 and 
KT5720, blocked Shh-induced activation of two target genes, 
ptc1 and gli1, which is consistent with a positive role for PKA in 
Hh signal transduction (Fig. S1 I). The evolutionarily conserved 

of the color channels. (D) The mean (±SEM) Smo fluorescence at cilia of transfected cells from the experiment shown in F. (E) The same PKA-C and PKA-C 
constructs used in C were tested for their abilities to induce a cAMP response element–linked luciferase reporter. (F) Cells transfected with genes encoding 
either the  or  catalytic subunit of PKA were stained to show cilia and Smo. Broken lines demarcate transfected cells. Insets are magnified shifted overlays 
(indicated by the boxed regions) of two color channels. Bars, 5 µm.

 

http://www.jcb.org/cgi/content/full/jcb.200907126/DC1


JCB • VOLUME 187 • NUMBER 3 • 2009 372

For assays of ciliary Smo accumulation, cells were grown to confluence 
in medium (high-glucose Dulbecco’s minimum essential medium, 0.05 mg/ml 
penicillin, 0.05 mg/ml streptomycin, 2 mM GlutaMAX, 1 mM sodium pyru-
vate, and 0.1 mM MEM nonessential amino acid supplement) containing 10% 
FBS (Hyclone, defined grade), then switched to medium containing 0.5% FBS 
for 24 h. All cells were transfected using Fugene6 (Roche).

Antibodies
Polyclonal rabbit antisera against mouse Smo (anti-SmoC) were produced 
and purified as described previously (Rohatgi et al., 2007). The anti-SmoN 
polyclonal antibody was produced (Josman Laboratories) against amino  
acids 36–234 of the mouse Smo protein, and affinity-purified before use. The 
mouse anti-acetylated tubulin antibody was obtained from Sigma-Aldrich, the 
anti-SNAP antibody was obtained from Thermo Fisher Scientific, the rabbit 
anti-YFP antibody was obtained from Abcam (ab290), and the goat anti–
rabbit or goat anti–mouse secondary antibodies coupled to Alexa Fluor 594, 
Alexa Fluor 488, or Alexa Fluor 647 were obtained from Invitrogen.

Immunofluorescence and microscopy
Cultured cells were fixed with 4% PFA in PBS for 10 min at 4°C and washed 
three times with PBS. Fixed cells were placed in blocking solution (PBS with 
1% vol/vol normal goat serum and 0.1% vol/vol Triton X-100) for 30 min. 
Primary antibodies (1:1,000 for anti-Smo or anti-acetylated tubulin) were di-
luted in blocking solution and used to stain cells for 1 h at room temperature. 
After washing three times in PBS, Alexa Fluor–coupled secondary antibodies 
were added in blocking solution at 1:500 for 1 h at room temperature. DAPI 
was included in the final washes before the samples were mounted in Fluoro-
mount G (SouthernBiotech) for microscopy. Microscopy was performed on 
an inverted laser scanning confocal microscope (DMIRE2; Leica). Images 
were taken with a 63× objective lens and 4× zoom (Leica). When possible, 
images were depicted with the color channels slightly shifted relative to each 
other (“shifted overlay”) to more clearly show colocalization of different 
probes in the cilia. In all figures, the scale bar is 5 µm.

Antibody labeling experiments
In all panels, cilia and total Smo protein were detected with anti-acetylated 
tubulin or anti-SmoC, respectively, after cell permeabilization. For live cell 
antibody labeling, cells were incubated (30 min, 37°C) in media contain-
ing 0.5–1 µg/ml anti-SmoC, 1:1,000 anti-YFP, or 1–2 µg/ml anti-SmoN. 
After washing and fixation, the antibodies were detected with a secondary 
antibody before cell permeabilization. Cilia were labeled after a second 
washing and permeabilization step. For antibody-chase experiments, cells 
were washed three times with warm media after antibody feeding and then 
chased for an additional 2 h in the presence or absence of Shh.

