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Understanding contagion dynamics 
through microscopic processes 
in active Brownian particles
Ariel Norambuena1, Felipe J. Valencia1,2 & Francisca Guzmán‑Lastra1,3*

Together with the universally recognized SIR model, several approaches have been employed to 
understand the contagion dynamics of interacting particles. Here, Active Brownian particles (ABP) are 
introduced to model the contagion dynamics of living agents that perform a horizontal transmission 
of an infectious disease in space and time. By performing an ensemble average description of the 
ABP simulations, we statistically describe susceptible, infected, and recovered groups in terms of 
particle densities, activity, contagious rates, and random recovery times. Our results show that 
ABP reproduces the time dependence observed in traditional compartmental models such as the 
Susceptible-Infected-Recovery (SIR) models and allows us to explore the critical densities and the 
contagious radius that facilitates the virus spread. Furthermore, we derive a first-principles analytical 
expression for the contagion rate in terms of microscopic parameters, without considering free 
parameters as the classical SIR-based models. This approach offers a novel alternative to incorporate 
microscopic processes into analyzing SIR-based models with applications in a wide range of biological 
systems.

Mathematical models and computational calculations provide powerful scientific tools to understand and pre-
dict future scenarios associated with viral propagation dynamics. Historically, infectious diseases have been 
modeled using SIR-based models1, which include phenomenological rates describing contagion, recuperation, 
death, or quarantine. Nevertheless, a more realistic model must consider the mobility of infectious particles 
and particle density within its environment. In this direction, self-propelled particles2,3, the random motion 
of non-interacting particles4,5, cellular automaton6,7, dynamical density functional theory approach8, and reac-
tion–diffusion models9,10 have been proposed to introduce the spatial motion of infectious particles. As a matter 
of universality, active matter models are intuitive and are extensively used to describe a wide range of biological 
processes ranging from bacteria motion to animal movement11. Thus, as active matter lies at the core of almost all 
biological processes, it emerges as an excellent and non-explored candidate to describe the contagion dynamics 
between moving agents.

Active matter (AM) affects the organization and collective behavior of living organisms on all length scales, 
ranging from cytoskeleton on the nanoscale through cheeps on the mesoscale12–14. Since the work of self-driven 
particles of Viscek et al.15, the modeling of active agents has been possible following a series of rules for particle 
interactions, such as alignment, polarization, repulsion, and quorum-sensing13,16. These interactions often give 
rise to the understanding of unexpected phenomena such as collective motion, turbulence, giant fluctuations, 
rectification, and self-organization16–20, and at the same time, they reproduce what we observe in nature. At the 
micro-scale, agents can be modeled as active Brownian particles (ABP), where ABP can take up energy from 
the environment to store it in an internal depot and convert it internal energy into kinetic energy and motion21. 
Therefore, thermal fluctuations in these systems are dominant for active17,22,23 and non-active24–27 particles. 
Furthermore, ABP has been tested reproducing either biological processes or artificial ones in several studies 
where it seems that activity and short-range interactions are enough to understand particle-particle and particle-
surface interactions21,28.

At the mesoscale, inertia and viscous forces are balanced; however, this regime has been less explored16,29. 
Although living systems in this length scale are plenty, such as marine and aerial groups of animals, their 
modeling is less unified since their dynamics depend on the fluid media where they move and because particle 
interactions get more specific in function on the target problem18,29. For instance, human mobility has been 
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modeled using self-propelled models with a gravitational term that describes the ambient information30,31. Other 
approaches to the dynamics of infectious diseases in humans32 have also been explored using a non-linear wave 
approach by means of reaction–diffusion equations to model the effect of random motion in the SIR dynamics. 
In our case, those conditions can be reproduced in the limit where the activity is zero, and the particles perform 
only Brownian motion. In this, aspect AM offers the possibility to simulate the way that the walkers interact, to 
obtain the typically S(t), I(t), and R(t) curves. Besides, AM introduce an empirical potential modeling the repul-
sion between particles and an additional rotational diffusion term that controls the medium’s exploration. This 
is crucially different from the non-linear wave equations, leading to AM simulations to model complex effects 
such as clusterization formation or bimodal phase separation, which usually are not captured by the typical 
non-linear wave approaches.

