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Crosstalk of three novel types
of programmed cell death
defines distinct
microenvironment
characterization and
pharmacogenomic landscape
in breast cancer

Lijun Xu*

Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
Background: Prior studies have highlighted that novel programmed cell death

(PCD) modalities, including ferroptosis, pyroptosis, and necroptosis, are correlated

with tumor progression and antitumor immunity. Nonetheless, comprehensive

analysis of tumor microenvironment (TME) profiles mediated by the crosstalk of

distinct PCD forms has not been conducted in breast cancer (BC).

Methods: Here, we curated 34 identified PCD-associated genes (PCDAGs) and

applied the consensus clustering algorithm to establish PCD-mediated tumor

patterns in BC. Subsequently, based on prognostic differentially expressed genes

extracted from distinct PCD-mediated patterns, we applied the LASSO algorithm

to construct CD_Score. Furthermore, the correlation analysis between

CD_Score and TME features, molecular subtypes, clinicopathological

characteristics, drug response, and immunotherapeutic efficacy was performed.

Results: Three distinct PCD-clusters were determined among 2,038 BC

samples, which did not only display different clinical outcomes but highly

correlated to the established immunological tumor phenotypes: “desert,”

“excluded,” and “inflamed” immune profiles. Based on the CD_Score derived

from the PCD-related gene signature, BC patients could be stratified into

CD_Score-low and -high group, of which the former displayed satisfactory

survival outcome and enhanced immune infiltration. Further exploration

identified that the CD_Score-high group significantly correlated with

elevated neoantigen load and higher mutation frequency in SMGs (e.g., TP53

and MAP3K1) and reduced expression of immune checkpoint proteins.

Conclusions: This research is the first to emphasize the close relationship

between distinct cell death modalities and the diversity and complexity of

immune infiltration in TME. We established the CD_Score, which could help
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enhance our cognition of TME features and facilitate the clinical application of

immunotherapy.
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Introduction

Globally, breast cancer (BC) is the most frequently

occurring cancer and the leading cause of cancer-related

mortality among female populations (1, 2). According to

global cancer statistics in 2020, there were an estimated 2.3

million newly diagnosed BC patients, accounting for 11.7% of

all cancer cases and nearly 685,000 related deaths (3). As a

new treatment modality, immunotherapy with immune

checkpoint inhibitor (ICI) monoclonal antibodies has

elicited durable objective responses and substantially

prolonged overall survival (OS) for BC patients (4, 5).

Despite the impressive impact of immunotherapy, a

substantial proportion of BC patients remain unresponsive

to these agents (6), because resistance to apoptosis is

an essential hallmark of cancer (7, 8). Thus, the exploration

of novel cell death modalities that could bypass apoptosis

has gradually emerged as a promising strategy for

cancer treatment.

As a newly discovered form of programmed cell death

(PCD) characterized by iron dependency and lipid peroxide

accumulation (9, 10), ferroptosis is precisely regulated by

multiple regulators, which could either trigger or suppress

this PCD process. Recently, accumulating evidence has

highlighted that the selective induction of ferroptosis could

effectively suppress tumor growth, even for chemotherapy-

resistant tumor cells (11, 12). Pyroptosis represents an

emerging proinflammatory type of PCD characterized by

cytoplasmic membrane pore formation, cell swelling, and

rapid lysis (13–15). This rupture contributes to the secretion

of intracellular proinflammatory contents, which are involved

in the initiation and progression of cancer. Necroptosis is
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caspase-independent necrotic cell death that occurs

downstream of PRK1 and RIPK3, which could form a super-

molecular complex called the necrosome to activate

necroptosis (16–18). Necroptotic cells could permeabilize

plasma membranes. expel intracellular components and

further trigger the init iat ion of immune response,

demonstrating that necroptosis is intimately associated with

oncogenesis and cancer progression.

Recently, as much progress has been made in deepening

our knowledge of the heterogeneous and complex properties

of tumor microenvironment (TME) (composed of tumor and

immune cells, cancer-associated fibroblasts and endothelial

cells, and secreted factors), the involvement of TME in cancer

initiation and progression has been gradually recognized (19–

21). For example, the characterization of the proportion of

CD3+ and CD8+ T lymphocyte subpopulations infiltrating the

tumor center and margin plays an indispensable role in

predicting tumor recurrence and mortality in BC (22).

Besides, immunotherapies, particularly agents targeting ICI:

PD-L1 and CTLA-4, have elicited durable antitumor effects for

BC patients (5, 6). Assessment of TME-infi l trating

characteristics has led to remarkable success in the

prediction of therapeutic efficacy and the development of

novel immunotherapeutic approaches (23–25). Thus,

identification of immune subtypes by comprehensively

parsing the TME components will help predict and direct

immunotherapeutic strategies.

Previously, investigators have identified a significant

correlation between novel PCD modalities and TME-

infiltrating immune cells in people with cancer. For

example, Wang et al. discovered that CD8+ T cells activated

by cancer immunotherapy could release IFNg to reduce

SLC3A2 and SLC7A11 expression, leading to cell lipid

peroxidation and ferroptotic cell death in cancer cells (26).

