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Abstract

Purpose

Exercise training increases aerobic capacity and is beneficial for health, whereas low aero-

bic exercise capacity is a strong independent predictor of cardiovascular disease and pre-

mature death. The purpose of the present study was to determine the metabolic profiles in a

rat model of inborn low versus high capacity runners (LCR/HCR) and to determine the effect

of inborn aerobic capacity, aging, and exercise training on skeletal muscle metabolic profile.

Methods

LCR/HCR rats were randomized to high intensity low volume interval treadmill training twice

a week or sedentary control for 3 or 11 months before they were sacrificed, at 9 and 18

months of age, respectively. Magnetic resonance spectra were acquired from soleus mus-

cle extracts, and partial least square discriminative analysis was used to determine the dif-

ferences in metabolic profile.

Results

Sedentary HCR rats had 54% and 30% higher VO2max compared to sedentary LCR rats at 9

months and 18 months, respectively. In HCR, exercise increased running speed signifi-

cantly, and VO2max was higher at age of 9 months, compared to sedentary counterparts. In

LCR, changes were small and did not reach the level of significance. The metabolic profile

was significantly different in the LCR sedentary group compared to the HCR sedentary

group at the age of 9 and 18 months, with higher glutamine and glutamate levels (9 months)

and lower lactate level (18 months) in HCR. Irrespective of fitness level, aging was
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associated with increased soleus muscle concentrations of glycerophosphocholine and glu-

cose. Interval training did not influence metabolic profiles in LCR or HCR rats at any age.

Conclusion

Differences in inborn aerobic capacity gave the most marked contrasts in metabolic profile,

there were also some changes with ageing. Low volume high intensity interval training twice

a week had no detectable effect on metabolic profile.

Introduction

Low exercise capacity measured by maximal oxygen consumption (VO2max) is an independent

predictor of premature death, stronger than other established risk factor [1–4]. Hence it is

often assumed that exercise training that increases aerobic capacity will improve health out-

comes. Comprising the largest organ system in the human body, skeletal muscle metabolism

profoundly impacts whole-body nutrient homeostasis [5]. Low exercise capacity is highly cor-

related with skeletal muscle dysfunction and metabolic disorders, such as obesity, diabetes,

and cardiovascular disease [6–8]. However, aerobic capacity not only depends on physical

activity, but on its interaction with aging and genotype. As discussed below, skeletal muscle

function and metabolism are influenced by genotype, aging and exercise training in a complex

way. However, the interplay between these factors is not well characterized.

Genotype determines as much as 50% of differences in VO2max among individuals [9]. In a

rat model bred for low versus high inborn running capacity (LCR/HCR) [10], LCR rats had

fewer capillaries in the soleus muscle and lower levels of intramuscular glycogen and mito-

chondrial content compared to HCR. Genes associated with skeletal muscle, mitochondrial

function, and oxidative energy metabolism were differentially expressed between LCR and

HCR [10–12].

Aging leads to a loss of muscle mass and a decline in skeletal muscle function [13]. This is

associated with an imbalance between protein synthesis and protein break down, and with

impaired protein and amino acid metabolism [14]. Furthermore, the balance between glucose

and lipid metabolism is changed [15]. Combined, these changes predispose for sarcopenia,

insulin resistance, impaired glucose tolerance, and metabolic syndromes [14].

Exercise training is regarded as the most effective method to increase muscle performance

and metabolism. Especially high intensity exercise training has proven to be effective [16, 17].

Key regulators such as AMPK and PGC-1α are activated, thus increasing mitochondrial oxida-

tive respiration and biogenesis [18–20]. However, it is not known whether low volumes of

exercise training at high intensity might influence metabolism in the context of ageing and dif-

ferent genetic backgrounds.