Here, we explore infection propagation through active vectors that carry an internal state using an AM based 
model with underlying microscopic processes. The infection occurs through horizontal transmission when a 
susceptible agent comes into contact with an infected agent such as viruses propagating in salmon hatcheries, 
honeycombs33,34, or in mesoscale organisms such as cats with influenza or humans carrying flu2,3,35.

Results
Active Brownian particles and SI model.  Let us consider N moving particles in a rectangular box with 
area A and periodic boundary conditions, as shown in Fig. 1a. We model the ABP dynamics by considering 
both Weeks–Chandler–Andersen (WCA) potential (5) and rotational diffusion according to the following set of 
Langevin equations

where �ri = (xi , yi) is the instantaneous position, �Fij = −∇Uij is the force derived from the WCA poten-
tial, n̂i = (cos θi , sin θi) is the director vector, and θi = tan−1(yi/xi) is the orientation. Due to particle rota-
tional diffusion, each angle θi change randomly according to the Wiener process, where 

〈

ξθi (t)
〉

= 0 and 
〈

ξθi (t)ξ
θ
i (0)

〉

= 2DRδ(t) . Here, DR is assumed as a constant parameter that takes account particle’s exploration 
of the medium. Then, active agents are allowed to move persistently in their given direction, with a persistence 
length lp = v0/2DR , until a random reorientation takes place36. Therefore when DR is small active agents can be 
considered as persistent explorers, which is true for several organisms in nature12.

First, we consider a simple SI model where infected I(t) and susceptible S(t) satisfy I(t)+ S(t) = N . A conta-
gious event occurs when a susceptible particle i is in contact with an infected particle j at a distant |�ri − �rj| ≤ R , 
where R is the contagion radius, as shown in Fig. 1b. For a set of parameters (N , Lx , Ly ,R, v0) we run Nsim simu-
lations to compute the ensemble average curves I(t) =

∑Nsim
i=1 Ii(t)/N and S(t) =

∑Nsim
i=1 Si(t)/N . In Fig. 1c, we 

(1)�̇ri = −
∑

j �=i

�Fij + v0n̂i , θ̇i = ξθi , i = 1, ...,N

SI Model(c)

Figure 1.   Schematic representation of the AM model based on ABP. (a) Sketch of the simulation box: N 
moving particles in a rectangular box of size Lx × Ly with periodic boundary conditions. In all simulations, we 
randomly set the initial positions �ri and orientations n̂i for all particles i and we consider I(0) = 1 . (b) Particle 
infection: pair interactions between particle i and j at a distant |�ri − �rj| ≤ R , where R is the contagion radius. 
Infected particle i is moving with velocity v0n̂i and given position �ri and interact through the contagion radius R 
with particle j which is moving with velocity v0n̂j and position �rj . For the SI model we only consider two states: 
susceptible S(t) (blue) and infected I(t) (red) such that S(t)+ I(t) = N . In the SIR model, we introduced the 
recovered group R(t) (green) such that after a random recovery time τ irec infected particle i becomes recovered. 
(c) Phase diagram for the SI model showing the number of infected particles as a function of the contagion 
radius R and the particle density ρ = N/A . The dashed black line represent the critical density ρcrit = 1/(πR2) . 
For the simulation we consider N = 300 , v0 = 1 , Lx = Ly , and I(0) = 1.
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show a phase diagram for the number of infected as a function of the contagion rate and the particle density 
for N = 300 . As expected, in the region of high density and large contagion radius, the infected group saturates 
reaching its maximum value. More importantly, we observe the existence of a critical density ρc = 1/(πR2) 
(black dashed line) above which the particles are immediately infected.

It is worth to notice that in several situations, living organisms do not move randomly. This is especially 
true for human13,37, or even in animals38; However, there are situations where the persistence of the movement 
is altered by ambient noise, for example, humans moving inside a supermarket or in a shopping mall, on those 
scenarios the movement is altered to avoid clashes between individuals as they also performed some random 
explorations of the medium. Although humans might not be considered as random particles, in a first approxi-
mation, humans and animals in all length scales can be considered as active random particles12,14 such as fishes, 
mosquitos, bees, algae, and bacteria, among others15, in this case, active matter models can correctly describe 
agents interactions and collective motion39.