Besides, in melanoma, the combination of BRAF and MEK

inhibitors could promote the pyroptosis protein GSDME

cleavage and HMGB1 release. GSEME-deficient melanoma

exhibited defective HMGB1 release, decreased T cells and

elevated dendritic cell infiltration (27). However, due to the

technical limitations, most of the current studies have focused

on the role of individual cell death in TME. A comprehensive

analysis of the correlation between the crosstalk of novel PCD
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modalit ies and immune microenvironment has not

been conducted.

In this research, we comprehensively evaluated the

correlation between the crosstalk of ferroptosis, necroptosis,

and pyroptosis and infiltrating immune cells, by integrating

the genomic and transcriptomic features from 2,038 BC

samples curated from the GEO and TCGA databases. Three

distinct PCD-mediated patterns were established using the

unsupervised consensus clustering algorithm, which was highly

consistent with the previously established immunological tumor

phenotypes: “excluded”, “inflamed”, and “desert” immune

profiles, highlighting the indispensable role of PCD in the

regulation of TME characteristics. Moreover, based on the

prognostic PCD-related gene signature, we established

the CD_Score, which could predict the therapeutic efficacy of

chemotherapeutic drugs and immunotherapies, highlighting

that PCD played a vital role in directing therapeutic

interventions for BC.
Materials and methods

Data acquisition

We collected gene expression profiles of BC patients and

the corresponding clinical features from two publicly

available databases: TCGA (https://portal.gdc.cancer.gov/)

and GEO (https://www.ncbi .nlm.nih.gov/geo/) . The

selection criteria for BC datasets were adapted from the

workflow of Xu et al. (28), and a total of 2,038 BC samples

were enrolled in this research, including those from the

TCGA-BRCA (N = 1,091), GSE20685 (N = 327) (29),

GSE16446 (N = 120) (30), GSE88770 (N = 117) (31),

GSE58812 (N = 107) (32), GSE42568 (N = 104) (33),

GSE20711 (N = 88) (34), and GSE135565 (N = 84) (35)

datasets (Table S1). As for the TCGA-BRCA dataset,

we downloaded FPKM value profiles and transformed

them into the TPM format, which was more similar to

microarray data and more comparable between samples.

The “Homo_sapiens.GRCh38.104.chr.gtf” curated from the

ENSEMBLE website was used as an annotation file to map the

ensemble ID to gene symbol. Since these GSE datasets shared

the same microarray platform, the annotation file of GPL570

was downloaded and used to map the probes. While merging

the expression matrix of these eight BC datasets into one

meta-cohort, we applied the “ComBat” function from the R

“SVA” package to correct the batch effect (36). The genomic

mutation data of the TCGA-BRCA obtained from the UCSC

Xena database (http://xena.ucsc.edu/) was used for copy

number variation (CNV) and somatic mutation analysis.

The tumor mutation burden (TMB) was calculated based

on the total number of nonsynonymous somatic mutations,

which included splice site mutations, inflame mutations,
Frontiers in Immunology 03
frameshift mutations, nonsense mutations, and missense

mutations. The localization of the CNV landscape of PCD-

associated genes (PCDAGs) on the human chromosome was

illustrated using the R “Rcircos” package (37).
Consensus clustering analysis of PCDAGs

A total of 34 PCDAGs were procured from the GeneCards

(https://www.genecards.org/) database (38), which provided

comprehensive knowledge of all human annotated and

predicted genes. Detailed information on these PCDAGs

was presented in Table S2. According to the expression of

the PCDAGs, we performed consensus clustering analysis

(39) and stratified BC patients into distinct PCD-mediated

tumor patterns. To select the optimal proportion of cluster

and guarantee its stability, we performed such analysis based

on the following stratification criteria: (1) each group

consisted of an adequate sample size; (2) the curve of the

cumulative distribution function declined at a gradual and

smooth level; and (3) when the clustering was completed, the

intragroup relationship increased, while the intergroup

relationship decreased.
Gene set variation analysis (GSVA) and
evaluation of TME characteristics

To compare the differences in biological behavior among

distinct PCD-mediated patterns, we used GSVA with the R

package “GSVA” (40) and regarded adjusted P-value <0.05 as

the filtering criterion. The gene sets “c2.cp.kegg.v7.5.

1.symbols.gmt” and “h.all.v7.5.1.symbols.gmt” obtained from

the MSigDB database were used as the well-defined biological

signatures (41). To explore the relationship between the PCD-

mediated patterns and TME landscape, we applied two

validated algorithms: single-sample gene set enrichment

analysis (ssGSEA) and CIBERSORT, both of which could

quantify the difference in the proportion of TME immune

cells. As to the ssGSEA algorithm, we estimated the bio-

similarity of TME-infiltrating immune cells based on the

multidimensional scaling and Gaussian fitting model. To

define the relative abundance of immune cells in each sample,

we quantified the enrichment score of TME infiltrating cells and

normalized the score to a unity distribution from 0 to 1. The

deconvolution approach CIBERSORT could determine the

relative expression of immune cells in each tumor based on

the expression profile of 547 reference genes (42). Moreover, to

estimate the level of infiltrating stromal and immune

components, we used the R “estimate” package with default

parameters and applied the Estimation of Stromal and Immune

Cells in Malignant Tumors using Expression Data

(ESTIMATE) algorithm to infer tumor purity (43).
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Identification of differentially expressed
genes (DEGs) among distinct PCD-
mediated patterns and exploration of
their functional annotation