SNAP labeling and pulse-chase
SNAP fluorescent substrates were used at 5 µM, non–cell-permeable C8 
propanoic acid benzylguanine (CBG) block were used at 20 µM, and cell-
permeable benzylguanine (BG) block were used at 10 or 20 µM. Live cells 
expressing SNAP-tagged proteins were stained for 15 min at 37°C. In con-
trol experiments to test the cell permeability of fluorescent substrates, the 
labeling period was extended to 30 or 60 min to make sure that substrates 
did not leak into the cell even in this prolonged period. For pulse-chase ex-
periments, nonfluorescent blocking substrates were added during the chase  
period. For tracing surface Smo in pulse-chase experiments, cells were 
labeled with BG-547, washed, treated with Shh or other agonists, and fixed 
at different time points after induction. Two different approaches were taken 
to trace intracellular Smo. First, cell-surface Smo was blocked with CBG block 
(a non–cell-permeable molecule), and intracellular Smo was labeled with 
BG-505, a cell-permeable SNAP substrate. After washing off free BG-505, 
cells were exposed to an Hh agonist for varying periods of time before fixa-
tion. In an alternative approach, surface Smo was blocked with CBG block 
before cells were exposed to Shh. At different time points after Shh addition, 
cells were stained with BG-547 immediately before fixation to selectively 
reveal intracellular Smo that had moved to the cilium. The first approach 
detects only those Smo molecules that were present in the cell at the begin-
ning of the experiment before Shh, whereas the second approach detects 
all Smo that is on the surface at the time of fixation, whether it existed at the 
beginning of the experiment or was newly delivered during the experiment. 
In all of the experiments, cells were stained after fixation and permeabiliza-
tion with anti-SmoC to detect total Smo.

Surface biotinylation
Cells treated with Shh for 1 h were cooled to 4°C and biotinylated 
for 15 min with the cleavable cross-linker sulfo-NHS-S-S-biotin (Thermo 
Fisher Scientific). After quenching any remaining reagent, cells were 

ability of cAMP to regulate the movement of membrane proteins 
by lateral transport in C. reinhardtii and mammals suggests that 
this important second messenger may play a general role in regu-
lating the transport of signaling proteins to primary cilia.

Our demonstration that Smo moves to cilia by lateral 
transport is unexpected, given current models for direct vesicu-
lar transport from the Golgi. The results focus attention on the 
diffusion barrier that separates the plasma membrane from the 
ciliary membrane, allowing the two contiguous membrane do-
mains to maintain distinct compositions. The base of the cilium 
has long been postulated to function as a diffusion barrier 
(Sorokin, 1962; Vieira et al., 2006), but the molecular nature of 
this barrier and the molecular pathways that might allow pro-
teins such as Smo to penetrate this barrier remain unknown. 
Smo might traverse this barrier and accumulate in cilia either 
via a diffusion-trap mechanism, similar to that used by neuro-
transmitter receptors to accumulate in dendritic spines (Ashby 
et al., 2006), or by an undiscovered active transport mechanism. 
The movement of Smo, including the methods developed here 
to monitor its lateral transport, should provide a facile system to 
study lateral transport to cilia.

Materials and methods
Constructs
Wild-type mouse Smo was tagged at the N terminus (with the insertion 
C terminal to the signal sequence) with YFP or the SNAP tag in the pCS2+ 
vector. For retroviral infections, SNAP-Smo and YFP-Smo were subcloned 
into pMSCV-pac. To produce retroviral supernatants, Bosc23 packaging 
cells were transfected using Fugene-6, supernatants containing viral par-
ticles were collected 48 h after the transfection, polybrene was added at  
4 µg/ml, and supernatants were filtered through a 0.45-µm filter and used 
to infect fibroblasts (Pear et al., 1993; Bailey et al., 2002). The constructs 
for the catalytic subunits of PKA (both  and ; Uhler and McKnight, 1987) 
were obtained from Addgene, and the cAMP response element–driven 
luciferase reporter (pGL4.29) was obtained from Promega. Constructs en-
coding GFP-tagged wild-type dynamin or the two dominant-negative dyna-
min proteins were provided by S. Schmid (The Scripps Research Institute, 
La Jolla, CA).

Small molecules and recombinant proteins
SAG, Fsk, H-89, and KT5720 were obtained from Enzo Life Sciences, Inc.; 
dynamin inhibitory peptide (DIP) and a control scrambled peptide (CIP) 
were obtained from Tocris Bioscience; dideoxy-Fsk was obtained from 
EMD; the SNAP substrates were obtained from Covalys and New England 
Biolabs, Inc.; and the puromycin and cycloheximide were obtained from 
Sigma-Aldrich. The 293 EcR Shh cells used to make Shh-conditioned media 
are available from American Type Culture Collection (ATCC; CRL-2782). 
They carry a stably integrated construct for full-length mouse Shh under an 
ecdysone-inducible promoter. The Shh produced by these cells is expected 
to be processed via an autocatalytic reaction, undergoing internal cleav-
age and lipidation. To produce conditioned media, cells were grown in 
high glucose Dulbecco’s minimum essential medium, 0.05 mg/ml penicil-
lin, 0.05 mg/ml streptomycin, 2 mM GlutaMAX, 1 mM sodium pyruvate, 
and 0.1 mM MEM nonessential amino acid supplement containing 10% 
FBS (Hyclone, defined grade; Thermo Fisher Scientific). At the time of in-
duction with 1.5 µM muristerone A, cells were switched to media contain-
ing 2% FBS. Conditioned media was collected after 72 h of induction, 
filtered through a 0.22-µM filter, and snap frozen in liquid nitrogen. Condi-
tioned media was used at a dilution of 1:4 or 1:5 unless otherwise noted.