Microscopic expression contagion rate.  Using a mean-free-path analysis (see Methods 4.2 for further 
details), we obtain the following analytical expression for the contagion rate r:

In the low-density regime, ρ ≪ ρcrit , we obtain a linear scaling r ≈
√
8ρRv0 . Also, our model predicts 

a singularity at ρ = ρcrit for which r → ∞ . As a result, all particles are instantaneously infected. One crit-
ical observation is the dimensional-dependent nature of the contagion rate in our model. For instance, for 
N moving particles in a volume V, the mean-free-path analysis predicts a three-dimensional contagion rate 
r3D = πρ3DR2�vrel�/(1− ρ3D/ρ3D

crit) , where ρ3D = N/V  , ρ3D
crit = 1/(4/3πR3) , and 〈vrel〉 is the average relative 

velocity between particles. Therefore, our active matter model predicts that distancing between infected particles 
is more critical in a three-dimensional system since r3D ∝ R2 . The latter can be crucial in biological systems 
where a 3D movement is present during the contagion dynamics12,29.

Our model has minimal but fundamental mechanisms to study clustering formation (CF)39 or two-phase 
separation (TPS)40 while varying the particle activity (velocity) or density23,41. In the scenario of virus propaga-
tion, a TPS could be relevant since CF might be included in the contagion dynamics by considering density 
gradients or hot spots in dilute or dense systems. The latter can be used to simulate quarantines in groups or on 
their city hall while some rangers continue moving in the space between clusters. In this case, we expect that 
the density-dependent contagion rates r and r3D would be useful for novel mechanisms of infection that are not 
described by standard epidemic models41.

Now, we shall establish the connection between our microscopic contagion rate given in Eq. (2) and the char-
acteristic epidemic curve for the SI model. At each discrete time tn = n�t ( n ∈ N and �t > 0 ), the number of 
infected varies according to the Markovian model In+1 = In + pnSn , where pn = (r�t)(In/N) and Sn = N − In 
are the contagion probability and number of susceptible at time tn , respectively. As a consequence, in the con-
tinuum limit, the curve I(t) evolves according to ( �t → 0):

The above equations can be written as Ṡ = −rIS/N and İ = rIS/N , which is the standard SI model. The logis-
tic function I(t) = I(0)Nert/[(N − I(0))+ I(0)ert ] gives the analytic solution of (3). To support our previous 
observations, in Fig. 2, we plot a comparison between the infected curve I(t) obtained from the ensemble average 
procedure and the logistic model given above. Here, we consider a system with N = 100 particles in a square 
box with lengths Lx = Ly = 100 , contagion radius R = 1 , and particle velocity v0 = 1 . We observe a good agree-
ment between the theory and simulations, revealing that one initial contagion grows logistically if the recovered 
group is neglected. However, a small asymmetry of the analytical logistic model is observed in Fig. 2. One sug-
gestive approach is to fit the ensemble average with the generalized logistic model or Richard’s model given by 
İ = rIp[1− (I/N)q] ( 0 ≤ p ≤ 1 ) which has been used in COVID-19 pandemic curves42. This could be useful for 
biological systems showing logistic-like behaviors with more complicated microscopic dynamics.

Furthermore, in the inset of Fig. 2, we compare the microscopic expression for the contagion rate defined in 
Eq. (2) and the predicted rate obtained in our simulations. We recover the predicted linear dependence of the 
contagion rate in terms of the particle density, which validates our microscopic model.

