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Abstract: In this work, thin-film composite polyamide membranes were fabricated using triethylenete-
tramine (TETA) and trimesoyl chloride (TMC) following the vacuum-assisted interfacial polymeriza-
tion (VAIP) method for the pervaporation (PV) dehydration of aqueous isopropanol (IPA) solution.
The physical and chemical properties as well as separation performance of the TFCVAIP membranes
were compared with the membrane prepared using the traditional interfacial polymerization (TIP)
technique (TFCTIP). Characterization results showed that the TFCVAIP membrane had a higher
crosslinking degree, higher surface roughness, and denser structure than the TFCTIP membrane. As a
result, the TFCVAIP membrane exhibited a higher separation performance in 70 wt.% aqueous IPA
solution at 25 ◦C with permeation flux of 1504 ± 169 g·m−2·h−1, water concentration in permeate
of 99.26 ± 0.53 wt%, and separation factor of 314 (five times higher than TFCTIP). Moreover, the
optimization of IP parameters, such as variation of TETA and TMC concentrations as well as poly-
merization time for the TFCVAIP membrane, was carried out. The optimum condition in fabricating
the TFCVAIP membrane was 0.05 wt.% TETA, 0.1 wt% TMC, and 60 s polymerization time.

Keywords: thin-film composite membranes; pervaporation; interfacial polymerization; polyamide

1. Introduction

With the increasing demand for energy, the depletion of natural fossil fuel resources,
and increasing greenhouse gas emissions, scientists have been exploring the possibility
of utilizing alternative energy sources [1,2]. IPA, a potential biofuel, can be used as a
gasoline substitute [3]. Common ways to produce IPA are either by the hydration of
propene or biomass fermentation [4,5]. To obtain IPA with high purity, removal of water
from the byproduct of these processes is a key step, which is energy consuming with the
conventional distillation technique. Moreover, IPA and water form an azeotropic mixture at
80.37 ◦C, making the separation process difficult. Membrane separation technology holds
great potential owing to the advantages of overcoming these problems [6,7].

PV is a novel and efficient membrane-based separation process that can be used
for alcohol dehydration because of its low cost, ease of operation and it occupies less
space [8–10]. The separation process is governed by solution-diffusion theory for mass
transfer through the membranes. Hence, a selective layer with high hydrophilicity is
beneficial for water permeation. Various kinds of hydrophilic polymers have been used in
PV membrane fabrication to achieve high water flux. Examples include chitosan [11–13],
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polyvinyl alcohol [14–16], polyelectrolyte complex [17,18], and sodium alginate [19,20].
Nevertheless, these are susceptible to plasticization with water, which deteriorates per-
formance. Crosslinking is an established method to reduce the swelling of membranes.
However, this would result to trade-off phenomenon between flux and selectivity. Thus,
an effective strategy to overcome this problem is to prepare a composite membrane with a
thin and dense selective layer, also known as TFC membranes.

TFC membranes have attracted considerable attention, as previous works have already
been demonstrated its high separation performance in the dehydration of alcohols [21,22].
A TFC membrane is prepared by synthesizing a thin active layer on the surface of porous
support through IP—a polycondensation reaction between monomers dissolved in immis-
cible phases [23]. Usually, the diamine monomer is dissolved in water, whereas the acyl
chloride monomer is dissolved in n-hexane. The key steps to prepare polyamide though
conventional IP are as follows: (1) immersion of membrane support in aqueous diamine
solution; (2) removal of the excess aqueous solution on the surface of membrane support;
then, (3) pouring of hexane solution containing acyl chloride on the surface of membrane
support to form a polyamide layer. Several IP parameters can be tuned to regulate the
surface properties of the polyamide separation layer. These includes the type of membrane
support, kind and concentration of monomers, variation of solvents, incorporation of
additives, and adopting different IP method [24–28].