To get a better understanding of the interplay between aerobic capacity and skeletal muscle

metabolic profile, the effect of aging and low volume exercise training were assessed in the

experimental LCR/HCR rat model. [1, 21]. We hypothesized that age, intrinsic running capac-

ity, and exercise training would affect skeletal muscle metabolic profile, and that the changes

would be related to aerobic energy metabolism and share similarities with the pathogenesis of

the metabolic syndrome [22–25]. A long-term goal was to find a novel method to identify

impaired skeletal muscle metabolism by using metabolomics based on magnetic resonance

spectroscopy (MRS) and VO2max.
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Materials and methods

Ethical perspective

All animal studies were approved by the Norwegian Council for Animal Research, and con-

form to the Guide for the Care and Use of Laboratory Animals published by the US National

Institutes of Health (NIH Publication No. 85–23, revised 1996). Each participant had protocols

for animal research approved by their National Council for Animal Research. The experiments

were designed according to the guidelines from the Federation of European Laboratory Ani-

mal Science Associations (FELASA), EU animal research directive (86/609/EEC) and Council

of Europe (ETS 123), and the EU directive from 2013 (2010/63/EU). All researchers in this

study have a FELASA C certificate. Animal caretakers at the animal facility have either a

FELASA C or FELASA B certificate. In addition to daily supervision by the animal caretakers,

the veterinarian examines all animals once a week and is available for consult every day. The 3

R’s (Replacement, Reduction and Refinement) have specifically been addressed when design-

ing the study.

Rat model of intrinsic running capacity

The LCR and HCR models were established by Koch and Britton in 2001 [21]. Briefly, the rat

founder population originated from the genetically heterogeneous N:NIH outcrossed stock

[26]. Running capacity was determined by a ramp treadmill running protocol until exhaustion.

A rotational breeding scheme was performed to extend the possibility of a varied allelic combi-

nation. The rats used in the current study were from generation 29 and 30.

Exercise training and VO2max testing

Aerobic fitness was quantified as VO2max normalized to scaled body mass. We used an individ-

ualized protocol as previously described [27]. Briefly, each rat had a 10-min warm-up at slow

to medium pace based on previous experiments, before the VO2max test. The test was per-

formed on a treadmill in a closed chamber customized for rats (Columbus instruments, USA).

Oxygen concentrations in and out of the chamber were measured and airflow through the

chamber was controlled by an in-house build system. Band speed was increased by 1.8 m/min

every 2 minute until the rat was unable to maintain the running speed, which was recorded as

the max running speed for rats. After the VO2max test, HCR and LCR rats were randomized to

four subgroups (6 in each group): HCR rats with exercise training (HCR trained) or sedentary

(HCR sed), LCR rats with exercise training (LCR trained) or sedentary (LCR sed). Training

was conducted 60 min/day, 5 days/week, for 6 weeks. After the first 6 weeks, rats exercised two

times per week throughout the study period. The high-intensity exercise training started with

a 10 min warm-up at 50–60% of VO2max. Thereafter, rats ran 10 times 4 min at 80%-90% of

VO2max, separated by 2 min active breaks at 50% intensity. VO2max was measured at baseline,

after 3 months (9 months of age) and 12 months (18 months of age) 5 days before sacrifice and

tissue collection. The 9 months old rats then exercised the first 6 weeks with 5 sessions per

week followed by 6 weeks with 2 sessions per week. The 18 month old rats exercised the first 6

weeks with 5 sessions per week and thereafter 46 weeks with 2 sessions per week.

Tissue extraction

One day after the final exercise session (and at least 5 days since the latest VO2max test), rats

were anesthetized with 5% isoflurane, intubated and ventilated with 1.5% isoflurane in a 70%

O2/30% N2O. The soleus muscles were quickly removed and placed in ice-cold saline for dis-

section. Performing an identical surgical procedure and by snap-freezing, the variation in

Skeletal muscle metabolism and exercise capacity
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surgical time for tissue resection was minimized among the subgroups. Frozen tissues were

extracted using a modified dual phase extraction protocol [28]. Briefly, the muscle samples

were powdered in a morter with liquid N2 and transferred to a 2 mL cryotube. Next, we added

methanol (two times the tissue weight in mg), 150 μL purified water, and chloroform (1.5

times of the tissue weight) to the sample. After centrifuging, the upper layer water phase was

transferred to a new tube, frozen at -80 ˚C, lyophilized, and stored at 4˚C until MRS analysis.