Active Brownian particles and SIR model.  Now, we include the recovered group R(t) into the dynamics. 
In such a case, the total number of particles satisfy S(t)+ I(t)+ R(t) = N . First, we assume that the recovered 
group cannot be infected again, that is, particles gain immunity. Second, we neglect deaths since we are inter-
ested in the propagation itself. Third, we introduce a random recovery time τ irec for each particle ( i = 1, ...,N ) 
such that τ irec ∈ [τmin, τmax] . Here, τmin and τmax are the minimum and maximum recovery in our simulations, 
respectively. In what follows, we use a uniformly distributed random number to generate the individual recovery 
times. This particular choice of the distribution impacts on the symmetry properties of the infected curve; thus, 
other probability distributions can be used to simulate a different scenario. Also, other relevant times, such as the 
incubation time, can be incorporated into the dynamics, which originates a delayed dynamics for the infected 
curve, as discussed in Ref.43. For simplicity, we only consider the effect of the recovery time on the dynamics.

We compare our simulations with the conventional SIR model, which is described by the set of differential 
equations Ṡ = −αIS , İ = αIS − βI , Ṙ = βI , where α and β are the infection and recovery rates, respectively1. 

(2)r =

√
8ρRv0

1− ρ/ρcrit
, 0 ≤ ρ ≤ ρcrit .

(3)İ = rI

(

1−
I

N

)

, S(t) = N − I(t).
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We can find the optimal parameters α and β that improves the fit between the SIR model and our simulations. 
In Fig. 3, we observe a comparison between our simulations (ensemble average) and the SIR fit (dashed lines). 
In general, we numerically corroborate that our model cannot be fully explained in terms of the standard SIR 
model. In particular, the SIR model predicts an asymmetry curve for I(t), and the stationary states differ with 
our calculations. Our simulations show an asymmetric curve for the infected group, which has been previously 
observed in Ref.44.

Using the relations α = r/N (r given in Eq. (2)) and β = 1/Tprom ( Tprom = (τmin + τmax)/2 ) into the equa-
tion İ = rIS/N − I/Tprom we can find I(t). Noticing that relevant contributions to the product IS comes from 
the region where S(t) has a linear dependence, we use S(t) = S0 −mt into the dynamics of I(t), and we found 
the following Gaussian curve:

where t0 = (rS0 − N/Tprom)/(rm) is the position of the peak and σ = [N/(rm)]1/2 is the width of the Gaussian 
curve. In Fig. 4, we observe the good agreement between our simulations and the Gaussian model given in (4). 

(4)I(t) = I(0)e

(

t0√
2σ

)2

e
−
(

t−t0√
2σ

)2

,

Figure 2.   Time evolution of the infected group for the SI model. The red circles are numerical simulations of 
the Langevin equations after calculating the ensemble average. The solid black line is the solution of Eq. (3). For 
the simulation we use N = 100 , R = 1 , Lx = Ly = 100 , and v0 = 1 . Here, trelax is the relaxation time required to 
find the stationary state of the system. The inset plot show the contagion rate as a function of the particle density, 
where we compare the analytical expression derived in (2) (solid line) with our simulation (red circles). For the 
simulation we use N = 100 , Nsim = 100 R = 1 , Lx = Ly , and v0 = 1.

Figure 3.   Comparison between our SIR model and the best fit obtained by optimizing the parameters α and β . 
For the simulation we consider one initial infected particle, I(0) = 1 and a random recovery time τ irec ∈ [30, 50] . 
For the numerical calculations we use N = 150 , R = 1,Lx = Ly = 100 , and v0 = 1.
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On the one side, the maximum number of infected is estimated as Imax ≈ I(0) exp [(t0/(
√
2σ))2] , and thus the 

ratio t0/σ is critical. In the low-density regime, we obtain Imax ∝ exp [Rv0/A] illustrating that the contagion 
radius, available area, and velocity of particles strongly impact the maximum number of infected during the 
dynamics. On the other hand, the scaling σ ∝ [Rv0/A]

−1/2 , tell us that any reduction of the maximum number 
of infected implies a flattened effect on the curve I(t), as expected in the standard SIR model. Further improve-
ments or extensions of the current model can be performed by considering the incubation time, different particle 
velocities, time-dependent densities to model lock-down, or by including particle interactions modeled with 
microscopic pedestrian models45.

