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Precise spike timing and temporal coding are used extensively within the nervous

system of insects and in the sensory periphery of higher order animals. However,

conventional Artificial Neural Networks (ANNs) and machine learning algorithms cannot

take advantage of this coding strategy, due to their rate-based representation of

signals. Even in the case of artificial Spiking Neural Networks (SNNs), identifying

applications where temporal coding outperforms the rate coding strategies of ANNs

is still an open challenge. Neuromorphic sensory-processing systems provide an ideal

context for exploring the potential advantages of temporal coding, as they are able to

efficiently extract the information required to cluster or classify spatio-temporal activity

patterns from relative spike timing. Here we propose a neuromorphic model inspired

by the sand scorpion to explore the benefits of temporal coding, and validate it in an

event-based sensory-processing task. The task consists in localizing a target using only

the relative spike timing of eight spatially-separated vibration sensors. We propose two

different approaches in which the SNNs learns to cluster spatio-temporal patterns in an

unsupervised manner and we demonstrate how the task can be solved both analytically

and through numerical simulation of multiple SNN models. We argue that the models

presented are optimal for spatio-temporal pattern classification using precise spike timing

in a task that could be used as a standard benchmark for evaluating event-based sensory

processing models based on temporal coding.

Keywords: temporal coding, event-based sensors, spatio-temporal patterns, spike-based computing, touch

localization

1. INTRODUCTION

Information transmission in neural networks is often described in terms of the rate at which
neurons emit action potentials. Neurons are typically assumed to encode values—such as the
orientation of a bar—using their mean firing rate, with individual spikes emitted using a Poisson
process (Dean, 1981). Neurons in higher processing areas of the brain (e.g., in primary visual
cortex) have been shown to demonstrate variable spike timing in response to repetitions of identical
stimuli (Hubel and Wiesel, 1962). This variability is commonly interpreted as being the result of
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noise (or noisy background activity) which can be assumed to
be an additive signal to the sensory input one (Baudot et al.,
2013). This linear separation of signal and noise has been used
to justify rate- and/or population-coding by averaging across
time and/or neuronal populations (Shadlen and Newsome, 1998;
Dayan and Abbott, 2001). These observations led to the common
assumption that the main mode of information transmission
in most brain areas is encoded in the neurons average spike-
frequency. This assumption, supported by many experimental
investigations (Softky and Koch, 1993; Dayan and Abbott, 2001),
continues to be used in the field of machine learning.

However, the time at which spikes are emitted might also
carry additional information. If this is the case, the temporal-
correlation of such events can then be used an extra source
of information for models of computation (Dayan and Abbott,
2001; Thorpe et al., 2001). This type of signal representation
is described as a temporal code. In the last three decades,
the advantages of temporal coding have been demonstrated
in computational models of fast visual processing (Thorpe
et al., 2001); for the classification of time-varying signals and
balance (Gütig and Sompolinsky, 2006; Deneve and Machens,
2016); in temporal interval discrimination (Buonomano and
Merzenich, 1995); in state-dependent computation (Buonomano
and Maass, 2009), and even for fine motor control (Laje and
Buonomano, 2013). Furthermore, experimental findings have
shown that the information carried in the timing of spikes
can be used by the brain to discriminate textures (Hipp et al.,
2006; Wolfe et al., 2008), classify temporal patterns (Mainen
and Sejnowski, 1995; Wehr and Zador, 2003; Baudot et al.,
2013; Goel and Buonomano, 2016) or localize an animal in
its environment (O’Keefe and Recce, 1993). This evidence
demonstrates that neural networks—whether biological or
artificial—can use spike timing information to extract relevant
cues for behavior and generate events with precise timing
precision in response to time-varying input patterns (Mainen and
Sejnowski, 1995).

While both rate- and temporal-codes are used to convey
information in the brain, conventional ANNs, for the most
part, are based only on rate-codes. The contexts and tasks
in which temporal-coding can outperform rate-coding remain
elusive, especially as the performance in many tasks is
measured purely in terms of classification accuracy and ignores
additional metrics such as latency, energy consumption and
computational complexity.

In this paper, we first describe a well-constrained spatio-
temporal pattern classification task inspired by the sand scorpion:
localizing the source of a vibration induced by tapping on a
surface, using the spatio-temporal pattern detected by an array of
sensors. We then present a step-by-step analysis of conventional
algorithms and five different models based on spiking neural
networks for classifying the data-set of spatio-temporal patterns
using both supervised and unsupervised learning rules.

2. BACKGROUND

2.1. Sand Scorpion Prey Localization
Sand scorpions, such as the specimen shown in Figure 1A, are
nocturnal predatory arachnids which, despite their primitive

visual systems, can accurately locate prey such as crickets up to
50 cm away (Brownell, 1977). Brownell (1977) discovered that
sand scorpions perform this feat using time-based computation
based on two types of information propagated through the
sand of their desert habitat: Transverse Rayleigh waves and
compressional waves. Rayleigh waves travel slowly across the
surface of the sand at a velocity of ≈ 50m s−1 and are sensed
by the scorpion’s Basitarsal Compound Slit Sensilla (BCSS).
Compressional waves diverge spherically from their source—
traveling through the sand at≈ 150m s−1 and attenuating much
more quickly than the Rayleigh waves (Brownell, 1977). Sand
scorpions detect these waves using sensory hairs on their legs.

Both types of sensory organ are located on the ends of the
scorpion’s legs, maximizing the distance between the sensors
and thus the difference in arrival time between signals measured
at each one. While, theoretically, the arrival time of either
type of wave could be used by the scorpion to detect the
direction of its prey, Rayleigh waves travel and attenuate slower
than compressional waves resulting in better range and larger
time differences (1ms rather than 0.4ms). This intuition was
supported by an ablation study in which Brownell and Farley
(1979a) found that the BCSS was required for sensing direction.

As well as being able to detect the direction of their prey, sand
scorpions can also estimate how far away it is. Brownell and
Farley (1979b) suggested that the difference in amplitude of the
signals received by the sensory hairs on different legs could be
used to perform this computation. Here, the faster attenuation
of the compressional waves is advantageous as it results in larger
differences in amplitude between near and distant stimuli.

2.2. Computational Models of
Spatio-Temporal Pattern Recognition
The ability to learn and recognize spatio-temporal sequences
is a hallmark of biological neural information processing.
Understanding spatio-temporal sequences is at the heart of object
recognition, navigation and, in more general terms, all neuron-
to-neuron communication. Each neuron receives a spatio-
temporal pattern of pre-synaptic action potentials or spikes at its
dendrites and sends output spikes to its post-synaptic partners. In
the case of a single input channel, the problem of spatio-temporal
sequence learning can be addressed by temporal coincidence
detection (Carr and Konishi, 1990) or by temporal correlation
detection (Krammer and Koch, 1997). The former approach
provides binary outputs, whereas the latter approach provides a
continuous output. In both cases, information is encoded in the
timing of the incoming spike. On the other hand, if multiple input
channels are present, spatio-temporal patterns can be represented
by detecting coincidence or correlation of spikes arriving via the
different input channels (Roy et al., 2016). Additionally, neurons
have more options for capturing spatio-temporal patterns when
multiple input channels are present. A neuron can use synaptic
weight plasticity to emphasize certain channels over others,
synaptic delay plasticity to delay certain input channels compared
to others, or any combination of the two. To recognize spatio-
temporal patterns, Gütig and Sompolinsky (2006) proposed the
tempotron model in which synaptic weights are adjusted in a
supervised manner, based on the deviation of the maximum
(post-synaptic) voltage from the spiking threshold for wrongly
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FIGURE 1 | (A) A sand scorpion in the lab. Image courtesy of Martin Reichert and Wolfgang Stuerzl. (B) Our prototype.