Proton MR spectroscopy

Before MRS analysis, samples were dissolved in deuterium oxide (D2O, Sigma-Aldrich Corpo-

ration, USA). The pH of all samples was adjusted to the same level (pH ~ 7) by perchloric acid

and potassium hydroxide. MR spectroscopy was performed using a Bruker Avance III Ultra-

shielded Plus 600 MHz spectrometer (Bruker Biospin GmbH, Germany) equipped with a 5

mm QCI Cryoprobe with integrated, cooled preamplifiers for 1H, 2H, and 13C. This MR sys-

tem provided a fully automated experiment in combination with Icon-NMR on TopSpin v3.1

software (Bruker Biospin). The MR spectra were obtained at 28.05 ˚C using a standard proto-

col [29], for proton one-dimensional nuclear Overhauser effect spectroscopy (1D-NOESY)

(noesygppr1d; Bruker) with the following acquisition parameters: 128 scans, acquisition time

of 2.73s, relaxation delay of 4s, free induction decay (FID) size of 65536, mixing time of 10ms,

spectral width of 20.0243 ppm, and a total scan time of 349s.

Data processing and multivariate analysis

MR spectra were automatically Fourier transformed with an exponential line broadening of

0.3 Hz, phased, and baseline corrected in Topspin. Pre-processed spectra were transferred into

MATLAB R2013b (The Mathworks, Inc., USA) and referenced to the TSP peak at 0 ppm

before peak alignment. Two low-quality spectra with poor water suppression and poor shim

were removed from further analyses. Chemical shift differences were corrected by Icoshift

algorithm [30]. Metabolites were assigned using NMR Suite 7.5 software (Chenomix Inc., AB,

Edmonton, Canada). The area under the curve (AUC) of individual metabolite peaks were cal-

culated using MATLAB. Prior to integration, the spectra were binned (bin size 0.01 ppm) and

normalized by total area [31]. AUCs of individual metabolites were used as input variables for

multivariate analysis. Multivariate analysis was performed in MATLAB with PLS Toolbox 8.0.2

(Eigenvector Research Inc., WA, USA). After auto-scaling the variables, a partial least square

discriminant analysis (PLS-DA) models [32] were built to discriminate between age-groups (9

months and 18 months), intrinsic running capacities (LCR and HCR), and exercise training

(sedentary and trained). The model was cross-validated by the Venetian blinds method and

the leave-one-out method according to the sample size of the groups. Metabolites with variable

importance to projection (VIP) scores of greater than 1 were determined as major contributors

to the discrimination [33]. Orthogonal PLS (OPLS) was used to optimize the model if the

number of latent variables (LV) was greater than 1. A permutation test was performed by

using the self-predicted Wilcoxon signed rank test, and the difference was considered signifi-

cant if the P value was<0.05.

Univariate analysis

Univariate analysis was performed in GraphPad Prism 7.0 (GraphPad Software, San Diego,

CA, USA) and R version 3.4.1. Three-way ANOVA was used to assess the effect of age, intrin-

sic running capacity, and exercise training on VO2max and running speed. Multiple compari-

sons were performed by a Tukey pairwise multiple comparisons procedure. The comparisons
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of metabolite levels were performed by student’s t test. The difference was considered signifi-

cant if the P value was<0.05.

Results

Cardiorespiratory fitness

Significant differences in running speed and aerobic capacity were observed in the LCR/HCR

experimental model. As expected, running speed was lower in LCR than in HCR at 9 and 18

months of age (Fig 1, S1 Table). Similar effects were found with VO2max, except in the training

group at 18 months. Pairwise comparisons revealed that exercising HCR rats had higher run-

ning speed compared to their sedentary counterparts at 9 and 18 months of age. Exercising

HCR rats also had higher VO2max than their sedentary counterparts at 9 months, but not at 18

months. In LCR, there were no significant changes with ageing or exercise.