The consensus clustering analysis has satisfactorily stratified

BC patients into distinct PCD-mediated patterns. Subsequently,

we applied the R “limma” package (44) and employed its

empirical Bayesian approach to compare the gene expression

value between distinct patterns and identified DEGs with the

significance criteria of adjusted P-value <0.001. Besides, the R

“clusterprofiler” package (45) was applied to execute the

functional enrichment analyses of DEGs and discover their

potential functions and enriched pathways.
Construction and validation of the
CD_Score scoring system

To establish a predictive model by which clinicians could

estimate the likelihood of survival of BC patients, we first

employed the above overlapping DEGs into a univariate Cox

regression analysis and extracted those OS-related ones. Then,

according to the expression profiles of prognostic DEGs, the

unsupervised clustering algorithm classified BC patients into

distinct subtypes for deeper analysis. Finally, all the BC patients

were randomly assigned (ratio = 1:1) to either the discovery or

validation dataset. In the discovery dataset, the “glmnet” R package

was used to perform LASSO regression analysis, which was capable

of achieving the risk minimization of overfitting, analyzing the

change trajectory of prognostic DEGs, and performing 10-fold

validation to determine the optimal value of penalty parameter

and candidate genes (46). Based on the candidate genes, we

performed multivariate Cox analysis to establish a PCD-related

prognostic model and defined it as CD_Score (“Cell Death_Score”),

whose formula was calculated as follows: risk score = ∑ (bK ∗ GK),

where GK and bK represented the normalized expression value and

coefficient of gene K, respectively.

According to the median risk score, BC patients in the

discovery dataset were separated into CD_Score-low and -high

group and then subjected to Kaplan–Meier survival curve analysis.

Similarly, patients in the validation dataset were also divided into

CD_Score-high and -low group for the subsequent ROC and

Kaplan–Meier analysis.
Correlation of the CD_Score with tumor
mutational landscape,
immunotherapeutic efficacy, and drug
susceptibility

Significantly mutated genes (SMGs) (47, 48) between

different CD_Score groups were recognized using the
Frontiers in Immunology 04
“MutSigCV” algorithm, which could address mutation

frequency in a mutational context-specific manner and further

determine genes significantly enriched in non-silent somatic

mutations. We applied the R “maftools” package (49) and

illustrated the waterfall plot to identify the mutational profiles

of PCDAGs and SMGs in the TCGA-BRCA dataset.

The immunophenoscore (IPS) (50) of BC patients was

curated from the TCIA database (https://tcia.at/home). Based

on the machine learning methods, IPS was evaluated without

bias and presented on a scale of 0–10. This procedure was

carried out based on the immunogenicity-determining genes in

four representative cell types: effector cells, immunosuppressive

cells, immunomodulators, and MHC molecules. Generally,

higher IPS score represented the elevated immunogenicity and

active immunotherapeutic responsiveness.

Individual chemotherapeutic responses were evaluated on

the basis of Genomics of Drug Sensitivity in Cancer (51), the

public pharmacogenomic database that qualifies users to predict

the sensitivity of 138 commonly used chemotherapeutic drugs.

Through the establishment of the ridge regression model based

on the gene expression spectrum of the TCGA-BRCA dataset

and GDSC cell line, we applied the R “pRRophetic” package (52)

to measure the half inhibitory concentration (IC50) (53).
Results

Genomic and transcriptomic profilings of
PCDAGs in BC

The enrichment analysis of PCDAGs via GO and Metascape

was performed and we discovered that biological processes

involved in ferroptosis, pyroptosis and necroptosis were highly

overrepresented (Figures S1A, B). Figure 1A illustrates the

incidence of somatic mutations in 34 PCDAGs on the TCGA-

BRCA dataset. Out of 986 BRCA samples with available

information of variant type and classification, 376 (38.13%)

samples exhibited mutation in the PCDAGs, mainly including

nonsense mutation, missense mutation and frame shift deletion.

Taking into consideration the highest mutation frequency of

TP53, we further compared the expression level of other

PCDAGs and identified 26 differentially expressed PCDAGs

among 666 TP53-wild and 314 TP53-mutant tumor samples

(Figure S2). Besides, to compare the differences in biological

processes between the PCDAG mutation and non-mutation

group, we performed GSVA and discovered that cancer-related

hallmark gene sets, including MTORC1 signaling pathway,

hypoxia and IL6/JAK/STAT3 signaling pathway were strongly

overrepresented in the mutation group (Figure S1C). As a

pleiotropic cytokine involved in the regulat ion of

inflammatory and immune response, IL6 performed a vital

role in the JAK3/STAT3 pathway. Previous studies have

demonstrated that IL6-mediated dysregulation of JAK/STAT3
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pathway significantly correlates with proliferation, metastasis

and survival of tumor cells. Based on these findings, we

speculated that mutations in PCDAGs could lead to functional

changes, thus influencing BC progression.