classified patterns. Roy et al. (2016) extended the tempotron
approach by using an online structural plasticity mechanism in
a competitive winner-takes-all (WTA) network relying on binary
synapses. Alternatively, Izhikevich (2006) proposed a learning
framework in which Spike-Time Dependent Plasticity (STDP)
is used to adjust synaptic weights and synaptic propagation
delays are randomly sampled at the beginning of the simulation
and subsequently fixed. Both approaches lead to the learning
of polychronous neural ensembles, each encoding a different
spatio-temporal pattern.Wang et al. (2013) presented a hardware
implementation of polychronous networks in which propagation
delays are learned in a supervised manner, based on the expected
firing time of the post-synaptic neuron. Another approach to
learning synaptic delays is to sample synaptic time constants
from a distribution and select relevant time constants via an
STDP mechanism (Gerstner et al., 1996). Thus only synapses
with fitting delays which trigger post-synaptic spikes are selected.
In the next sections, we will present both biological and event-
based mechanisms for synaptic and neuronal plasticity to learn
spatio-temporal patterns.

2.3. Biological Mechanisms for Synaptic
Delay Plasticity
Spikes are delivered to a neuron’s post-synaptic partners through
its axon with a transmission delay dictated by the axon’s
conduction velocity. The conduction velocity is dependent on
both the diameter of the axon and the thickness of the Myelin
sheath around it (Swadlow and Waxman, 2012). Myelin is a
phospholipid substance formed by glial cells and its presence
increases the conduction velocity of axons by wrapping around
them and acting as an electrical insulator. Furthermore, it
has recently been shown that the myelination of axons can
be influenced by neural activity(Markram et al., 1997; Fields,
2015; Koudelka et al., 2016) suggesting that a form of “myelin
plasticity” is also at work—something that should be taken into
consideration when developing learning algorithms for spiking
neural networks (Baldi and Atiya, 1994; Maass, 2001).

By optimizing conduction delays, a myelin plasticity-based
model opens the way to directly learning the time dynamics
of incoming spikes and extracting meaningful spatio-temporal

patterns. Previous conduction delay-based algorithms have
not often been tested with practical tasks such as pattern
recognition and clustering (Eurich et al., 1999, 2000). The
DELTRON (Hussain et al., 2012) uses the tempotron model
(Gütig and Sompolinsky, 2006) to adjust conduction delays
through gradient descent dynamics. Paugam-Moisy et al. (2008)
extended the polychronization model developed by Izhikevich
(2006) to include learnable conduction delays for classification
and Wang et al. (2013) applied this approach to pattern storage.
Matsubara (2017) developed a probabilistic delay learning model
which adjusts conduction delays and synaptic weights. However,
Matsubara used this to classify time-invariant databases such as
MNIST, which have no temporal structure making them a poor
choice for evaluating computation based on spike timing.

2.4. Event-Based Spatio-Temporal Pattern
Recognition
The task solved by the sand scorpion can be described more
generally as spatio-temporal pattern classification and recently,
two complementary approaches, specifically designed for event-
based sensory signals, were proposed. Both approaches feature
homogeneous and fixed synaptic time constants and adapt
synaptic weights to cluster spatio-temporal patterns. In the
following subsections, we detail these two approaches.

2.4.1. HOTS: A Hierarchy of Event-Based

Time-Surfaces
Lagorce et al. (2017) proposed an algorithm in which events are
converted into a continuous-valued time surface. This approach
can be understood as convolving events within a pre-defined
region of interest (ROI) with an exponential decaying kernel,
with the reference time being the time of the central event
in the ROI. These spatio-temporal contexts are then matched
to learned features using online learning, offline clustering
or other methods. HOTS can be employed in a hierarchical
fashion, with an increasing ROI size and time-constant for the
exponential kernels and has been successfully applied to variety
of classification tasks (Cohen et al., 2016; Afshar et al., 2019a).
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FIGURE 2 | (A) Architecture of the electronic solution. Each accelerometer is read by its own Analog-to-Digital Converter. The local microcontroller receives the

samples, applies level-crossing detection and send the master controller the spikes. (B) The level crossing sampling method employed, and comparison to regular

sampling. In this work, only the first spike is used.

2.4.2. FEAST: Event-Based Feature Extraction Using

Adaptive Selection Thresholds
To guarantee that all feature detector neurons are used equally
when clustering time-surfaces, Afshar et al. (2019b) extended
HOTS to feature coupled, adaptive thresholds. Every time a
given feature detector emits a spike, its threshold is increased.
This results in non-updated feature detectors being more likely
to capture the next time-surface and means that all feature
detector neurons are equally active across the data set1. If no
feature detector captures the present time-surface, however, all
thresholds are decreased. The adaptation of firing thresholds can
be understood as a homeostatic plasticitymechanism (Turrigiano
and Nelson, 2004; Qiao et al., 2016, 2017). In the context of
continual learning, this “global”2 threshold adaptation might
prevent convergence if unrecognized patterns are common
(Afshar et al., 2014).

3. METHODS

3.1. Neuromorphic Tactile Sensor Design
The problem of spatially localizing a stimulus on a 2D surface
is well-defined with 5 sensors (Mahajan and Walworth, 2001;
Hu and Yang, 2010). However, having an array of more than
5 sensors adds robustness to the system, so we developed
the prototype shown in Figure 1 with (arbitrarily) 8 sensors.
A circular configuration of the sensor array would lead to
badly conditioned cases—as depicted by Mahajan and Walworth
(2001)—so our 8 sensors are arranged in the non-circularmanner
shown in Figure 1B. An acrylic plate makes a rigid connection
between the 8 sensors. As the system is statically overconstrained
(5 redundant contact points), a slightly flexible acrylic plate was
chosen to ensure that all 8 sensors could still touch the surface if
there was any fabrication misalignment.

Each sensing unit consists of a Piezoelectric accelerometer for
sensing vibrations and a local microcontroller-based processing
unit (Teensy 4.0, ARM Cortex-M7) which reads samples from

1The occurrences of examples in the data set need to be balanced.
2Global in this context refers to the population of feature detectors at a given level

in a hierarchy, not across a hierarchy of feature detectors.

the Analog to Digital converter at 1MHz, and then applies a level
crossing detection to generate events (Astrom and Bernhardsson,
2002) (Figure 2B. All 8 sensors then transmit these events to
an additional central processing unit which solves the analytical
problem using the approach described in section 3.2.1 and saves
the data for dataset creation (Figure 2A).

While in desert sand, a 1ms resolution would be
sufficient (Brownell, 1977), in order to work on more common
mediums—which typically have faster propagation speed—we
need higher temporal accuracy. Depending on the surfaces used
in our experiments, a wave propagates at a speed between 200
and 300m s−1, which result in a propagation time between
1 and 1.5ms in our setup, between radially opposite sensors.
However, standard accelerometers with digital output are
limited to sampling rate of only a few kHz, so we decided to
use an accelerometer with an analog output (STMicro LIS344),
combined with a separate 1MHz Analog to Digital converter
(Texas Instruments ADS7044).

Figure 2 illustrates the architecture of the electronic solution,
as well as the spike generation method. This approach of fast
sampling followed by level-crossing detection was chosen for it
flexibility (different encoding schemes could be tested). However,
other approaches such as the one introduced by Lee et al. (2017),
or the VLSI event-generator proposed by Corradi and Indiveri
(2015) could be used. While these might reduce the complexity
of the sensing unit and (possibly) increase the time precision, this
would come at the cost of reduced flexibility.