Vacuum-suction filtration, a simple and established method of membrane preparation,
has been used to deposit nanomaterials dispersions into the porous substrate surface [29,30].
From the perspective of fabricating TFC or thin film nanocomposite (TFN) membranes,
it can be utilized not only to effectively deposit the 2D nanomaterial on the membrane
support, but also to ensure the homogenous distribution of amine monomers on the surface
of the membrane support before initiating the IP reaction [31,32]. Previous works have
shown compelling evidence of improving the morphology of the polyamide active layer
with this kind of method [32–34]. However, as most of the studies conducted are applied
to nanofiltration separation, the effects of this technique in PV separation have rarely
been demonstrated.

Therefore, the aim of this work was to explore the use of (VAIP) technique for fab-
ricating a TFC membrane for the PV dehydration of aqueous isopropanol solution. In
this study, the physicochemical properties and performance of TFC membranes prepared
using the VAIP technique were compared with the widely used TIP method. Moreover,
the effect of different IP parameters, such as TETA concentration, TMC concentration, and
polymerization time on the separation performance of membranes was also investigated.

2. Materials and Methods
2.1. Materials

Polyacrylonitrile (PAN) polymer was supplied by Tong-Hwa Synthetic Fiber Co.
Ltd., Taipei, Taiwan. n-methyl-2-pyrrolidone (NMP), the solvent used to dissolve PAN,
was obtained from Tedia Company Inc., Fairfield, OH, USA. NaOH, which was used for
hydrolysis of PAN, was delivered by Showa Chemical Co., LTD., Tokyo, Japan. Monomers
used to form the IP layer, TETA and TMC, were purchased from Merck Co., Darmstadt,
Germany, and Tokyo Chemical Industry Co., Ltd., Tokyo, Japan, respectively. Distilled
water, which was used as an aqueous phase solvent, was obtained from the laboratory.
Reagent-grade n-hexane, which was purchased from Tedia Company Inc., Fairfield, OH,
USA, was used as an organic phase solvent. Fluorescein sodium salt was acquired from
Sigma-Aldrich Co., Burlington, MA, USA. IPA, which was used as feed solution for PV test,
was purchased from Echo Chemical Co. Ltd., Miaoli, Taiwan. Liquid nitrogen and helium
were purchased from Ming Yang Special Gas Co., Ltd., Taoyuan, Taiwan.

2.2. Preparation of Modified PAN (mPAN) Porous Membrane Supports

Porous modified PAN support was prepared similar to our previous work [35]. A
polymeric solution of 15 wt% PAN in NMP was casted into a glass plate covered with
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nonwoven polyester using a casting knife with a gap of 200 µm. Next, the plate was
immediately immersed in a water bath at room temperature to induce the coagulation and
precipitation of PAN from the solution. The resulting flat and porous PAN membrane was
left in a water bath for 24 h to remove the residual NMP and then stored in fresh water.

The PAN support was then hydrolyzed to increase its hydrophilicity, thereby enhanc-
ing the absorption of aqueous amine solution on its surface. In detail, PAN membranes
were first immersed for 30 min into 2 M NaOH solution preheated at 50 ◦C. Membranes
were then washed with DI water thoroughly until the pH of rinsed water turns neutral
(pH = 7). The resulting hydrolyzed PAN (denoted as mPAN) membranes were stored in DI
water for future use. The pore size of the PAN and mPAN support are presented in Table
S1, where both supports show a pore size of approximately 30 nm.

2.3. Fabrication of TFC Membranes

TFC membranes were prepared by VAIP (Figure 1a). In brief, an mPAN membrane
with an effective area of 8.55 cm2 was clamped in the vacuum filtration device, followed
by flushing of 10 mL DI water through vacuum filtration at a reduced pressure 0.8 bar.
Subsequently, 10 mL of 0.05 wt% aqueous TETA solution was poured onto the membrane
surface, then vacuum filtrated until the entire amount of solution was removed. Then,
10 mL of 0.5 wt% TMC in n-hexane solution was contacted with the amine-saturated mPAN
membrane for 1 min, followed by pouring away the organic solution from the membrane.
The resulting polyamide membrane was washed with methanol to remove the unreacted
monomers and then air dried overnight.
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TFC PV membrane was also fabricated using the TIP method for comparison (Figure 1b).
In the laboratory-made IP module, the mPAN membrane was fixed. Then, 0.05 wt% of
aqueous TETA phase solution was poured into the surface of the membrane to saturate
it for 1 min, after which the excess solution was removed by air gun. Next, an organic
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phase solution containing 0.5 wt% TMC/n-hexane solution was poured into the surface of
the saturated membrane for 1 min contact time. The as-prepared TFC membranes were
washed with methanol and air-dried overnight to use for further tests. The prepared TFC
membranes were designated as TFCTIP and TFCVAIP where the subscript corresponds to
the IP method (TIP or VAIP) used.