Subsequent exploration of 34 PCDAGs revealed a

widespread frequency of CNV, among which GSDMC,
Frontiers in Immunology 05
GSDMD, and NLRP3 exh ib i t ed widespread CNV

amplification, whose mean levels were 0.796, 0.74, and 0.681,

respectively, while GPX4, CASP4, and CASP1 displayed

prevalent heterozygous deletions (Figure 1B, Table S3).

Figure 1C and Table S4 visualized the location of CNV

changes in PCDAGs on the chromosome. Besides, we
B

C

D

A

FIGURE 1

The landscape of genetic alterations of programmed cell death-associated genes in breast cancer. (A) 376 of the 986 BC patients experienced
genetic alterations of 34 PCDAGs, with a frequency of 38.13%, mostly including missense mutation, frame shift deletion and nonsense mutation.
(B) The CNV mutation frequency of 34 PCDAGs was frequent. The column represented the alteration frequency. The amplification frequency,
red dot; the deletion frequency, green dot. (C) The location of CNV alteration of PCDAGs on chromosomes. (D) The difference of mRNA
expression levels of 34 PCDAGs between BC and normal samples. The asterisks represented the statistical P-value (*P <0.05; **P <0.01;
***P <0.001).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.942765
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu 10.3389/fimmu.2022.942765
investigated the transcriptional change of PCDAGs between BC

and normal samples and discovered that PCDAGs with CNV

amplification, such as GSDMC, GSDMD, and ZBP1, exhibited

higher expression in BC samples compared with normal ones,

while PCDAGs with CNV loss, such as GPX4, ACSL4, and

NLRP1, displayed reduced expression in tumor ones

(Figures 1B, D), demonstrating that CNV might participate in

the regulation of PCDAG expression. However, some PCDAGs

with amplified CNV demonstrated markedly decreased

expression in BC tissues, such as NLRP3, GSDMB, and

PRKAA1, while other PCDAGs with either CNV amplification

or deletion demonstrated no obvious difference between BC and

normal tissues. Therefore, although CNV could contribute to the

expression variation of PCDAGs between tumor and normal

samples, it is not recognized as the only regulator of gene

expression. Other contributors, such as m6A modification,

DNA methylation, and non-coding RNA, could also control

the gene expression. These findings highlight the highly

heterogeneous genomic and transcriptomic profiles of

PCDAGs, and these imbalanced characteristics of PCDAG

expression take on a vital role in BC tumorigenesis

and progression.
Identification of distinct PCDAGs-
mediated tumor patterns

A total of 2,038 BC samples from eight datasets with

available survival information (TCGA-BRCA, GSE20685,

GSE16446, GSE88770, GSE58812, GSE42568, GSE20711, and

GSE135565) were retained for subsequent analysis. Detailed

characteristics of 2,038 BC samples are provided in Table S1.

To define the prognostic significance of PCDAGs in BC, we

applied the univariate Cox regression assay and Kaplan–Meier

method and regarded P-value <0.05 as the filtering threshold

(Figure S3, Table S5). As shown in Figure 2A and Table S6, this

network illustrated the comprehensive features of the

connections, interactions, and prognostic impact of PCDAGs

in BC. The crosstalk among PCDAGs demonstrated that these

three novel PCD modalities: ferroptosis, pyroptosis, and

necroptosis, had a significant correlation with OS and played a

crucial role in the establishment of PCDAGs-mediated patterns

for BC patients.

According to the expression profiles of PCDAGs, the R

“ConsensusClusterPlus” package was employed to

quantitatively stratify BC patients with different PCD-

mediated patterns. Through the consensus clustering

analysis, we obtained three distinct patterns, including 859

samples in PCD-cluster A, 479 samples in cluster B, and 700

samples in cluster C (Figure S4). PCA demonstrated the

obvious differences in the PCD transcription landscape

among these three clusters (Figure 2B). The performance of
Frontiers in Immunology 06
these three PCD-clusters in predicting clinical outcome

demonstrated that PCD-cluster B displayed a prominent

survival benefit, followed by clusters C and A (Figure 2C). To

further characterize and explore the clinical differences among

distinct PCD-clusters, we focused on the TCGA-BRCA dataset,

because it compromised the largest sample size and provided

the most comprehensive patient information. Figure 2D

presented the distribution of clinical features and PCDAGs

expression profiling among PCD-clusters, and we discovered

that PCDAGs, such as CASP1, CASP4, GZMB, and GZMA,

were evidently elevated in PCD-cluster B.
Characteristics of immune profile among
distinct PCD-clusters

To investigate the biological processes underling three

PCD-mediated patterns, we performed GSVA and observed

that PCD-cluster B with favorable prognosis was involved in

immune activation pathways, such as T and B cell receptor

signaling pathways, allograft rejection, and cytokine and

cytokine receptor interaction (Figure 3A, Table S7). Besides,

the expression level of eight immune activation-related

transcripts was also elevated in PCD-cluster B (Figure S5B).