Using this sensor, we recorded a dataset consisting of 10
repetitions of 32 stimuli (8 different angles, every 45◦, and 4
distances (200, 400, 600, 800 mm). The stimuli, i.e., the surface
vibrations, were induced by tapping with the index finger on a
wooden surface.

3.2. Algorithms
In the following section we will present five different solutions
to the problem of localizing the position of a vibration induced
by tapping on a rigid surface. Not all approaches are entirely
successful but, nonetheless, we hope to provide interesting
concepts and ideas which try to emphasize how to extract
task relevant information from the timing of incoming events.
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FIGURE 3 | Definition of the problem. For the sake of simplicity, only 3 sensors

are shown here. The transmitter can be seen as being in the center of

concentric circles.

We selected these algorithms to represent varying levels of
complexity and biological plausibility as well as because they
each require different amounts of information. Specifically, in
section 3.2.1 we will first demonstrate how to localize the position
of the tap analytically if the geometry of sensory array and the
propagation speed are known. Then in sections 3.2.2 to 3.2.6, we
will present more and more biological plausible implementations
which try to solve the task with less and less external information.

While these algorithms do not represent a complete list of
possible solutions, we still hope to provide the reader with a
thorough analysis of several approaches for computation based
on the precise timing of spikes as well as outlining some of
the challenges the community needs to overcome to perform
such computation using event-driven SNNs. More importantly
however, we hope to provide a starting point for the development
of novel algorithms, as well as providing a benchmark task for
further comparison and evaluation.

3.2.1. Analytic Solution
The position of the source can be estimated based on the Time
Difference Of Arrival (TDOA) between each pair of sensors. The
2D problem is shown in Figure 3 and, given the sensor spatial
positions Ri(xi, yi) and the TDOA for each pair of sensors, the
source localization (u, v) and the propagation speed c in the
chosen medium can be retrieved as follows:
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︸ ︷︷ ︸
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(1)

for N sensors where A ∈ R
N×4, X ∈ R

4×1 and B ∈ R
N×1.

This equation can then be solved using the pseudoinverse A+

of A. Because A+ has to be evaluated every time a stimulus
is presented, we can exploit the fact that our matrices are well
defined [rank(A) being equal to the number of columns of A]
and therefore:

A+ = (ATA)−1AT (2)

allowing us to minimize the required computation and find an
analytic solution to the problem, using bloc decomposition for
the inverse (ATA)−1, given the fact that ATA is a squared matrix
(ATA ∈ R

4×4). An alternative approach would be to iteratively
estimate the pseudoinverse, following the method described by
Tapson and van Schaik (2013).

3.2.2. Temporal Coincidence Detection
A simple way to detect a particular position is to have a have
a neuron associated with every target position, connected to
each receptor with delayed synapses. In this set-up, each neuron
receives one spike from every receptor and must only spike if the
input came from the right place. The natural way to ensure that
the receptive neuron will indeed cross the threshold is to have
the spikes arrive at the same time, so that all the incoming spikes
coincide and create a large increase in membrane potential.

Specifically, a decoding neuron at position p has Ns synapses,
each with a corresponding delay dp(k), and parameters τ and θ ,
corresponding to the decay constant and the firing threshold of
the neuron. For all input spikes to arrive simultaneously, we must
associate the vibration wave generate at each position p to a delay
vector dp ∈ R

Ns . The sub-threshold membrane potential of the
decoding neuron is then

vp(t) =

Ns∑

k=1

e−
t−t(k)−dp(k)

τ 2(t − tk − dp(k)) (3)

where the exponential corresponds to the decay of the membrane
potential and 2 is a step function that ensures that the input is
only relevant after it arrived at the detector neuron at time t(k)+
dp(k), where t(k) is the time of arrival of the ground vibration
at the detector k and dp(k) is the delay associated with synapse
k. The leaky integrate-and-fire neuron will spike, indicating a
stimulus at position p, if

vmax > θ , vmax = max
t

vp(t). (4)

Hence, we will try to maximize the value of vmax. Since the
exponential decay term in Equation (3) implies that each input
spike is strongest at its arrival so, if we want to maximize the
membrane potential, we must make sure that all those spikes
arrive simultaneously, which can be achieved by setting

dp(k) = d∗p − tp(k) (5)

where tp(k) is the kth entry of the vector tp ∈ R
Ns which

corresponds to time of arrival of the ground vibration from
position p to each sensor k, and d∗p is a value that ensures that
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all the transmission delays are positive. Naturally, there are many
possible values of d∗p , but for simplicity we will set

d∗p = max
k

tp(k), (6)

which implies that all the spikes arrive when the last spike
is detected—as it is impossible to receive all of them earlier
than that.

In the ideal case—where the spikes from a given position are
perfectly timed—θ = Ns, so that, when the spikes arrive exactly
at tk, they will all add up and the membrane potential will cross
the threshold. However, if the spike times vary even slightly, the
fast decay will result in a sub-threshold membrane potential and
the neuron would not fire.

In the real world, the ideal case is unlikely so we must account
for the possibility of jitter by associating a target detector with an
area rather than a point. Assuming that τ is fixed, we must simply
select the value of θ that minimizes our classification error

e = Pr
[

vmax < θ |p
]

+ Pr
[

vmax > θ |¬p
]

, (7)

which is simply the sum of the probabilities of false negatives
and false positives. The simplest way to do this is to realize
that Pr

[

vmax < θ |p
]

increases monotonically with θ , while
Pr

[

vmax > θ |¬p
]

decreases monotonically with θ . Hence, the
computation of the optimal θ from a sample of m examples,
where mp examples were from position p and m¬p were not, can
be done through a simple algorithm:

for allm examples do
compute vmax

if example position = p then
add the tuple

(

vmax, d = 1
)

to list L
else

add the tuple
(

vmax, d = −1
)

to list L
end if

end for

Sort L by vmax, high to low.
e← mp

for every tuple in L: do
e← e− d
Add the tuple (vmax, e) to listM

end for

select the tuple with lowest e inM
Set θ ← vmax from the tuple with lowest error

This approach gives us a simple way of using the leaky integrate-
and-fire nature of neurons to achieve the desired detection as
long as we can compute the appropriate delays a priori.

3.2.3. Complex Weights and Delays
The previous approach, while fundamentally correct, requires
precise knowledge of the delays. If sensors or synapses have
systematic measurement errors or there is significant jitter, it
could be impossible to find delays dp(k) that would be able to
fully compensate for the effects of noise. Furthermore, unreliable
sensors or synapses should be given less importance than if
perfect noiseless sensors or synapses. In this section we present

a statistical method for computing the delays and associated
weights to address this issue (State, 2019).

First we must redefine our leaky integrate and fire neuron
model, described in Equation (13), to include synaptic weights:

vp(t) =

Ns∑

k=1

wp(k)e
−

t−t(k)−dp(k)

τ 2(t − tk − dp(k)), (8)

While our new synapses now have two parameters (wp(k) and
dp(k)), the logic from the previous section remains the same and
our goal is to force spikes to arrive as synchronously as possible.
In order to manipulate the spike times algebraically, we encode
the input spike train – here consisting of a single spike per neuron
– into Ns variables that can be studied using linear algebra. We
do this by encoding spikes as phases of a complex number so
each spike

s(k) = e
jπ(t(k)−t0)

T (9)

where t0 is the time at which the first spike of a wave arrives
(so that the time of the input wave is not considered) and j is
the imaginary unit. Encoding time in the phase of a complex
number is a known trick when dealing with spikes, often used in
phasor networks (Hirose, 1992; Reichert and Serre, 2013; Frady
and Sommer, 2019). T is the maximum time during which we
can receive spikes and is given by

T =
2rmax

c
(10)

where c is the wave speed and rmax is the radius of the sensors,
meaning that the numerator is two times the maximum distance
between two sensors. The value of T ensures that the phase of
s(k) is in the interval [0,π], which is necessary to avoid geometric
inconsistencies (State, 2019).