2.4. Evaluation of Diamine Monomer Distribution in Porous Support

The laser confocal scanning microscopy (LCSM) technique was adopted [36] to observe
the diamine monomer distribution on mPAN surface. An aqueous solution containing
0.05 wt% TETA and 0.005 wt% fluorescein sodium salt was poured into the vacuum
filtration device and filtered through the mPAN support under a reduced pressure of
0.8 bar. The mPAN support was scanned on a laser confocal microscope (Nikon A1R, Japan)
at an excitation wavelength of 488 nm. For comparison, another sample was prepared under
the same condition but using the TIP: the mPAN membrane was immersed in aqueous
solution (TETA + fluorescein) for 1 min, then the residual solution on the membrane support
surface was removed by using an air gun.

FTIR mapping was also used to observe the absorption of TETA monomers on the
mPAN substate. The procedure is similar to the preparation of confocal microscopy sam-
ples described above, but without the addition of fluorescein sodium in the aqueous
solution. The dried mPAN saturated with TETA was put into the sample stage of the FTIR
spectroscope coupled with a microscope (Jasco FTIR-6700 and IRT-5200, Japan).

2.5. Membrane Characterization

The surface chemical composition of membranes was measured using attenuated total
reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy (Perkin Elmer Spectrum
100 FTIR Spectrometer, Waltham, MA, USA) and X-ray photoelectron spectroscopy (XPS,
VG K-alpha ThermoFisher Scientific, Inc., Waltham, MA, USA). Membrane morphology and
surface roughness were observed using field emission scanning electron microscopy (FE-
SEM, S-4800, Hitachi Co., Tokyo, Japan) and atomic force microscopy (AFM, NanoScope®

V, Bruker, Billerica, MA, USA), respectively. The surface wetting characteristics of the
membranes were measured using an automatic interfacial tensiometer (PD-VP Model,
Kyowa Interface Science Co., Ltd., Niiza City, Saitama, Japan).

2.6. Membrane Performance Test

The PV separation of 70 wt% aqueous isopropanol solution at an operating tempera-
ture of 25 ◦C was measured using a laboratory-scale setup [37]. Steady-state conditions
were first established for 30 min prior to sampling. The permeate was collected in cold
traps immersed in liquid nitrogen. The flux of permeate was calculated using Equation (1):

J =
m

A × t
(1)

where J is the permeation flux in g·m−2·h−1, m is the permeate sample weight in grams, A
is the effective area of the membrane (4.91 × 10−4 m2), and t is the sampling time in hours.
The composition of permeate was determined using a gas chromatography analyzer (China
Chromatography Personal GC 1000, China Chromatography Co., Ltd., Taipei, Taiwan).

Separation factor (α) and PV separation index (PSI) were determined using Equations (2)
and (3), respectively:

α =
YW/YA
XW/XA

(2)

PSI = J × (α − 1) (3)

where XW and XA are the respective concentrations of water and isopropanol on the feed
side, and YW and YA are the respective concentrations of water and isopropanol on the
permeate side.
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3. Results and Discussion
3.1. Chemical Structure and Morphology of TFC Membranes

Figure 2 presents the ATR-FTIR spectra of mPAN and TFC membranes. Compared with
the mPAN reference spectrum, the spectra of TFC membranes from the reaction of TETA
and TMC generated new peaks at 1640 cm−1, corresponding to amide I (C=O) [25,38,39].
However, it was difficult to observe the peak at 1540 cm−1 corresponding to the amide II
(N–H) of both TFCTIP and TFCVAIP membranes, as the polyamide layer was probably very
thin, and it overlapped with the spectra of mPAN.
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Figure 2. (a) FTIR spectra of mPAN, TFCTIP, and TFCVAIP membranes (b) enlarged view of the
spectra (x-axis: 2000 to 650 cm−1).