Conclusions
Active Matter (AM) simulations show that active Brownian particles that exchange an internal state can success-
fully reproduce the universally accepted SIR contagious curves, for horizontal disease transmission, by introduc-
ing the effects of contagious radii, particle velocity, and particles density. Theoretically, the SIR model assumes 
several empirical parameters in order to describe the contagious dynamics. Here, we introduce a first-principle 
analytical expression that successfully reproduces our simulations in terms of controllable microscopic param-
eters. Besides, our expression qualitatively recovers the SIR based models with good agreement with numerical 
simulations. Furthermore, we find an important dependence on the particle density and contagious radius in two 
and three dimensions, which opens a new forecast parameter in viruses propagation inside a specific population.

Although our study focuses mainly on particle density and contagious rates, we expect that our model can be 
improved by including complex interactions such as quorum-sensing to describe viruses propagation in birds or 
schools of fish or by adding external forces to describe human will3,30,31. Nevertheless, how these new interactions 
alter and couple the dynamics with compartmental models are exciting new questions that our work opens to 
the active matter community.

Methods
Brownian Dynamics Simulations in the overdamped limit.  We performed Brownian dynamics sim-
ulations for N = 300 disk particles of radius a = 0.5 [m] bounded in a rectangular box with periodic boundary 
conditions. Particles are settled initially at random positions and orientation following a uniform distribution. 
Particles move according to Langevin equations  (1) with self-propelled velocity v0 = 1 [m/s] and rotational 
diffusion given by DR = 1 [rad2/s], where we set a new position and orientation for each particle using the 
Euler iteration method with a time step dt = 10−3 . Since the particle dynamics is non-deterministic and particle 
encounters determine the contagious rate, we performed 100 different numerical simulations starting with a dif-
ferent random configuration. Particles perform pair-hard core interactions via the Weeks–Chandler–Andersen 
(WCA) potential,

Here, ε is the interaction potential constant, rm locates the potential minimum, which is equal to the limit distance 
between particles r0 = 2a . Although this interaction avoids particles overlapping its principal consequence, the 
particle trajectory deviations imitate living organisms’ encounters. Particles also transmit the infection through 
an instantaneous pair-interaction, which sets a new length parameter on the problem, the contagious radii R. 
Then if the distance between a susceptible particle and an infected particle is less than R, the susceptible particle 

(5)Uij =











4ε

�

�

r0

rij

�12

−

�

r0

rij

�6
�

rij ≤ rm

0 otherwise

Figure 4.   Infected curve and analytical Gaussian prediction for the SIR model. For the numerical calculations 
we use N = 150 , R = 1,Lx = Ly = 100 , v0 = 1 , I(0) = 1 , and τ irec ∈ [30, 50].
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is labeled as infected. We vary the contagious radii from R = a, . . . , 6 , in steps of �R = 0.5 , and the box length 
L = 100, . . . , 300 in increments of �L = 108,46.

Microscopic contagion rate.  The microscopic contagion rate can be derived using the concept of mean 
free path � , extensively used in the kinetic theory of gases and also used in Ref.47. In this context, � represent 
the mean distance traveled by ABP between successive encounters with other particle at a distance dij = R . In 
an active media with N moving particles � =

√

�|�vrel|2�τc , with �vrel and τc being the relative velocity between 
particles and the mean contagion time, respectively. Here, 〈...〉 denote the particle average. Thus, we estimate 
the contagion rate through the relation r = τ−1

c  . Encounters between ABP’s depends on the relative velocity 
�vrel = �vi − �vj ( i  = j ), from which it follow that �|�v ij

rel|
2� = �v2i � + �v2i � − 2��vi · �vj� . First, we assume uncorrelated 

particle’s velocities yielding ��vi · �vj� = 0 . Second, if the WCA potential does not drastically change the speed v0 , 
we approximately obtain that �|�v ij

rel|
2� ≈ 2v20 since �v2i � ≈ v20 . By considering the total area swept for N particles in 

a time interval τc as Asw = N(2R�+ πR2) , we define the maximum contagion probability pc = Asw/A = 1 , and 
using the relation � =

√
2v0τc , we recover the analytical expression of the contagion rate given in (2).
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