Now we can use least squares regression to obtain the delays
and weights associated to each synapse. Thus, for every position
p we will have

ǫ =
1

Ne

Ne∑

i=1

‖yi −

Ns∑

k=1

ŵp(k)si(k)‖
2 (11)

where Ne is the number of examples, indexed over i and yi
corresponds to the desired output of the perceiving neuron: one
if the spikes were generated by a tap at position p and zero if the
spikes come from a tap somewhere else.

Once we find the weight vector for position p, ŵp =[

ŵp(1), ŵp(2), ..., ŵp(n)

]

, it will give us weights with complex
entries. Naturally, this is not something we can put on a synapse,
but rather a complex number that somehow relates s to its
appropriate synapse. To obtain the delays and weights, we inverse
the operation done in Equation (9) and obtain the delay from the
phase and the weight from the absolute value,

ŵp(k)→ wp(k) = |ŵp(k)|, dp(k) =
T

π
arg ŵp(k). (12)
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FIGURE 4 | Biomimetic network architecture. (A) Connections from sensors (red) to TDE neurons (blue). (B) Connections from TDE to inverse direction

neurons (green). (C) Connections from sensors and inverse direction neurons to direction neurons (orange).

It is worth noticing that the conversion from a complex weight
to a weight and a delay used here ensures that all the weights
are positive. This means that all synapses are excitatory, and
is a natural consequence of the encoding chosen originally in
Equation (9).

To understand this procedure, it is useful to look at value of ǫ.
When yi = 1, the sum of the input to the neuron

∑n
k=1 ŵ(k)si(k)

should be real and positive whereas, when yi = 0, it should
be close to zero. In the ideal case, ŵ(k) will have exactly the
same phase as si(k) but the opposite sign, meaning that the
product ŵ(k)si(k) must be real and positive and the phases
somehow uniformly distributed in [0, 2π] when yi = 0 so that
∑n

k=1 ŵ(k)si(k) adds up to zero. Just as the delays were converted
into phases in Equation (9), the phases must now be converted
back into delays so that, when the phases of ŵp(k) and s(k) cancel
each other, the delay of the synapse also cancels out the delay
of the spike. The weights are also easy to interpret: the more
reliable the value s(k) is for a certain position p, the higher |ŵp(k)|.
This is because the least squares regression will “learn” that every
time s(k) has a specific value and the product ŵp(k)s(k)—which
is already real and positive due to the phase cancellation—should
approach y = 1 and hence be large.

As in the previous section, this complex conversion trick is
simply a way to synchronize the arrival of spikes at the neuron
encoding position and therefore we still need to compute the θp
for every neuron, for which we can, again, use Algorithm 3.2.2.
It is also worth noticing that using the complex formulation
intrinsically assumes that the spikes have the shape of a cosine,
as opposed to a decaying exponential (Reichert and Serre, 2013;
State, 2019), meaning that it is more appropriate to use a non-
instantaneous synapse such as an EPSP (Takagi, 2000) with a flat
value at the maximum such that the first derivative is the same;
however, this does not affect our results.

The advantage of this approach compared to similar complex
formulations (Reichert and Serre, 2013; Shrestha and Orchard,
2018) lies in the use of classical linear algebra. Besides being very

data efficient—as a single example would yield a solution just as
well as a combination of examples—this approach easily handles
cases where spikes are unreliable (State, 2019), something that
is often difficult when using delays directly and it is resistant
to over-fitting because the pseudoinverse guarantees that the
weights will have the lowest possible modulus. However, its
simplicity also make it less flexible, as it does not deal with multi-
spike problems (Taherkhani et al., 2015; Shrestha and Orchard,
2018) nor does it work for SNNs with hidden units (Hirose,
1992; Frady and Sommer, 2019) as the linear algebra solution
requires specific values as outputs, rather than step-by-step
error feedback.

3.2.4. Temporal Difference Encoders
The approaches presented in the previous sections encode
target position using individual neurons to represent each
point in space. While this encoding allows for precise
localization, it requires a large number of neurons. In this
section, we will take inspiration from the ring-like neural
structures present in the sand scorpion (Stürzl et al., 2000) to
develop an alternative solution based on Temporal Difference
Encoder (TDE) neurons (Milde et al., 2018) which requires many
fewer neurons3.

In this model, each pair of opposite sensors is connected to
an inner ring of 8 TDE neurons (Milde et al., 2018) as shown
in Figure 4A. The sub-threshold behavior of the TDE neurons is
modeled as a leaky integrate-and-fire neuron:

τm ·
dV(t)

dt
= EL − V(t)+ Rm · I(t) (13)

3The TDE was originally named the spiking Elementary Motion Detector (sEMD)

as it was designed to extract relative motion cues from spatially adjacent pixels

of an event-based vision sensor. However, the computation performed by these

neurons is of much more general nature as it calculates the temporal correlation of

two events based on the difference in timing, irrespective of the sensory modality.
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where EL denotes the resting potential of the neuron, Rm is the
membrane resistance, I(t) is the injected current at time t, and τm
is a decay constant. These neurons are then driven by an input
current I(t) such that:

I(t) =

{

Itrig · f if f > 0

0 otherwise
(14)

where f represents a dimensionless “facilitating” input and Itrig
represents the “trigger” input current. Both f and Itrig are
exponentially shaped such that:

τsyn ·
df

dt
= −f τsyn ·

dItrig

dt
= −Itrig (15)

where τsyn is the time constant of the synaptic dynamics. When
a spike is received at a facilitating or trigger synapse, the
synaptic weight (wfac and wtrig respectively) is added to the
appropriate input:

f ← f + wfac Itrig ← Itrig + wtrig (16)

The dynamics described by Equations (14)–(16) result in an
input current which is scaled non-linearly depending on the time
difference between spikes arriving at the facilitating and trigger
synapses. Additionally, as Itrig is “gated” by f , these synapses are
also direction-selective. The time difference between the inputs
received at the two opposite sensors will be largest when a
stimulus is located on the line connecting them and smallest
when it is on the line perpendicular to this meaning that the inner
ring of TDE neurons will encode the direction of the stimuli as a
vector in an over-complete 8-dimensional space.

While the directional information required could be decoded
from the activity of the TDE neurons, the desired output for
this system is a ring with a single active neuron identifying the
direction of the stimuli. In order to achieve this, we connect the
TDE neurons to a second ring of “inverse direction” neurons
using the excitatory connections shown in Figure 4B. Weak
connections from the TDE neuron to the adjacent inverse
direction neuron and strong connections to the opposite inverse
direction neuron result in this population of neurons having a
minimum of activity in the direction of the stimulus.