XPS analysis was carried out to further analyze the surface chemistry of TFC mem-
branes. Figure 3 shows the O1s spectra of the membranes. There are two distinct peaks that
can be observed, namely O–C=O and N–C=O at binding energies of 532.7 and 530.8 eV,
respectively. The oxygen in the N–C=O bond was from the amide group formed from
the IP reaction of TETA with TMC, whereas those in the O–C=O bond originated from
the carboxyl groups from the hydrolysis of the remaining acyl chloride groups of TMC
on the formed polyamide [40]. It is known that higher N–C=O/O–C=O means a higher
crosslinking degree of the membrane [41]. The result showed that TFCVAIP had higher N–
C=O/O–C=O ratio (5.53) than TFCTIP membrane (4.57), meaning it had a denser polyamide
layer. The vacuum-assisted method can enrich diamine monomers on the mPAN support,
which ensures that there are enough diamine monomers to react with TMC, thereby enhanc-
ing the cross-linking degree of the resulting polyamide layer [42,43]. A denser structure
would be beneficial to the high separation efficiency of the membrane. This result also
confirms the presence of the polyamide layer on the surface of both membranes.
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Figure 4 presents the morphology and roughness of mPAN and TFC membranes.
mPAN support showed a smooth and porous structure (Figure 4a). After depositing the
polyamide layer through the TIP method, the TFCTIP membranes had a smooth surface with
small bumps distributed on it (Figure 4b). In contrast, a wrinkled structure can be observed
on surface TFCVAIP membrane (Figure 4c), exhibiting a rougher surface than the TFCTIP. It
can be speculated that the rougher surface might be due to the faster polymerization rate
during the membrane fabrication through VAIP. In this method, mPAN support was able
to absorb more amine monomers than the TIP method.
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Figure 4. SEM and AFM surface images of (a,d,g) mPAN, (b,e,h) TFCTIP, (c,f,i) TFCVAIP membranes.

The 3D AFM images of membranes are presented (Figure 4g–i). The surface rough-
ness exhibited a decreasing order as follows: TFCVAIP (Rq = 13.48 ± 0.67 nm) > TFCTIP
(Rq = 9.20 ± 1.31 nm) > mPAN (Rq = 8.66 ± 0.57 nm). These results were consistent with
the FESEM morphology of the membranes. Furthermore, the cross-sectional images of
mPAN and TFC membranes are provided to depict the structure of the polyamide layer. It
can be observed that the thickness of the selective layer for both the TFCTIP and TFCVAIP
was hard to distinguish (Figure 4h,i), implying that the polyamide layers were very thin.
In addition, it can be noticed that the morphology of TFCVAIP had fewer pores than the
TFCTIP, suggesting the intrusion of polyamide into the pores of mPAN.

Figure 5 indicates the water contact angle of mPAN, TFCTIP, and TFCVAIP membranes.
The water contact angle showed an increasing order as follows: mPAN (26.5 ± 8.1◦) <
TFCTIP (53.2 ± 2◦) < TFCVAIP (59.5 ± 2◦). A lower water contact angle implies that the
membrane has a hydrophilic surface. The establishment of a polyamide layer on mPAN
support increased the water contact angle for both the TFCTIP and TFCVAIP membranes.
Based on the chemical structure, TFC membranes have a benzene group on the surface,
rendering the membrane more hydrophobic. Meanwhile, the TFCVAIP membrane had a
water contact angle of 59.5 ± 2.0◦, which was relatively higher than the TFCTIP, even though
it had a higher surface roughness. This was because of the presence of free hydrophilic
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carboxyl groups on the surface of TFCTIP, as revealed in FTIR (Figure 2) and XPS data
(Figure 3), dominating the overall hydrophilicity.
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3.2. Diamine Monomer Spreading on mPAN Support