PCD-cluster C was markedly enriched in stromal and

carcinogenic activation pathways, including ECM receptor

interaction, epithelial–mesenchymal transition, and TGF beta

signaling pathway (Figure S5A, Table S8). To further

characterize the TME features among distinct PCD-clusters,

we conducted CIBERSORT to estimate the abundances of 23

TME immune cells (Table S9). As shown in Figure 3B,

antitumor immune cell subpopulations, such as CD8+ T cells,

M1 macrophages and activated memory CD4+ T cells, were

strongly overrepresented in PCD-clusters B and C, while Treg

cells and M2 macrophages were markedly elevated in cluster A.

Furthermore, we used the ssGSEA algorithm to uncover the

TME landscape (Table S10) and observed the same

characteristics of antitumor lymphocyte subpopulations

among these three PCD-clusters (Figure S5C). We also

performed ESTIMATE analysis to assess the level of

infiltrating stromal and immune cells among distinct PCD-

clusters. Expectedly, we observed that PCD-clusters B and C

displayed an elevated immune and stromal score, implying that

cluster A had a higher tumor purity (Figure 3B). However,

compared with PCD-cluster B, cluster C did not display an

excellent prognosis. Previous studies demonstrated that tumors

with an “excluded” immune profile displayed the presence of

abundant immune cells. However, these immune cells were

positioned in the stroma surrounding tumor cell nests rather

than penetrating tumor parenchyma. The abundant stromal

elements were considered T-cell suppressive. The results from

GSVA analyses have demonstrated that PCD-cluster C
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displayed a significant correlation with stromal activation.

Consequently, we speculated that stromal activation in PCD-

cluster C inhibited the antitumor effect of immune cells.

Subsequent analysis revealed that stromal activity was

significantly enriched in PCD-cluster C, as some transcripts
Frontiers in Immunology 07
of the TGF beta/EMT pathway were strongly overrepresented

(Figure S5D). Taking into consideration the role of ICI in

predicting immunotherapeutic efficacy, we also compared the

differences in ICI expression among distinct PCD-mediated

patterns and observed a significantly upregulated expression in
B C

D

A

FIGURE 2

Tumor pattern clusters mediated by the programmed cell death-associated genes. (A) The interaction of expression on 34 PCDAGs in BC. The
PCDAGs in three PCD-mediated tumor patterns were depicted by circles in different colors. Ferroptosis, red; Necroptosis, orange; Pyroptosis,
gray. The lines connecting PCDAGs represented their interaction with each other. The size of each circle represented the prognostic effect of
each regulator and scaled by P-value. Protective factors for patients’ survival were indicated by a green dot in the circle center and risk factors
indicated by the purple dot in the circle center. (B) PCA of PCDAGs to distinguish between PCD-cluster A, B, and C (C) Kaplan–Meier curves of
OS for 2,038 BC patients in the meta-cohort among different PCD-clusters. The numbers of patients in cluster A, B, and C were 859, 479, and
700 samples. (D) Unsupervised clustering of PCDAGs in one meta-cohort. The PCD-cluster, age, gender, ER, PR, HER2, molecular subtype, and
clinical stage were used as patient annotations. Red represented the high expression of PCDAGs and blue represented low expression.
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cluster B (Figure 3C). Taken together, we speculated that PCD-

clusters corresponded to distinct tumor immunological

phenotypes. PCD-cluster C was considered as an “excluded”

immune profile, characterized by immune cell infiltration and
Frontiers in Immunology 08
stromal activation; cluster B as “inflamed” immune profile

characterized by abundant infiltrating antitumor lymphocytes

and immune activation, and cluster A as a “desert” immune

profile, characterized by immune suppression.
B C

A

FIGURE 3

Biological behaviors and tumor microenvironment characteristics among distinct PCD-clusters. (A) Heatmap shows the GSVA score of
representative KEGG pathways curated from MSigDB among distinct PCD-mediated tumor patterns. The meta-cohort compositions
(GSE135565, GSE16446, GSE20685, GSE20711, GSE42568, GSE58812, GSE88770, and TCGA-BRCA) were used as sample annotations. (B) The
fraction of antitumor immune cell subpopulations and immune score among distinct PCD-clusters using the CIBERSORT and ESTIMATE
algorithms. Within each group, the scattered dots represented TME cell expression values. The thick line represented the median value. The
bottom and top of the boxes were the 25th and 75th percentiles (interquartile range). The statistical difference of three PCD-clusters was
compared through the Kruskal–Wallis H test. ns not significant; **P < 0.01; ***P < 0.001. (C) Comparison of the expression level of
immunosuppressive molecules across distinct PCD-clusters.
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Construction of PCD-related
gene signature

The previous unsupervised consensus clustering algorithm

quantitatively classified BC samples into different PCD-

mediated patterns. However, the genetic changes underlying

these three clusters remain unclear. Thus, we introduced the R

“limma” change to observe the change in the expression level of

16,436 genes among distinct PCD-clusters and obtained a total

of 1,965 DEGs, which were termed as PCD-related gene

signature (Figure 4A). GO annotation of DEGs revealed that

biological processes implicated in immune activation were

significantly enriched (Figure 4B). KEGG analysis also

demonstrated that these DEGs performed a vital role in

immune regulation (Figure 4C, Table S11), indicating that

PCD was closely connected with TME. We then conducted

univariate cox regression analysis to discover the prognostic

impact of these 1,965 DEGs and determined 328 genes

associated with OS for subsequent analysis (P-value <0.001,

Table S12). Based on the 328 representative prognostic genes,

we adopted the consensus clustering algorithm and determined

three stable PCD-related transcriptome subtypes (Figure S6),

which were termed PCD-gene clusters I, II, and III. As shown in

Figure 4D, significant differences in the PCDAG expression level

among distinct gene clusters were observed. Further prognostic

investigation demonstrated that gene cluster II displayed the best

prognosis, followed by gene clusters III and I (Figure 4E).
Generation and validation of CD_Score