Finally, the inverse direction neurons are connected to
the innermost ring of “direction neurons” with inhibitory
connections as shown in Figure 4C. These neurons are
additionally provided with background excitation—direct from
the sensors—tuned to produce a “1-hot” encoding of the stimuli
direction. In order to maximize the accuracy of this encoding, we
use 16 neurons in this ring with inhibitory weights calculated as:

wij = wpeak.max(0, cos(θi − φj)) (17)

where wpeak is the peak inhibitory weight, θi is the angle of the
sensor adjacent to inverse direction neuron i and φj is the angle
of the direction neuron j. While this approach does not currently
provide an estimate of distance, if magnitude information were
available, this could be provided in place of the excitatory input
to the direction ring.

3.2.5. Synaptic Delay Plasticity
So far we addressed how one can adjust neuronal (2), axonal
and synaptic (w, τ ) parameters if the geometry of the sensor
array is known or, in the absence of that information, if a set
of training examples is given. Given this information, we have
outlined how these parameters can be optimized so that one can
localize the position of a vibration source even in the presence
of temporal jitter. While we used biologically motivated neuron
and synapsemodels to perform the computation, the optimization
of the parameters was done offline using conventional regression
algorithms such as the least square method. Such optimization
procedures require non-local information4 such as the neuronal
firing thresholds of other neurons, the onset of the stimulus
and the position of the stimulus itself. The decision on where
the tap originated from is being made through adapting
neuronal firing/spiking thresholds such that the designated
spatio-temporal pattern is matched. In the subsequent sections
we are going to address the localization task by applying three
constraints on our model:

1. Only information which is local to a given pre-post synaptic
neuron pair is used to update synaptic parameters.

2. No a priori knowledge of the sensory system is required.
3. The model parameters must be updated in an

unsupervised manner.

Drawing inspiration from the myelin plasticity discussed in
section 2.3 and from previous work on delay shifts (Hussain et al.,
2012; Wang et al., 2015), in this section we will extract temporal
features by modulating conduction delays.

The proposed model uses gradient descent dynamics to
synchronize spikes emitted by pre-synaptic neurons, by adjusting
delays on the most recently active synapses within an
experimentally set temporal window. Whenever a neuron fires,
mutual inhibition is used to ensure that neurons specialize to a
particular temporal pattern.

The delay plasticity model works in conjunction with leaky
integrate-and-fire (LIF) neurons described in Equation (13). We
chose an exponential excitatory post-synaptic current (EPSC)
shape such that the input current I(t) at time t is:

I (t) = Iinj ·
∑

i

wi · e
−

t−si
τsyn ·H (t) (18)

where Iinj is the injected current every time a neuron fires, wi is
the synaptic weight of synapse i, τsyn is the synaptic time constant,
andH(t) is the Heaviside step function.

When we study the dynamics of a single synapse i, we remove
the discontinuities caused by the input signal by focusing on the
range [si, t] where H(t) = 1, si being the time of arrival of a
spike to a post-synaptic neuron. Assuming initial conditions such
that Vi(si) = EL as we are restricting the network to only one
spike per synapse, and the membrane potential is reset between

4Local information is defined as to have direct access from a neuron perspective,

e.g. post-synaptic density (estimate of synaptic weight), average firing rate (calcium

concentration) or its own spiking threshold.
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each training example through a WTA algorithm, the membrane
equation now has a solution:

Vi (t) = EL +
Rm · Iinj · wi · τsyn

τm − τsyn
·

(

e−
t−si
τm − e

−
t−si
τsyn

)

(19)

The time course of the potential follows a bi-exponential model
with a finite rising time. In order to maximize the membrane
potential of a post-synaptic neuron—and ultimately associate it
with a particular temporal pattern—we compute the gradient of

the neuron’s potential
∂V(t, si)

∂si
and modulate di until all spikes

are aligned. The model assumes only one spike per synapse.
The partial derivative of V(t, si) with respect to si can then be
written as:

∂V(t, si)

∂si
=

Rm · Iinj · wi

τm − τsyn
· (e−

t−si
τm − e

−
t−si
τsyn ) (20)

The delay update rule can be represented by the
following equation:

dt+1i = dti + η ·
∂V(t, si)

∂si
(21)

where η represents the learning rate of a neuron, with η >

0. We decay the learning rate across iterations to avoid large
gradient steps.

3.2.6. Structural Plasticity
In this section we propose a neurally implemented, self-
organizing, balanced network of excitatory and inhibitory (EI)
neurons which fulfills the constraints outlined at the beginning
section 3.2.5 by combining event-based STDP (Song et al., 2000)
with a variant of structural plasticity (Bekkers, 2011; Knoblauch
et al., 2014) and adaptive spiking thresholds (Afshar et al., 2019b).
It has been demonstrated that the combination of STDP and a
competitive EI network (i.e., WTA), in the context static inputs
can account for disparity selectivity (Chauhan et al., 2018),
in the context of non-static inputs account for the observed
development of orientation selectivity (Masquelier, 2012), and
even the formation of temporal memory (Kappel et al., 2014).
These mechanisms become especially powerful when sensory
information is encoded using relative latency, i.e., using a
temporal code.

The EI network consists of N neurons of which 80% are
excitatory and 20% are inhibitory5. N depends on the desired
spatial resolution the network should be able to decode. Each
excitatory neuron is connected via simple alpha synapse (Rall,
1967) with the following dynamics

Isyn(t) = Īsyn
t − t0

τsyn
exp

(

1−
t − t0

τsyn

)

(22)

5The excitatory neuron pool has N × k incoming excitatory plastic synapses (see

Equations 24 and 26), whereas the connectivity probability E→ I and I→ E is set

to 0.7 with random and fixed synapses.

where Isyn is the EPSC, Īsyn is the peak EPSC and τsyn is the
synaptic time constant. Given a pre-synaptic spike at t0, Isyn is
updated as follows

Isyn = Isyn + w, (23)

where w is the synaptic weight which is modified according to a
STDP protocol:

1w =







a+w · e
tpre−tpost

τ+ , if tpre ≤ tpost

a−w · e
tpre−tpost

τ− , if tpre > tpost ,
(24)

where a+w and a−w represent the magnitude of increments and
decrements to the weight and can be seen as the learning rate
of the plasticity mechanism. tpre and tpost are the times at which
the pre- and post-synaptic neuron emitted a spike and τ+/−

defines the temporal windowwithin which spikes result in weight
changes. Such “additive” STDP updates (Song et al., 2000) often
result in bimodal weight distributions with all weights ending
up either at 0 or their maximum value. There are numerous
approaches to addressing this problem (Goodhill and Barrow,
1994; Morrison et al., 2008), but here we implement an event-
driven weight decay which is triggered whenever the post-
synaptic neurons emits a spike. The weight decay depends on the
synaptic weight and is calculated as follows:

w = w− (w · κ · η), (25)

where κ is the ratio between weight increment and decrement

(κ =
a+w
a−w

, for balanced STDP protocol κ = 1) and η is the

decay rate (η << 1). The objective of the STDP learning rule is
to detect spatio-temporally correlated activity in the input spike
trains. Here we pair STDP for synaptic weights with a STDP
rule for synaptic time constants. This plasticity rule aims to find
a set of synaptic time constants which, given the post-synaptic
activity, increase the overlap in synaptic input currents across the
8 input channels. The time constants of channels which transmit
spikes early in the sequence are increased, whereas the time
constants of channels which transmit spikes late in the sequence
are decreased. This plasticity rule has the consequence that a
neuron spikes as early as possible to a given spatio-temporal
pattern given the provided competition of the other neurons
in the EI network. The synaptic time constants τ are updated
as follows:

1τ = aτsyn ·
(1t − s) · e

−

∥
∥
∥

1t−s
τ∗−s

∥
∥
∥

(τ ∗ − s) · e−1
, (26)

where aτ is the learning rate of the synaptic time constant and
is set such that the time scale of changes in the synaptic time
constants is much slower than the time scale of weight plasticity

(aτ << a
+/−
w ). 1t is calculated based on pre- and post-synaptic

spike timing (1t = tpre− tpost), τ
∗ determines the peak in change

of the time constant with relative to the offset s (τ ∗ > s).
The plasticity kernel for synaptic weights and time constants

are depicted in Figure 5C.
The continuous changes to synaptic weights and time

constants are combined with a form of structural plasticity,
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FIGURE 5 | (A) Kernels of plasticity. Change in synaptic weights 1w (black, solid) and time constants 1τ (blue, dashed) as a function of 1t. (B) Four example

spatio-temporal patterns elicited by eight different sensors. (C) Example synaptic traces to the same spatio-temporal pattern before (left) and after (right) training. Top

panel shows the spatio-temporal pattern across eight channels. Blue traces show the excitatory post-synaptic currents (EPSCs) of 8 different synapses connected to

the 8 sensors. Black vertical bar indicates the post-synaptic spike time. Black trace in the bottom panel is the post-synaptic membrane potential plotted in

conjunction with its threshold (orange trace on top).

operating on slower time-scale. If the average weight of all
incoming synapses is below a user defined threshold, this rule
deletes all (8) synapse and “re-spawns” a new set with a random
weights and time constant sampled from a Gaussian distribution.
This can be interpreted as modeling the retraction of a dendritic
branch and its replacement by another at a different location
hence its different time constant and strength (Zito et al., 1999).
In this way, the synaptic weights and time constants are sampled
and afterwards adjusted according to Equations (24) and (26)
until each excitatory neuron within the EI network finds a unique
set of w and τsyn. Thus, each neuron is sensitive to particular
spatio-temporal pattern which, in the case of this task, represents
a particular location (see Figure 5C). To prevent each neuron
from learning multiple patterns we install adaptive thresholds,
similar to (Afshar et al., 2019b). However, the adaption of the
firing threshold depends only on the post-synaptic membrane
potential, which reflects the networks activity indirectly via the
recurrent connections.

4. RESULTS

In the following subsections, we will present the results obtained
using each of the algorithms discussed in section 3.2.

4.1. Analytical Solution
Because the matrix A in Equation (1) is not constant,
we need to compute its pseudo-inverse at run-time in
order to use the approach presented in section 3.2.1. While
it would be possible to perform this calculation on the
microcontroller (either direct pseudo-inverse computation, or
iterative methods), it is beyond the scope of this paper.
Instead, we performed the calculation of this pseudo-inverse

offline on the host computer. Due to the temporal resolution
of our system, the positional error (Figure 6A) is significant
(73.4% accuracy) while angles are recovered reliably in almost
all trials (99.7%). Nonetheless, 80% of the position error is
less than 20mm.

After differentiating Equation (1), it appears that our
mechanical implementation has 2 ill-conditioned points,
at 90 and −90 degrees, as shown in Figure 6B. As
Figure 6C illustrates, the angular precision is not affected by
this problem.

4.2. Temporal Coincidence Detection
To compute the delays associated with every point and sensor, we
first need to calculate the propagation speed of the vibration wave
on wood. The simplest way to do this is to use linear regression
on the distances between points and sensors as one variable and
the arrival times as the second. From our recordings we get 2.560
spike times which, as we show in Figure 7, we can match to their
corresponding delay. This gives us a speed of 126m s−1, which
we can then use to compute the delays.

By using the delays calculated by dividing the distance by the
propagation speed we find that we only able to recover 37.5%
of the positions successfully. Within those errors, the angles are
always perfectly recovered, but the distances are not. Although
the distance recovery is better than chance—which would be
25%—the fact that the coincidence detection would mistake
different distances implies that there are errors that we are not
accounting for. This is not surprising given the variance around
the regression line shown in Figure 7.

Interestingly, the percentage of errors remains the same when
we change the number of measurement per point, hinting that
the error in delays is not stochastic but rather systematic. This
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FIGURE 6 | Analytic solution for the recorded data. (A) Position error to the ground truth. (B) Overview of the results for the full dataset (320 points). (C) Angular error.

80% of the datapoints have a position error lower than 20 mm. The angular error is lower that ±0.04 degrees. The mechanical design of our prototype presents two

ill-conditioned points at 90 and −90 degrees (along a vertical line in this case).

FIGURE 7 | This figure shows the membrane potential for a position detector with temporal coincidence detection (left) and the relationship between spiking delays

and distances (right). The left plot shows how spikes generated from a tap at the preferred position arrive synchronously at the detector neuron and induce a high

membrane potential (blue), while spikes that arrive from taps at other positions (green and red) achieve lower membrane potentials. This plot highlights the difficulty in

differentiating taps coming from the same angle but different distances (green vs. blue). Also, spikes do not arrive precisely at the same time, which prevents the

membrane potential from reaching the theoretical upper bound (gray). The general relationship between distance and delay is easy to see in the right plot, and can be

used to obtain the speed from the slope of the regressed line (black), while the variance around that line accounts for the sub-optimal membrane potentials obtained

in the left plot. It is worth noticing that here we displayed 2560 points, yet they all fall into a few dozens of clusters, meaning that the errors are systematic rather than

stochastic.

can be observed in Figure 7, where despite having 2,560 points
we only see a few of them, meaning that the measurements are
systematically biased.

4.3. Complex Weights and Delays
Knowing that there is a systematic but unknown bias on the
sensors implies that we must resort to techniques drawn from
statistics and machine learning rather than purely analytical
solutions which could extract the information of the biases
automatically. As expected, using the linear regression in the
complex domain yields perfect recovery of the points, implying
that the systematic biases in the recorded times are not
necessarily an impasse.

This can be illustrated in Figure 8, where we see that the
value obtained by the cumulative weighted representation of
the spikes in the complex plane reaches the unit circle only
when the right input is presented. This can be interpreted
in terms of spikes by saying that for any input spike train
that does not correspond to the right input the complex
representation of the spikes do not have their phases aligned,
and therefore they do not arrive to the perceiving neuron at the
same time.

4.4. Temporal Difference Encoders
As the network described in section 3.2.4 is static, we simply
presented the 320 sets of input spikes to the network as shown
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FIGURE 8 | Complex representation of the spikes weighted by their corresponding complex weights. We show the position of the weighted sum of the spikes in the

complex plane given by ŷp =
∑Ns

k ŵp(k)s(k) for a single position. We used the parameters of a single position detector (angle 135◦ and distance 400 mm), and then

tested the values of ŷp with spike trains generated from a tap in the preferred position (blue) and in every other position (red). On the left we show the full unit circle and

we observe that 32 different positions are clustered together in 8 clusters, corresponding to the 8 different angles. On the right plot we zoom around the solution and

verify that the absolute value of ŷp for other positions within the same cluster—meaning for the same angle but different distances—is indeed lower.

FIGURE 9 | Elementary motion detector network output. (A) Example input spikes from sensor when stimuli is located 800mm away from the sensor at a 90◦ angle.