It has been reported that employing a different method of saturating the porous
membrane support before IP would affect the distribution of diamine monomer, thereby
influencing the formation of the polyamide layer and its morphology [34]. Figure 6 presents
the distribution of the TETA monomer on mPAN from 2D LCSM. The distribution behavior
of TETA in mPAN support was described through the intensity of fluorescence. The porous
support saturated using the vacuum filtration method emits stronger and more uniform
green fluorescence than the one prepared using the traditional method, indicating that
more diamine monomers are absorbed by mPAN.
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To corroborate the above results, FTIR mapping was carried out. The analysis was
performed at 1630 cm−1 and 3300 cm−1, corresponding to the -NH bending and stretching
of the TETA monomer, respectively. The color code used was related to the intensity of this
band: from dark blue (low intensity, indicating an absence of amine group of TETA) to red
(high intensity, indicating presence of amine group of TETA). Figure 7 implies that mPAN
saturated using vacuum filtration (lower right quadrant) have a deep blue color. In contrast,
the mPAN saturated with the traditional/immersion method (lower left quadrant) have
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predominantly green color with reddish-orange spots. This indicates that TETA monomers
were mainly present in the surface of mPAN saturated through the traditional method,
whereas TETA was difficult to detect on the vacuum filtration method.
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The results from 2D LSCM and FTIR mapping were contradictory. We deduced that,
in the case of the traditional method, the amount of TETA monomers on the surface of the
mPAN was enough to be detected by FTIR mapping. Meanwhile, for the vacuum method,
more TETA monomers were enriched inside the mPAN support that cannot be detected
by FTIR mapping but can be easily detected by the 2D LSCM. It is worthy to mention that
confocal microscopy has a high penetration depth on samples, which is around 100 µm [44].

Based on the above analysis, the schematic of diamine spreading and the formation
of polyamide layer was proposed and is presented in Figure 8. Compared with the con-
ventional technique, the VAIP method would enrich the TETA monomers mostly under
the mPAN surface, which was near the reaction boundary. As a result, there would be an
optimum amount of TETA to react with TMC, leading to a denser structure, as shown in
XPS data (Figure 3).

Membranes 2022, 12, x FOR PEER REVIEW 9 of 16 
 

 

In contrast, the mPAN saturated with the traditional/immersion method (lower left quad-

rant) have predominantly green color with reddish-orange spots. This indicates that TETA 

monomers were mainly present in the surface of mPAN saturated through the traditional 

method, whereas TETA was difficult to detect on the vacuum filtration method. 

The results from 2D LSCM and FTIR mapping were contradictory. We deduced that, 

in the case of the traditional method, the amount of TETA monomers on the surface of the 

mPAN was enough to be detected by FTIR mapping. Meanwhile, for the vacuum method, 

more TETA monomers were enriched inside the mPAN support that cannot be detected 

by FTIR mapping but can be easily detected by the 2D LSCM. It is worthy to mention that 

confocal microscopy has a high penetration depth on samples, which is around 100 µm 

[44]. 

 

Figure 7. Microscopic images of membranes and their corresponding FTIR maps at specific wave-

numbers. 

Based on the above analysis, the schematic of diamine spreading and the formation 

of polyamide layer was proposed and is presented in Figure 8. Compared with the con-

ventional technique, the VAIP method would enrich the TETA monomers mostly under 

the mPAN surface, which was near the reaction boundary. As a result, there would be an 

optimum amount of TETA to react with TMC, leading to a denser structure, as shown in 

XPS data (Figure 3). 

 

Figure 8. Scheme of distribution of TETA monomers on mPAN support and formation of PA layer 

through traditional IP and vacuum-assisted IP. 