Metabolic profiles of skeletal muscle

The proton MR spectra from soleus muscle identified 14 metabolites that were used for meta-

bolic profiling (Fig 2, S1 and S2 Figs). First, we compared sedentary LCR rats to their respec-

tive HCR counterparts at different ages. At both 9 and 18 months of age, LCR had a

significantly different metabolic profile compared to HCR (Table 1, Figs 3 and 4). According

to the PLS-DA statistical model, the most important metabolites were glutamine, glutamate

and pyroglutamate in the 9 months rats (Fig 3), and lysine and lactate in the 18 months rats

(Fig 4). Univariate analysis confirmed that 9 months HCR rats had 2.9 fold, 1.3 fold, and 0.12

fold change in the levels of glutamine, glutamate, and pyroglutamate, respectively (Fig 3,

Table 2 and S2 Table). At 18 months of age, HCR rats had 0.32- and 1.8 fold change of lactate

and lysine, respectively (Fig 4, Table 3 and S2 Table).

Next, we determined the general effect of aging on the metabolic profile. Therefore, only

aging was fed into the PLS-DA statistical model. The metabolic profile was different between

the 9 and 18 months old rats (Table 1, Fig 5A). Glycerophosphocholine and glucose were the

most important metabolites according to the VIP scores (Fig 5B). Univariate analysis con-

firmed that in 18 months old rats, both LCR sed and HCR sed had significantly higher glucose

levels than at 9 months of age (2.1 fold in LCR sed and 1.6 fold in HCR sed, respectively). In

HCR sed, 18 months old rats had a 1.2 fold higher glycerophosphocholine level compared to 9

months HCR sed. (Fig 5C–5E, Table 4 and S2 Table).

The PLS-DA model could not separate the sedentary from the exercise training in any

determined groups (S3–S6 Figs), although there was a tendency among the HCRs at 9 months

of age (P = 0.072, Table 1, and S4 Fig).

Discussion

The main finding of the present study was that high inborn running capacity was associated

with a more favorable metabolic profile in skeletal muscle. HCR rats had higher levels of gluta-

mine and glutamate, and lower levels of lactate compared to LCR, indicating more effective

glucose oxidation. Aging was associated with increased glycerophosphocholine and glucose

levels in older rats. Exercise training had no effect on metabolic profile. Although running

speed was higher in exercising HCR rats, VO2max remained unchanged except at 9 months of

age. Implications of these observations are discussed below.

The notion that high inborn aerobic capacity is associated with a more favorable metabolic

profile is based on the observation that the levels of glutamine and glutamate were higher,

and that the level of lactate was lower in soleus muscle from HCR rats than in their LCR

Skeletal muscle metabolism and exercise capacity
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Fig 1. Effect of exercise training in aging LCR/HCR rats. Black and grey columns indicate sedentary and trained

groups, respectively. Panel A: Running speed. Panel B: Oxygen consumption expressed in volume per minute,

normalized to scaled body weight. P values: ��,<0.01; ���,<0.001; ###,<0.001, different from respective HCR at 18

months.

https://doi.org/10.1371/journal.pone.0208703.g001
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counterparts. Even though amino acids contribute moderately to substrate utilization, they are

important for the overall energy metabolism [34]. In general, HCR had higher levels of gluta-

mine and glutamate than LCR (Fig 3). Glutamine and glutamate are essential for nitrogen bal-

ance and carbohydrate oxidation [35, 36]. Glutamine is derived from glutamate and coupled

with pyruvate metabolism and tricarboxylic acid cycle. Thus, higher levels of glutamine and

glutamate are consistent with higher levels of energy metabolism.

Glutamine and glutamate are linked to pyroglutamate and pyruvate production. By cycliza-

tion, pyroglutamate is formed directly from glutamine and serves as a storage of glutamate.

This might explain the decreased level of pyroglutamate in rats with higher glutamate levels

(Fig 3). Increased glutamine and glutamate levels may also contribute to pyruvate production.

During prolonged submaximal exhaustive exercise, this may prevent fatigue [37].

Fig 2. Proton MR spectra in soleus muscle from sedentary rats at 9 months of age. Spectra in figure show mean values of

all measurements in either group. Upper panel: HCR; Lower panel LCR. Metabolite labeling: Lac, lactate; Ala, alanine; Lys,

lysine; Ace, acetate; Glu, glutamate; Gln, glutamine; Cr, creatine; PCr, phosphocreatine; GPC, glycerophosphocholine; Tau,

taurine; Gly, glycine; Ans, anserine. Fumarate was also identified on the spectrum and included in all further analyses, but

not in the figure because of its large distance to the other peaks. Note significant differences in PGlu and Gln and marked by

arrows.

https://doi.org/10.1371/journal.pone.0208703.g002

Table 1. Summary of PLS-DA model results.