(B) Corresponding spikes from TDE layer (blue), inverse direction layer (red) and direction output (green). (C) Direction detection performance across all recorded data.

in Figure 9A. Because this approach is only capable of finding
the angle to the target, we can simply treat each output spikes
from a “direction” neurons (green spikes in Figure 9B) as a “vote”

for the target being at the direction neuron’s corresponding
angle. We can then subtract the correct stimuli angle from
the angle associated with each spike and plot the circular
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FIGURE 10 | Behavior of a postsynaptic neuron with synaptic delay plasticity. (A) Peristimulus time histogram averaged across 50 data points at the beginning and

toward the end of the simulation. The vertical red line represents the postsynaptic neuron’s firing time, chosen as a reference from which the time difference is

calculated. After learning, more presynaptic neurons fire with a lower time difference compared to the postsynaptic firing time, due to the synchronization of input

spikes. (B) Tuning curve of the postsynaptic neuron averaged across all the data points where the neuron fired, linking the firing rate to each of the 32 different stimuli

positions. Positions 21–24 correspond to the distances 200, 400, 600, and 800 mm, respectively, at a 270° angle.

histogram shown in Figure 9C. This shows that the mean
error of the classified directions is 0◦, although a perfect one-
hot encoding is not achieved resulting in a circular standard
deviation of 17.5◦.

Further investigation supports the existence of systematic
biases in the sensor as, although the network is entirely
symmetrical, the circular standard deviation is 0◦ for stimuli
presented at angles of 0◦ and 180◦ whereas, for stimuli presented
at all other angles, the circular standard deviation is 18.5◦.

We used the GeNN library (Yavuz et al., 2016) to generate
optimized CPU simulation code for this model. This simulation
can be run 10× faster than real-time on a single ARMCortex A57
core running at 2GHz when using a 0.1ms simulation time step,
suggesting that this approach could be used for embedded online
processing of spatio-temporal patterns.

4.5. Synaptic Delay Plasticity
The synaptic delay plasticity network consists of eight pre-

synaptic neurons, sparsely connected in a random fashion to

50 LIF neurons. Sparsity is achieved by limiting the number of

connections toward a LIF neuron N = 4. Synaptic delays are

randomly initialized according to a normal distribution with a
mean of µ = 0.5ms, and a standard deviation σ = 0.3ms and

a fixed weight equal to
w0

N
with w0 = 1. The resting potential

is set to EL = −70mV. The LIF neuron’s decay constant is set

to τm = 2ms, and the injected current Iinj is set to 180 nA to

make sure that each presented spike train is capable of causing a

LIF neuron to fire. The learning rate starts at η = 1 and decays

by 10% after every 100 input spike trains to help the network

converge toward a local minimum.
Each post-synaptic neuron that responds starts specializing to

a particular pattern by synchronizing its input spikes through
a change in synaptic delays following Equation (21). The

winner-take-all mechanism ensures that no other post-synaptic
neurons synchronize their input spikes. With each subsequent
presentation of the pattern, the time differences between input
spikes gradually converge toward zero (Figure 10A).
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FIGURE 11 | Average angle accuracy for an increasingly sparse synaptic delay

network. We connected each LIF neuron to a random subset of 8 pre-synaptic

neurons representing the hardware sensors. We varied the size of the subset

across 35 different trials in order to assess the smallest number of connections

between pre-synaptic and LIF neurons capable of preserving an accurate

temporal representation of all 8 angles. A sparse synaptic delay network with

only 2 connections per LIF can already represent all angles with an average

accuracy of 95% and we can achieve 100% accuracy with only 4 connections.

With a temporal resolution of 0.1ms, all eight angles were
successfully represented by at least one LIF neuron (Figure 10B).
Previous implementations of learned delays relied on an all-to-
all connectivity scheme (Hussain et al., 2012), but we obtained
similar performance with fewer connections through a randomly
connected sparse network with high redundancy (Figure 11).
The learned temporal patterns for a network with only two
connections per LIF neuron are enough to represent all angles
with an accuracy of 95% and we can achieve 100% accuracy
with only four connections per LIF neuron. An all-to-all network
would work just as well, but, in addition to beingmore efficient in
terms of hardware, a randomly connected and highly redundant
sparse network increases robustness against systemic noise or a
faulty sensor.

We also wanted to determine whether the synaptic delay
network could differentiate between stimuli at different distances.
As seen in Figure 10B, an individual neuron seems to respond
more frequently to a particular position. We expect the
membrane potential to be maximized for a particular distance
which was not the case as the membrane potential was similar
across all distances.

While the delay plasticity network managed to specialize
neurons to all directions, due to the slow attenuation of the waves
being measured, the temporal signatures across the measured
distances are not significantly different. Spike synchronization
seems to have a limited impact on the membrane potential
beyond a certain level of synchronization. An inhibitory plasticity
rule could be explored to further specialize post-synaptic neurons
to increasingly precise temporal patterns.

4.6. Structural Plasticity
As a first step, we trained 4 neurons to learn 4 out of the 32
different spatio-temporal patterns (see Figure 6B). The network’s
free parameters, i.e., synaptic weights w, synaptic time constants
τ and firing thresholds, are randomly initialized at the beginning
of the training. Each spatio-temporal pattern, corresponding to
a unique location, is presented 20 times to the network. In

the beginning, the neurons sparsely capture incoming spatio-
temporal patterns and therefore the thresholds slowly decrease.
Each neuron starts to “lock on” to one particular pattern by
decreasing the synaptic time constants of late spikes in the
sequence and increasing the time constants of spikes early in the
sequence following Equation (26) (for visualization of the time
constant change see Figure 6A, blue dashed trace). The synaptic
weights start to increase more for late spikes in the sequence,
than for early spikes following Equation (24) (for visualization
of the weight change see Figure 6A, black solid trace). Therefore
the neuron begins to respond earlier to a given spatio-temporal
pattern, while the mutual inhibition introduces competition on
both the spike itself and the neuronal firing thresholds. After a
given neuron’s threshold—and thus its other free parameters—
starts to stabilize, it reliably spikes in response to a particular
pattern (see Figure 12A). After 15 stimuli presentations, the
thresholds start to stabilize and each neuron locks onto 1 out of 4
different patterns (Figure 12B).

In a second step, we use 32 neurons and present all 32
patterns corresponding to different locations. Each pattern is
presented 100 times to the network. The neurons fail to respond
reliably to the different spatio-temporal patterns which is to
due to the jitter present in the data, leading to too similar
spatio-temporal patterns. While neurons are capable of learning
these patterns, the jitter prevents the stabilization of the firing
threshold and the synaptic weights and time constants keep
on changing (see Figure 12C). This case of failure might also
be due to the number of presentation needed by the network
to learn a unique set of parameters which scales non-linearly
with the number of patterns to learn and number neurons in
the network (see Afshar et al., 2014 for statistical analysis of
this relation).

Structural plasticity mechanisms or variants thereof within
competitive EI networks has been demonstrated before to learn
spatio-temporal patterns of activity in static (Gerstner et al., 1996;
George, 2018) and time-varying (Masquelier, 2012; Roy and
Basu, 2016; Roy et al., 2016) conditions. Unlike Roy et al. (2016),
our approach does not need a reference time, but rather relies
on relative latency encoding similar to Masquelier (2012). The
proposed unsupervised structural plasticity algorithm is designed
to operate on time-continuous, event-based sensory data in
which there exist no start- or end-point to a pattern, nor one
can rely on batch-training. In contrast to the feature extraction
approach proposed by Afshar et al. (2019b)—which inspired
this work—neurons in our network adapt their neuronal firing
threshold solely based on locally available signals. We do so by
utilizing the inhibitory interneuron population which indirectly
signal the presence of captured spatio-temporal pattern by other
neurons by hyperpolarizing the non-spiking excitatory neurons.