3.3. Pervaporation Performance of TFC Membranes 

Figure 8. Scheme of distribution of TETA monomers on mPAN support and formation of PA layer
through traditional IP and vacuum-assisted IP.

3.3. Pervaporation Performance of TFC Membranes

Figure 9 summarizes the PV performance of membrane prepared using TIP and VAIP
method in dehydrating 70 wt% aqueous isopropanol solution at 25 ◦C. The TFCTIP mem-
brane had a higher permeation flux of 1815 ± 93 g·m−2·h−1 and lower water concentration
in permeate of 96.28 ± 0.76 wt% (α = 61), than that of the TFCVAIP membrane (perme-
ation flux of 1504 ± 169 g·m−2·h−1 water concentration in permeate of 99.26 ± 0.53 wt%
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(α = 314)). Because in the VAIP method, more amine was adsorbed on the mPAN support
(Figure 6), a dense polyamide layer would form, resulting in higher separation efficiency.
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According to the solution-diffusion theory, the enhancement of separation can be
ascribed to the solution (or sorption) process and diffusion process [45–47]. However, the
surface hydrophilicity of the TFCVAIP membrane was relatively lower than that of the
TFCTIP as presented in the water contact angle data (Figure 5). Hence, it was certain that
the diffusion process was the main reason for the obvious enhancement of the separation
and not the sorption process. The dense polyamide layer greatly contributed to the im-
provement of the diffusion selectivity of the TFCVAIP membrane, which provides mass
transfer resistance against larger sized IPA molecules while allowing the passage of smaller
sized water molecules. It was noteworthy to mention that the decrease in hydrophilicity
of the TFCVAIP membrane might contributed to the decline in permeation flux and its
sorption selectivity, but it was the diffusion selectivity that dominated. TFCVAIP membrane
had a higher separation factor that was almost five times that of the TFCTIP membrane.
This result demonstrated the potential of VAIP in fabricating TFC membranes with high
separation performance.

3.4. Optimization of IP Conditions for TFCVAIP Membranes

Getting the optimum concentration of monomers is one of the key steps in fabricating
high performance TFC membranes. Figure 10 illustrates the membrane performance as
a function of the TETA monomer concentration from 0.01 to 0.3 wt%. The increase in
diamine monomer concentration would result in a decrease in permeation flux, while
the water concentration in permeate increases. The optimum concentration of TETA was
determined at 0.05 wt%, wherein the permeation flux was 1471 ± 230 g·m−2·h−1 and water
concentration in permeate of 99.26 (α = 314). Beyond that, the membrane performance
levelled off. This is because the polyamide layer was already dense enough that the
amine monomers could not penetrate to react with TMC in the organic phase solution.
Consequently, this resulted in limiting the growth of the polyamide active layer.

Figure 11 reveals the performance of membranes as a function of different TMC
concentration from 0.01 to 0.5 wt%. The increase in TMC concentration also resulted in a
decrease in permeation flux, whereas the water concentration in permeate increased, then
remained constant. The membrane performance levelled off in terms of the permeation flux
and water concentration in permeate at a TMC concentration higher than 0.1 wt%. Hence,
the optimum TMC concentration was determined at 0.1 wt%, in which the permeation flux
was 1600 ± 73 g·m−2·h−1 and water concentration in permeates of 99.58 (α = 549).
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Figure 11. Effect of triacyl chloride monomer concentration on TFCVAIP membrane (a) performance
and (b) separation factor and PSI. Feed = 70 wt% isopropanol; feed temperature = 25 ◦C. IP conditions:
0.05 wt% TETA.