Comparison Accuracy (%) Sensitivity (%) Specificity (%) Number of LVs Permutation test P value

9 vs. 18-months old rats 93.4 90.9 95.8 5 P = 0.001

LCR sed vs. HCR sed, 9 months 100 100 100 1 P = 0.021

LCR sed vs. HCR sed, 18 months 91.7 100 83.3 2 P = 0.041

LCR sed vs. LCR trained, 9 months 71.7 83.3 60 1 P = 0.316

HCR sed vs. HCR trained, 9 months 90 100 80 2 P = 0.072

LCR sed vs. LCR trained, 18 months 75 83.3 66.7 3 P = 0.269

HCR sed vs. HCR trained, 18 months 83.4 83.3 83.3 1 P = 0.267

https://doi.org/10.1371/journal.pone.0208703.t001
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Lactate played an important role in differentiating the metabolic profile between sedentary

HCR and LCR at 18 months of age, with a higher accumulation in the LCR rats even in the aer-

obic dominant soleus muscle (Fig 4). Lactate production is associated with anaerobic glycolysis

from glucose or glycogen [38]. The anaerobic glycolysis maintains energy production when

aerobic metabolism is insufficient [39] and is associated with reduced oxidative capacity in

LCR [10, 40]. The increased level of lactate in the aged muscles of LCR compared to HCR sug-

gests a decline in mitochondrial function [41], which can result in a more severe metabolic

syndrome phenotype with age [1]. Recent studies have demonstrated a positive correlation

between lactate levels and prevalence of metabolic syndrome [42].

The significance of increased lysine in 18 months HCR rats (Fig 4) is unclear. Previous

studies have demonstrated that oral administration of lysine can suppress myofibrillar protein

degradation via the autophagic-lysosomal pathway [43, 44]. However, it is not known whether

this effect might be an advantage in aging.

Aging was associated with increased levels of soleus muscle glucose and glycerophospho-

choline, independent of inborn aerobic capacity. Glycerophosphocholine is a major compo-

nent of cell membrane, produced from cell membrane degradation. Similar to our findings,

elevated levels of glycerophosphocholine were reported in gastrocnemius muscles from aging

rats [45], as well as in overweight and obese rats [46]. Although the underlying mechanism has

not been determined, these and several other studies have shown that glycerophosphocholine

accumulation is associated with aging, impaired mitochondrial activity, high BMI, and low

VO2max [45–47].

Aging was also associated with higher skeletal muscle glucose levels (Fig 5). As a major

source of energy and carbon, glucose plays an essential role in sustaining the energy

Fig 3. Multivariate and univariate analysis of metabolic profiles from LCR sedentary and HCR sedentary rats at 9 months of

age. (A) PLS-DA score of sedentary 9 months rats showed a significant difference between LCR sedentary and HCR sedentary rats

(permutation test, P = 0.04). (B) Loading variable 1 (LV1) was used to create the model. Contribution of each metabolite to the

model is illustrated by colour, where a lighter shade indicates a greater VIP score and greater contribution to the model. (C, D, and

E) Pairwise comparison between LCR sedentary and HCR sedentary at 9 months, of glutamine (C), glutamate (D) and

pyroglutamate (E). P values: �,<0.05; ���,<0.001.

https://doi.org/10.1371/journal.pone.0208703.g003
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metabolism in the muscles. Glucose catabolism is also a supply of metabolic intermediates

essential for macromolecular biosynthesis in cell growth and proliferation [48]. Several reports

have demonstrated that aging is associated with impaired glucose disposal and insulin sensitiv-

ity [49–52]. Insulin response in skeletal muscle can be characterized by 1) oxidative glucose

disposal (glucose transportation and oxidation) and 2) non-oxidative glucose disposal (glyco-

gen synthesis) [53] and both are impaired in diabetics, insulin resistant patients and elderly

[54, 55]. In a situation where both glycogen synthesis oxidative glucose disposal are impaired,

glucose can accumulate in the muscle tissue [56].