Understanding the computational properties and emergent
network dynamics resulting from recurrent excitation and
inhibition mediated balanced activity is beyond the scope of
this paper, but will be subject of future investigations. A
promising next step would be to learn the temporal relations
of different spatio-temporal patterns by exploiting recurrent
excitatory synapses with STDP, as described in Kappel et al.
(2014) and Milde (2019).
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FIGURE 12 | Detailed excitatory post-synaptic current traces and spiking behavior of neurons in the context of two different tasks which vary in the number of

patterns presented to the network and the network size. In the first task only four different spatio-temporal patterns (four locations) are presented to a network

consisting of four excitatory and 2 inhibitory neurons. In the second task 32 different spatio-temporal patterns (32 locations, i.e., the entire data set) are presented to a

network of 32 excitatory and 8 inhibitory neurons. (A) Detailed EPSC traces of the eight input synapses to the four excitatory neurons (1 color per post-synaptic

neuron) to 1 out of 4 different spatio-temporal patterns (first task). The top plot represents the input pattern, whereas the bottom panel shows the membrane potential

traces of the four excitatory neurons. Note that only one neuron generates an action potential and subsequently inhibits the others via the inhibitory interneurons. (B)

Membrane potentials and corresponding neuronal firing thresholds of 4 neurons learning 4 different spatio-temporal patterns (first task). Each neuron learns to

represent a single input pattern and consequently spikes reliably to only one out of the four patterns. Two pattern repetitions are shown. After each neuron locks onto

one out of the four patterns the neuronal firing threshold stabilize. (C) Spike raster plot of the input and the network’s activity. Blue dots represent the inhibitory neuron

activity (bottom), black dots indicate excitatory neuron activity (middle) and pink dots represent the different input patterns (top). The network fails to converge and

represent each location using a single neuron. The reason for this might be due to the too short training time given the amount of different patterns or due to the too

high similarity in the input patterns for the same angle but different distances. The sampling frequency of the ADC is too slow to provide the needed temporal precision

to resolve the distance if the stimulus onset is not known.

4.7. Comparison and Extensions
In the preceding sections of this work, we proposed several
approaches for tackling the problem of spatio-temporal pattern
classification, in the context of touch localization based on the
precise timing of input events. Table 1 shows an overview of the
presented results. It is worth noting that, as a community, we lack
clear metrics for assessing the performance of spiking networks.
While a simple accuracy metric can be used, it fails to consider
factors such as power consumption and suitability for real-time
simulation as well as not reflecting constraints present in both
biological SNNs and neuromorphic hardware (Nowotny, 2014).
Further effort will have to be done by the community to overcome
this problem and provide datasets and metrics which do consider
these factors.

5. DISCUSSION

In this paper we demonstrated, through a simple task, different
approaches for tackling spatio-temporal pattern classification
with SNNs. The problem of separating spatio-temporal

TABLE 1 | Comparison for the hereby proposed methods.

Method Angle accuracy (%) Distance accuracy (%)

Analytic solution 99.7 73.4

Temporal coincidence 100 37.5

Complex weights and delays 100 100*

Temporal difference encoders 100 N.A.

Synaptic delay plasticity 100 N.A.

Structural plasticity 100 N.A.

If all the approaches are able to distinguish between the arrival angles, the distance is still

an open issue here. The analytic solution is able to (almost) correctly extract the distance,

under the assumption of a known geometry. Some thoughts about this problem are

detailed in the Discussion section (*). The 100% accuracy for the distance in the Complex

weight and delay method is under the assumption of using an extra linear classifier to

process the output data.

patterns into prototypical features or discrete classes by
learning, clustering or any other form of transformation
resides at the core of both event-driven computing and
event-based neuromorphic processing (Chicca et al., 2014;
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Indiveri and Sandamirskaya, 2019). This work is not intended
to demonstrate high-precision computing, but rather to
open new perspectives on learning these spatio-temporal
patterns and on performing event-based tactile sensory
processing. The presented algorithms were chosen to provide
a qualitative overview given certain constraints of available
information on how to extract task-relevant information
from the timing of incoming events. Despite their different
complexities, all of these approaches extract the required
information solely from the precise timing of the incoming
events. While a major drawback of all of these approaches
is the need for temporal precision on the sensory side, our
experiments expand on how information can be extracted
from the timing of an incoming event in neurally-inspired
processing paradigms.

As discussed in section 2.1, in sand, compressional waves
attenuates rapidly with distance (G(d) = 1

d
) meaning that

the gradient of attenuation across the scorpion’s outspread
legs can be used to estimate distance to the stimuli. However,
on the surface used in this work, attenuation is lower.
Therefore, it seems unlikely that our system would sense a
difference in amplitude between the sensors. Nevertheless, mean
amplitude across the sensors could be used to estimate distance,
although it would be unable to disambiguate between a distant
stimuli with a large amplitude and a nearby stimuli with a
smaller amplitude.

Although it is true that the case of multiple sources is not
addressed in this work, we would highlight that the precision of
the sensors is of a few microseconds, meaning that the vibration
should have to be generated at two sources exactly at the same
time, which is unlikely. We can, however, speculate that in the
case of multiple sources, the methods with excitatory synapses
only—such as complex weights—should promote the activation
of the neurons corresponding to the two sources, while those
with lateral inhibition—such as synaptic delay plasticity—would
resolve a conflict one way or the other, giving one active source at
a time.

Due to the nature of the stimuli, all of the approaches
presented in this paper require simulations with high temporal
resolution. While small models requiring high temporal
resolution—such as the TDE-based approach discussed in
section 4.4—can be simulated in real-time using simple CPU-
based simulations, for larger models many current approaches
are not capable of providing high temporal resolution and real-
time simulation speed.

The majority of digital neuromorphic systems (Furber et al.,
2014; Merolla et al., 2014; Davies et al., 2018; Frenkel et al.,
2018) use a time-driven approach for simulating neurons with
simulation time steps of around 1ms. While some systems
can operate at a higher temporal resolution, this typically
requires increasing the clock speed, leading to increased
power consumption. This programmability of the SpiNNaker
platform (Furber et al., 2014) means that, although this platform
was designed to operate on a 1ms simulation time step, it has
been recently demonstrated that a 0.1ms time step is achievable
through careful programming (Knight and Furber, 2016; Rhodes
et al., 2020). Furthermore, when even higher temporal resolution

is required, truly event-driven models capable of learning
temporal patterns with sub-millisecond precision have also been
demonstrated on SpiNNaker (Lagorce et al., 2015). On the
other hand, in terms of efficient processing with high temporal
precision, mixed-signal analog/digital neuromorphic systems
such as ROLLS (Qiao et al., 2015) or DYNAP-SE (Moradi et al.,
2017) have a distinct advantage, as their neuronal dynamics
arise from the physical characteristics of their analog circuits
so time represents itself. As such, analog systems have been
successfully used for a variety of complex spatio-temporal signal
processing tasks, even exhibiting cognitive abilities Neftci et al.
(2013), or including spike-based plasticity mechanism applied to
learning auditory features from a silicon cochlea (Sheik et al.,
2012), sequence learning (Kreiser et al., 2018a; Milde, 2019) and
simultaneous localization and mapping using a silicon retina
(Kreiser et al., 2018b).

We anticipate that this work will be extended to qualitatively
and quantitatively assess solutions to the problem of spatio-
temporal pattern learning, which exploit the fact that time
represent itself in neural computation, and thus uses the precise
timing of events to learn in a purely event-driven manner.
The Neuromorphic Engineering community is facing and needs
to overcome this canonical problem, to establish itself as
a viable alternative to conventional clock-based sensing and
processing systems.
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