Although BC patients could be classified into groups with

distinct prognosis and antitumor immunity by consensus

clustering analysis, a PCD-related scoring model to evaluate

the possibility of OS has not been hitherto identified for BC

clinicians. The meta-cohort, including 2,038 BC patients, was

randomized into the discovery and validation datasets, both of

which contained 1,009 samples (at a ratio of 1:1). In the

discovery dataset, we employed the LASSO regression

algorithm to further screen prognostic PCD-related signature

genes. According to the minimum partial likelihood deviance

and optimum l value (Figures S7A, B), we identified 41 genes

with prognostic value and incorporated them into the

multivariate Cox regression model. Based on the optimum

AIC value, an eighteen-gene scoring system was constructed,

whose formula is presented in Table S13. To explore the protein

expression patterns of these eighteen genes, we performed

immunohistochemistry analysis and discovered that, with the

exception of C15orf39, HSD11B1, LIMD2, and low/medium/

high protein expressions of other genes were observed in BC

tissues (Figure S8). According to the risk score obtained from the

formula, we classified BC patients into CD_Score-low and -high
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group (Figure 5A) and discovered an obvious difference in

PCDAG expression between different groups (Figure 5B).

Besides, we observed that the distribution of CD_Score differed

from distinct PCD-clusters and gene clusters, among which PCD-

cluster A and gene cluster I with dismal survival outcomes were

highly correlated to high CD_Score (Figures 5C, D). As expected,

further survival analysis and risk score distribution demonstrated

that compared with the CD_Score-low group, the CD_Score-high

group exhibited a relatively poor outcome and had a higher

likelihood of death earlier (Figures 5E, F). Besides, the AUC

value was utilized to represent the 3-, 5-, and 8-year survival

rates of CD_Score: 0.761, 0.789, and 0.787, respectively

(Figure 5G). Uni- and multi-variate analyses were conducted to

determine the independent role of CD_Score in predicting BC

prognosis (Figure 5H).

The validation dataset was used to evaluate the performance

of CD_Score. By calculating the risk score of each BC sample

premised on the same formula derived from the discovery

dataset, we divided them into CD_Score-low and -high group,

with the median value considered as the cutoff level (Figure

S7C). CD_Score-low BC patients were less likely to encounter

death earlier and exhibited favorable outcome compared with

those CD_Score-high counterparts (Figures S7D, E). The AUC

of 3-, 5-, and 8-year ROC for the CD_Score in the validation

dataset was 0.741, 0.724, and 0.695, respectively (Figure S7F).
Correlation between CD_Score and
clinicopathological characteristics and
molecular subtypes

Taking into consideration the heterogeneous properties of

BC, we also evaluated the clinical value of CD_Score in

predicting prognosis among different subgroups (age,

molecular subtype, clinical stage, hormone receptor, and HER2

status) and further confirmed the role of CD_Score as a robust

prognostic biomarker (Figure S9). Besides, the distribution of

CD_Score in different groups with ER, PR, HER2 status,

molecular subtype and clinical stage was also compared, and

we observed that low CD_Score was linked with ER+, PR+

status, while high CD_Score correlated with HER2+ status, basal

and Her2 subtype and stages iii and iv (Figure S10). To further

assess the predictive performance of CD_Score, we conducted a

comparative analysis between this scoring system and other

established gene expression signatures from the perspective of

autophagy, ferroptosis, pyroptosis, and m6A modification.

Kaplan–Meier analysis combined with ROC curve

demonstrated that CD_Score based on a combination of

ferroptosis, necroptosis, and pyroptosis was superior to that

based on individual cell death modality and m6A modification,

in terms of predicting survival outcome for BC patients

(Figure S11).
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B C

D
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FIGURE 4

Construction of PCD-related gene signature and functional annotation. (A) A total of 1,965 DEGs among distinct PCD-clusters were shown in
the Venn diagram. (B, C) Functional annotation for DEGs using GO and KEGG enrichment analyses. (D) The expression of 34 PCDAGs among
three gene clusters. The upper and lower ends of the boxes represented an interquartile range of values. The lines in the boxes represented the
median value and black dots showed outliers. The asterisks represented the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001). The one-
way ANOVA test was used to test the statistical differences among three gene clusters.
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FIGURE 5

Survival analysis of CD_Score in the development dataset. (A) Ranked dots showing the risk score distribution. (B) Difference in the expression
level of PCDAGs between high and low risk-score group. The asterisks represented the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001).
(C, D) Distribution of risk score in the different PCD-clusters and gene clusters. (E) Kaplan–Meier curves for the OS of patients between high
and low risk-score group. (F) Scatter plots showing the risk score distribution and patient survival status. (G) ROC curves to predict the
sensitivity and specificity of 3-, 5-, and 8-year survival according to CD_Score in the discovery dataset. (H) Results of the univariate and
multivariate Cox regression analyses regarding OS in the meta-cohort.
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TME-infiltrating immune landscape and
clinical nomogram associated with
CD_Score