Limitations

A limitation of the present study is that exercise training only provided minor effects on aero-

bic capacity and running speed, suggesting that the exercise volume was too low to induce

robust changes in metabolic profile. The rationale behind the low training volume was that

Fig 4. Multivariate and univariate analysis of metabolic profiles from LCR sedentary and HCR sedentary rats at 18 months of

age. (A) PLS-DA scores acquired from 18 months rats showed a significant difference between LCR sedentary and HCR sedentary

(permutation test, P = 0.041). (B) Loading variables (LV) 1 and 2 were used to create the model. Contribution of each metabolite to

the model is illustrated by colour, where a lighter shade indicates a greater VIP score and greater contribution to the model. (C and

D) Pairwise comparison between LCR sedentary and HCR sedentary at 18 months, of lactate (C) and lysine (D). P value: ��,<0.01.

https://doi.org/10.1371/journal.pone.0208703.g004
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clinical and epidemiological studies have shown significantly improved outcomes with only

minor changes in VO2max or going from sedentary to low levels of physical activity [3, 57–59].

Hence, the lack of robust effects on the skeletal muscle metabolic profile does not preclude

beneficial health effects.

Only soleus muscle was used in our study, which might not fully represent all skeletal mus-

cle metabolic profile. In rats, the soleus is an aerobic skeletal muscle with mainly type 1 muscle

fibers and high oxidative capacity, and one might indicate that the high aerobic capacity in the

soleus could mask adaptation to environmental changes. However, muscle fiber type has been

reported to be different in mixed and glycolytic muscles between HCR and LCR but not in

soleus. This means that muscle fiber type distribution between HCR and LCR would probably

not bias the responses observed in the study.

Table 2. Univariate analysis between 9 months LCR sed and 9 months HCR sed.

Metabolites P value Fold change (HCR_sed/LCR_sed)

Pyroglutamate < 0.0001 0.12

Fumarate 0.0025 0.4

Acetate 0.53 0.8

Anserine 0.57 1.1

GPC 0.15 1.1

Lactate 0.33 1.2

Alanine 0.14 1.2

Creatine+Phosphocreatine 0.051 1.2

Glycine 0.072 1.2

Glucose 0.32 1.3

Taurine 0.014 1.3

Glutamate 0.022 1.3

lysine 0.02 1.4

Glutamine < 0.0001 2.9

https://doi.org/10.1371/journal.pone.0208703.t002

Table 3. Univariate analysis between 18 months LCR sed and 18 months HCR sed.

Metabolites P value Fold change (HCR_sed/LCR_sed)

Lactate 0.0021 0.32

Pyroglutamate 0.02 0.61

Anserine 0.68 0.93

Glucose 0.91 1

Creatine+Phosphocreatine 0.43 1

Taurine 0.96 1

Alanine 0.46 1.1

Glutamate 0.075 1.1

Glycine 0.37 1.2

GPC 0.0072 1.2

Glutamine 0.026 1.2

Fumarate 0.01 1.3

Acetate 0.032 1.6

lysine 0.0027 1.8

https://doi.org/10.1371/journal.pone.0208703.t003
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Fig 5. Multivariate and univariate analysis of metabolic profile of 9 months old rats compared to 18 months old rats. (A) The

score plot of PLS-DA separated 9-month from 18-month (permutation test, P = 0.001). (B) Loading variables 1 (LV1) and LV2

display the contribution of the individual metabolites to the model. Contribution of each metabolite to the model is illustrated by

colour, where a lighter shade indicates a greater VIP score and greater contribution to the model. (C) Pairwise comparison between

9 months HCR sed and 18 months HCR sed of glycerophosphocholine (GPC). (D and E) Pairwise comparison of glucose between 9

months HCR sed and 18 months HCR sed (D) and between 9 months LCR sed and 18 months LCR sed (E). P values: �,<0.05; ��,

<0.01.

https://doi.org/10.1371/journal.pone.0208703.g005

Table 4. Univariate analysis between 9 months and 18 months.