Cell culture
NIH3T3 cells were obtained from ATCC. The smo/:YFP-Smo cells (Rohatgi 
et al., 2009) and smo/:SNAP-Smo cell lines were generated by infection 
of smo/ cells (Sinha and Chen, 2006) with a retrovirus carrying YFP-Smo 
or SNAP-Smo cloned into pMSCVpac, followed by selection in 2 µg/ml puro-
mycin and isolation of single clones. The 293 EcR Shh cells used to make Shh 
conditioned media are available from ATCC (Taipale et al., 2000).
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lysed, and biotinylated proteins were isolated on streptavidin-linked 
magnetic beads (Invitrogen). Proteins were eluted with sample buffer 
containing DTT (100 mM) and analyzed by immunoblotting.

Inhibition of endocytosis
Two different approaches were taken to block endocytosis: incubation of 
cells with a soluble, cell-permeable DIP (Marks and McMahon, 1998); or 
transfection of cells with GFP-tagged dominant-negative mutants of dyna-
min (K44A and I690K), previously shown to block endocytosis (Song  
et al., 2004). For experiments with DIP, NIH3T3 cells were incubated with 
DIP or a scrambled control peptide for 30 min before the addition of Shh 
or SAG for 2 h. Transferrin uptake was used to assess the efficiency of DIP 
and dynamin mutants in blocking endocytosis.

Transferrin uptake
Alexa Fluor 594–conjugated transferrin (50 µM) from Invitrogen was 
added to cells in serum-free media and allowed to bind at room tempera-
ture for 2 min. After the binding, cells were washed with media and incu-
bated for 15 min at 37°C to allow internalization. Cells were rapidly 
cooled by adding chilled media to stop further endocytosis, acid-washed 
(0.1 M glycine, pH 2.5, and 150 mM NaCl) to strip off surface-bound (but 
not internalized) transferrin, and fixed for analysis.

Image and data analysis
All analysis was performed by importing images as TIFF files into ImageJ. 
For the quantitative analysis of Smo levels in primary cilia, all images used 
for comparisons within an experiment were taken with identical gain, off-
set, and laser power settings on the microscope and used for quantitation 
without any manipulation. A mask was constructed by manually outlining 
cilia in the image taken in the acetylated-tubulin channel. This mask was 
applied to the image taken in the Smo channel and the fluorescence at cilia 
measured. Local background correction was performed by moving the 
mask to measure fluorescence at a representative nearby region, and this 
value was subtracted from that of ciliary fluorescence. All points represent 
mean (±SEM) fluorescence from 10–30 individual cilia.

The data shown in Fig. 3 were quantified in two ways. Fig. 3 has 
two parallel but separate experiments, one in which surface Smo is fol-
lowed and a second in which internal Smo is followed (Fig. 3, C and D). 
In both cases, the level of total Smo was measured by staining with anti-
SmoC. The anti-SmoC staining data from both experiments (Fig. 3, C and D) 
were combined, and the mean total Smo at each time point was plotted.  
In the experiments following surface or internal Smo, BG-547 staining at 
each time point was averaged and plotted. For Fig. 3 F, instead of averag-
ing the signals separately, the ratio of the BG-547 signal to the anti-SmoC 
signal (this is roughly proportional to the fraction of total Smo that is la-
beled with BG-547) for each cilium was individually calculated. These  
ratios were averaged for the two separate experiments at each time point, 
yielding the two curves.

Online supplemental material
Fig. S1 shows controls for Fig. 2 (A–E), 4 (F–G), and 5 (I). Fig. S2 shows char-
acterization of SNAP-Smo cells and SNAP substrates. Fig. S3 show that Smo 
protein undergoes constant turnover. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200907126/DC1.
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