To explore the underlying mechanisms contributing to the

survival discrepancy between different CD_Score groups, we

conducted GSEA and observed that immune-related biological

processes were markedly overrepresented in the CD_Score-low

group (Figure S12A). The specific association between the

CD_Score and immune characterization was investigated through

Spearman analysis and illustrated as the correlation matrix (Figure

S12B). We observed that CD_Score exhibited a positive correlation

with immunosuppressive immune cells, including Treg cells and

M2 macrophages, and displayed a negative association with tumor-

infiltrating lymphocytes, especially CD8+ T cells, highlighting the

interaction between CD_Score and immune infiltration

characteristics. By integrating the CD_Score and other

clinicopathological characteristics, a clinical nomogram was finally

constructed, which exhibited sense discrimination and accurate

calibration (Figures S12C–E).
Correlation between CD_Score and
somatic mutation and response to
immunotherapies and
chemotherapeutics

Mounting studies have confirmed that TMB, as an emerging

and promising tumor marker, could assist us in selecting patients

suitable for immunotherapies. Taking into consideration the

significant value of TMB in clinical practice, we aimed to uncover

the distribution pattern of TMB between different CD_Score groups

and clarify the genetic imprint of each group. As shown in

Figures 6A, B, CD_Score exhibited a positive correlation with

TMB and CD_Score-high patients were mainly enriched in the

high TMB group. Subsequent analysis demonstrated the prognostic

impact of TMB by categorizing BC patients into TMB-low and -high

group with 0.421 as the cutoff value. We discovered that the TMB-

high group displayed a dismal OS disadvantage and—especially the

combined TMB-high and CD_Score-high group—demonstrated the

worst survival outcome (Figures 6C, D). The SMGs landscape

between different CD_Score groups was also analyzed and we

discovered that TP53 (36.93% vs. 26.69%) and MAP3K1 (10.58%

vs. 5.72%) displayed a relatively high somatic mutation frequency in

the CD_Score-high group (Figures 6E, F; Table 1). Besides, to

explore the clinical relevance of TP53 and MAP3K1 expression,

we analyzed their protein expression in clinical specimens.

According to the immunohistochemical analyses, we discovered

that TP53 and MAP3K1 demonstrated moderate and high

staining intensities in BC tissues, respectively (Figures S13A, B).

Moreover, TP53 and MAP3K1-related signaling pathways based on

GSEA were used to explore signaling pathways involved in BC
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between high and low expression datasets. We discovered that

KEGG items, including cell cycle and spliceosome, were

significantly enriched in the TP53 high expression phenotype,

while oxidative phosphorylation and ribosome demonstrated

significantly differential enrichment in the MAP3K1 low

expression phenotype (Figures S13C, D). Considering that tumor-

infiltrating lymphocytes could influence tumor progression and

survival outcome, we further explored the correlation between

TP53, MAP3K1 and TME landscape in BC patients. As shown in

Figures S13E, F, we discovered that B cells naïve NK cells activated

and macrophages M2 were the main immune cells affected by TP53,

while T cells CD4 memory activated, T cells follicular helper and T

cells regulatory demonstrated a negative correlation with MAP3K1.

ICI-mediated immunotherapy, especially PD-1/CTLA-4

(extensively used to evaluate immune response), has gained

remarkable success in antitumor immunity. By comparison with

the expression level of ICI between the CD_Score-low and -high

group, we discovered that PD-1, PD-L1, LAG3, CTLA4, and TIGIT

were markedly increased in the CD_Score-low group (Figure 6G).

Besides, we discovered that no matter the circumstances of anti-

CTLA4/PD-1 therapy alone or in combination, the CD_Score-low

group exhibited a relatively higher IPS score, compared with the

CD_Score-high group (Figure S14A). These findings strongly

suggested that CD_Score performed an indispensable role in the

mediation of immune response and the prediction of

immunotherapeutic responsiveness.

Besides, the difference in drug IC50 between the CD_Score-low

and -high group was compared, and we discovered that CD_Score-

low group demonstrated a negative correlation with the IC50 of

gemcitabine, doxorubicin, cisplatin, methotrexate, vinorelbine, and

vinblastine, suggesting that these commonly used chemotherapeutic

agents could confer beneficial effects on them (Figure S14B).
Discussion

An accumulating body of evidence has highlighted that

ferroptosis, pyroptosis, and necroptosis perform a vital role in the

regulation of inflammation response and antitumor activity (54–

56). Numerous studies have explored the significant contribution of

individual cell death modalities, but comprehensive analysis of the

crosstalk of distinct cell death types in tumor progression has not

been performed. Here, we revealed global alterations of PCDAGs

from the perspective of genomics and transcriptomics, and explored

the crosstalk between distinct cell death modalities and tumor-

infiltrating immune cells to determine distinct PCD-mediated

patterns in the immune landscape of TME. This would advance

our understanding of antitumor immunity and facilitate the

implementation of more effective immunotherapeutic approaches.