The polymerization time also affects the performance of TFC membranes. Generally,
the longer the reaction time of monomers, the denser a polyamide layer can be formed.
Figure 12 plots the performance of membrane as a function of polymerization time from 20
to 100 s. At the reaction time of 20–60 s, the permeation flux did not significantly change
while the water concentration in permeate increased. This is because the low concentration
of TETA and TMC monomers can slow down the growth of the polyamide layer, even
when the polymerization time was increased. Beyond the reaction time of 60 s, it can be
observed that the permeation flux dramatically decreased while the water concentration in
permeate remained similar. The separation factor was observed to be the highest at 60 s,
suggesting that the membrane started to become dense at this point. Hence, the optimum
reaction time was at 60 s, wherein the permeation flux was 1600 ± 73 g·m−2·h−1 and water
concentration in permeates of 99.58 (α = 549).
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Figure 12. Effect of polymerization time on TFCVAIP membrane (a) performance and (b) separation
factor and PSI. Feed = 70 wt% isopropanol; feed temperature = 25 ◦C. IP conditions: 0.05 wt% TETA,
0.1 wt% TMC.

3.5. Membrane Stability Test and Comparison with Literature

The stability of the membrane is important for practical applications. The stability of
the TFCVAIP membrane in long-term operation was investigated using 70 wt% aqueous
isopropanol solution at 25 ◦C (Figure 13). During the 168 h operation, the normalized flux
showed fluctuations (but it remained close to the initial value) while the water concentration
in permeate was maintained at a high level. Thus, the TFCVAIP had stable performance
for long-term use. Furthermore, the isopropanol dehydration performance of the TFCVAIP
membrane was compared with PV membranes reported in previous literature (Table 1).
Its permeation flux and water concentration in permeate were comparable with that of
the others. Therefore, TFCVAIP holds great promise as a PV membrane for dehydrating
isopropanol/water solutions.
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Figure 13. Long-term stability test of TFCVAIP membrane for 168 h. Feed = 70 wt% isopropanol; feed
temperature = 25 ◦C.
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Table 1. Comparison of pervaporation performance of various membranes for isopropanol/
water solution.

Membrane IPA in Feed
(wt%)

Temperature
(◦C)

Permeation Flux
(g·m−2·h−1)

Water Conc. in
Permeate (wt%) Reference

PDAA/PVDF 70 25 95.7 2411 [48]
CR-PBz/PEI 70 30 357 100 [49]

CS-PVA/PVDF HF 90 30 70 98.7 [50]
Chitosan-HMDI/PSf 70 30 1600 97.1 [11]

PA/eGO/PAN 90 30 1670 99.15 [51]
HEC/SA/PAN 70 22 1212 95.54 [52]

PA/PAN HF 90 25 419 96.60 [53]
TFCVAIP 70 25 1600 99.58 This work

HEC: hydroxyethyl cellulose; HMDI: hexamethylene diisocyanate; HF: hollow fiber; PBZ: polybenzoxazine;
PDAA: polydopamine-amide.

4. Conclusions

In this work, we have investigated the potential of using the VAIP technique in
fabricating TFC membranes for PV separation. The employment of this method would lead
to the enrichment of TETA monomers into the mPAN support, resulting in the successful
formation of a polyamide layer with tailored morphology. Characterization results show
that the TFCVAIP membrane had a higher crosslinking degree, higher surface roughness,
and denser structure than the TFCTIP membrane. Such an improved physicochemical
structure polyamide layer renders the TFCVAIP membrane with high efficiency in separating
70 wt% isopropanol/water mixture with permeation flux of 1504 ± 169 g·m−2·h−1, water
concentration in permeate of 99.26 ± 0.53 wt%, and separation factor of 314 that is almost
five times higher than the membrane prepared through TIP. Moreover, the optimization of
IP parameters, such as the variation of TETA and TMC monomer concentrations as well
as polymerization time for the TFCVAIP membrane, was carried out. It turns out that the
TFCVAIP membrane prepared using 0.05 wt% TETA, 0.1 wt% TMC, and 60 s polymerization
time exhibited the optimum performance, with permeation flux of 1600 ± 73 g·m−2·h−1

and water concentration in permeate of 99.58 (α = 549).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/membranes12050508/s1, Table S1: Pore size of PAN and mPAN membranes.
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List of Symbols

J permeation flux
Ji initial permeation flux
α separation factor
XW water concentration in feed
XA alcohol concentration in feed
YW water concentration in permeate
YA alcohol concentration in permeate
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