LCR_sed HCR_sed

Metabolites P value fold change (18 months/9 months) Metabolites P value fold change (18 months/9 months)

Pyroglutamate < 0.0001 0.16 Lactate 0.001 0.32

Fumarate 0.008 0.52 Pyroglutamate 0.19 0.77

Acetate 0.58 0.82 Alanine 0.2 0.88

Alanine 0.83 0.97 Anserine 0.89 0.97

Lysine 0.8 1 Taurine 0.93 1

Anserine 0.28 1.1 Glutamine 0.57 1

Glycine 0.25 1.1 Creatine 0.081 1.1

GPC 0.055 1.1 Glycine 0.38 1.2

Lactate 0.38 1.2 GPC 0.001 1.2

Creatine 0.025 1.2 Glutamate 0.038 1.2

Taurine 0.014 1.3 Lysine 0.026 1.3

Glutamate 0.016 1.3 Acetate 0.025 1.6

Glucose 0.035 2.1 Glucose 0.011 1.6

Glutamine < 0.0001 2.5 Fumarate 0.00074 1.7

https://doi.org/10.1371/journal.pone.0208703.t004

Skeletal muscle metabolism and exercise capacity

PLOS ONE | https://doi.org/10.1371/journal.pone.0208703 December 11, 2018 11 / 16

https://doi.org/10.1371/journal.pone.0208703.g005
https://doi.org/10.1371/journal.pone.0208703.t004
https://doi.org/10.1371/journal.pone.0208703


Conclusion

Soleus muscle from rats with high intrinsic running capacity showed higher levels of glutamine

and glutamate and lower levels of lactate, indicating more efficient glucose oxidation. During

aging, the levels of glycerophosphocholine and glucose were upregulated. Differences in meta-

bolic profile were associated with the differing intrinsic exercise capacity as well as aging, and

correlated to VO2max.

Supporting information

S1 Fig. Proton MR spectra in soleus muscle from sedentary rats at 18 months of age. Spec-

tra in figure show mean values of all measurements in either group. Upper panel: HCR; Lower

panel LCR. Metabolite labeling: Lac, lactate; Ala, alanine; Lys, lysine; Ace, acetate; Glu, gluta-

mate; Gln, glutamine; Cr, creatine; PCr, phosphocreatine; GPC, glycerophosphocholine; Tau,

taurine; Gly, glycine; Ans, anserine. Fumarate was also identified on the spectrum and

included in all further analyses, but not in the figure because of its large distance to the other

peaks. Note significant differences in Lac and Lys.

(TIF)

S2 Fig. Proton MR spectra in soleus muscle from all samples. Spectra in figure show mean

values of all measurements in either group. Upper panel: 9 months; Lower panel: 18 months.

Metabolite labeling: Lac, lactate; Ala, alanine; Lys, lysine; Ace, acetate; Glu, glutamate; Gln, glu-

tamine; Cr, creatine; PCr, phosphocreatine; GPC, glycerophosphocholine; Tau, taurine; Gly,

glycine; Ans, anserine. Fumarate was also identified on the spectrum and included in all fur-

ther analyses, but not in the figure because of its large distance to the other peaks. Note signifi-

cant differences in GPC and Glu.

(TIF)

S3 Fig. Multivariate analysis of metabolic profiles from 9 months LCR sedentary group

compared to training groups. Panel A: PLS-DA score plot. Panel B: Loading plot for all

metabolites.

(TIF)

S4 Fig. Multivariate analysis of metabolic profiles from 9 months HCR sedentary group

compared to training groups. Panel A: PLS-DA score plot. Panel B: Loading plot for all

metabolites.

(TIF)

S5 Fig. Multivariate analysis of metabolic profiles from 18 months LCR sedentary group

compared to training groups. Panel A: PLS-DA score plot. Panel B: Loading plot for all

metabolites.

(TIF)

S6 Fig. Multivariate analysis of metabolic profiles from 18 months HCR sedentary group

compared to training groups. Panel A: PLS-DA score plot. Panel B: Loading plot for all

metabolites.

(TIF)

S1 Table. Original data of VO2max and running speed.

(XLSX)

S2 Table. Original data of integration of all metabolites.

(XLSX)
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