In this research, we determined three distinct PCD-mediated

tumor patterns, which exhibited different TME-infiltrating immune

cell landscapes and anti-tumor immunity. PCD-cluster B was
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characterized by abundant tumor-infiltrating lymphocytes and

immune-activating components, corresponding to an “inflamed”

immune profile. PCD-cluster A was characterized by higher tumor

impurity and immune-suppressive TME, characterized by a

“desert” immune profile. PCD-cluster C was featured by the
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immune cell infiltration together with activated ECM, TGF beta,

and EMT pathways, corresponding to an “excluded” immune

profile. Previous studies have established that TME constituents

take on an indispensable role in regulating cancer progression and

influencing immunotherapeutic efficacy (24). Baseline
B

C D
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G

A

FIGURE 6

The association between tumor mutation burden and immunotherapeutic benefits. (A) Relative distribution of TMB in high versus low risk-score
group. (B) correlation analysis between risk score and TMB. (C) Kaplan–Meier curves for high and low TMB patient groups. (D) Kaplan–Meier
curves for subgroup patients stratified by both risk score and TMB. (E, F) Mutational landscape of SMGs in the TCGA-BRCA stratified by high (left
panel) versus low risk-score (right panel) groups. Individual patients were represented in each column. The upper bar plot showed TMB, the
right bar plot showed the mutation frequency of each gene in separate risk-score groups. (G) The relative distribution of immunosuppressive
molecules was compared between risk score high versus low groups in the TCGA-BRCA dataset.
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characteristics of immune cell contextures, including NK cells,

macrophage M1 and CD4/CD8+ T cells significantly correlated

with immune response (57, 58). We discovered that anti-tumor

infiltrating lymphocytes and immunosuppressive molecules were

prominently overrepresented in PCD-cluster B, highlighting the

potential value of the crosstalk of distinct cell death modalities in

predicting the efficacy of immunotherapies. Recently, numerous

studies identified that activated TGF beta and EMT-related

pathways could restrict the penetration of lymphocyte

subpopulations into the tumor parenchyma (59), while targeted

small molecule (TGF-b) inhibitor therapy could restore antitumor

immunity via remodeling the TME feature (60, 61). These findings

implied that BC patients within PCD-cluster C were the potential

candidates receiving therapeutic benefits from combination of

TGF-b blockade and ICI immunotherapy.

Furthermore, DEGs extracted from distinct PCD-clusters were

significantly enriched in biological activity associated with anti-

tumor immunity, demonstrating that these DEGs were recognized

as PCD-related gene signature. Based on the PCD-related signature

genes, three PCD-related transcriptome subtypes characterized by

distinct clinical outcomes and TME features were established, which

was consistent with the results obtained from PCD-clusters. We

further introduced the CD_Score to estimate the survival ability and

predict therapeutic efficacy for BC patients. Consequently, PCD-

cluster B, characterized by an “inflamed” immune profile, exhibited

a lower CD_Score, while cluster C and A, characterized by

an “excluded” and “desert” immune profile, displayed a relatively

high CD_Score. Additionally, we discovered that CD_Score

possessed great prognostic predictive ability and exhibited a

significant correlation with mutational signatures, demonstrating

that CD_Score could be used as a surrogate biomarker to predict

genomic aberration. Further analyses revealed that CD_Score

exhibited a significant correlation with immune response,

including immunosuppressive molecules, IPS, and TME

landscape, demonstrating that PCD could affect the efficacy of

immunotherapeutic approaches. Taken together, we believed that

CD_Score could be utilized in clinical practice to determine

immune phenotypes and guide therapeutic approaches.

Due to cancer being a genetic disease, the detection of

mutation driver genes could be helpful in monitoring cancer

occurrence and determining treatment options. Here, we

discovered that TP53 and MAP3K1 displayed an increased

mutation frequency in the CD_Score-high group. Previous

studies reported that MAP3K1, as a serine-threonine kinase of
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the MAPK family, is frequently mutated in breast cancer and

further influences Th1 polarization, leading to an immune-

desert phenotype in BC (62). TP53 is a frequently mutated

tumor suppressor gene in BC, and its mutation could strengthen

immune function (63). The CD_Score mediated driver gene

mutations exhibited a significant correlation with immune

activity, suggesting the complicated interplay between PCD

and tumor immunogenomic characteristics.

Although we incorporated 34 identified PCDs from the

GeneCards database, novel identified regulators will be

recognized and incorporated into this research to enhance the

accuracy of PCD-mediated patterns. Besides, we established

CD_Score based on the retrospective meta-cohort containing

2,038 BC samples. Prospective cohort studies were warranted to

further validate the applicability of our findings.
Conclusions

In general, based on 34 recognized PCDAGs, we systematically

explored PCD-mediated patterns and CD_Score among 2,038 BC

samples and integrated these patterns with the TME-infiltrating

landscape. Through the comprehensive analysis, we concluded that

the crosstalk of ferroptosis, pyroptosis, and necroptosis played a

crucial role in regulating antitumor immunity. More broadly,

evaluation of the CD_score of BC patients will help strengthen

our understanding of the immune landscape of TME and direct

more effective clinical practice of immunotherapies.
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