
© 2010 Amaya et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article  
which permits unrestricted noncommercial use, provided the original work is properly cited.

Journal of Blood Medicine 2010:1 71–78

Journal of Blood Medicine

P E R S P E C T I V E S

open access to scientific and medical research

Open Access Full Text Article

71

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 

7765

Blood lead in the 21st Century:  
The sub-microgram challenge

Maria A Amaya1 
Kevin W Jolly2 
Nicholas E Pingitore Jr1,3

1School of Nursing, The University  
of Texas at El Paso, El Paso, TX, USA; 
2Department of Psychology,  
The University of Texas at El Paso,  
El Paso, Texas, USA; 3Department of 
Geological Sciences, The University of 
Texas at El Paso, El Paso, TX, USA

Correspondence: Maria A Amaya 
School of Nursing, The University of  
Texas at El Paso,1100 North Stanton 
Street, Suite 410, El Paso, Texas 79902, 
USA 
Tel +1 915-747-8583 
Fax +1 915-747-8279 
Email mamaya@utep.edu

Abstract: In the US the dominant sources of lead through much of the 20th Century (eg, vehicular 

emissions, plumbing, household paint) have been significantly diminished. The reductions in 

adult and pediatric average blood lead levels in the US have been extraordinary. Progress con-

tinues: the US Environmental Protection Agency recently developed a new air standard for lead. 

In the 21st Century, the average blood lead level in a society may be seen as a marker of the 

status of their public’s health. However, the threat of lead exposure remains a significant public 

health problem among subpopulation groups in the US and in many less developed countries. 

This paper examines some of the specific issues involved in the reduction of blood lead in a 

post-industrial era. These involve the control of the remaining exogenous primary sources, both 

general (eg, industrial emissions) and specific (eg, at-risk occupations), exogenous secondary 

sources (eg, contaminated urban soils, legacy lead-based paints), an endogenous source (ie, 

cumulative body lead burden) and emergent sources.
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Introduction
The average level of lead (Pb) in blood may be seen by society as evidence of its 

commitment to its own health. Thus the concentration of a particular metal in our 

collective blood informs the condition of our society.

We present in Table 1 a chronology of the progression of human blood lead level 

(BLL) through time. Different societies have entered the stages at different points in 

time. The traditional industrial powerhouses (eg, the US, Europe, Japan) are in late Stage 

3 and early Stage 4. Such emerging economies as China appear to be in Stages 2 and 3. 

Even within a society, some lead-related activities may not be indicative of a society’s 

Stage. Likewise the BLL of sectors of a society, because of socioeconomic status or 

racial issues, may reflect a different Stage than that of the society as a whole.

In this paper, we examine some of the specific issues involved in the transition from 

a late industrial to a post-industrial society in the US. These issues include exogenous 

primary sources, both general (eg, fuel burning) and specific (eg, at-risk occupations); 

exogenous secondary sources (eg, contaminated urban soils, legacy lead-based paints), 

an endogenous source, or the bone-lead burden remaining from Stage 3, and emergent 

sources related to global trade and pollution from Stage 2 societies.

Hematologic considerations
The major hematologic effect of lead is iron-deficient microcytic, hypochromic ane-

mia. Anemia is among the most common signs of lead toxicity observed in children. 
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Lead inhibits the production of porphobilinogen synthase by 

the precursor δ-aminolevulinic acid dehydratase (ALAD). 

The ALAD enzyme is a zinc-dependent protein that catalyzes 

heme synthesis to form monopyrrole porphobilinogen, a 

precursor of heme. The heme synthesis process ends with 

the insertion of positively charged iron (Fe2+) into negatively 

charged protoporphyrin. Lead interferes with the binding of 

iron and protoporhyrin, resulting in high circulating levels 

of zinc protoporhyrin (ZPP). Studies have focused on the 

bio-kinetics of lead and ALAD gene expression in an effort 

to identify genetic biomarkers of risk among children.

The ALAD gene is located in chromosome 9q34. Eight 

human ALAD gene variants have been described. One 

polymorphism yields two alleles, designated ALAD-1 and 

ALAD-2. ALAD-1 homozygotes produce the least elec-

tronegative enzyme; ALAD 1–2 heterozygotes produce an 

intermediate electronegative enzyme; ALAD-2 heterozygotes 

produce the most electronegative enzyme. This means that 

ALAD-2 proteins bind to positively charged lead ions more 

tightly than ALAD-1 homozygotes and heterozygotes.

Originally, it was hypothesized that carriers of the 

ALAD-2 allele who are exposed to lead carry that lead in 

the blood longer, and therefore are more likely to express 

acute manifestation after exposure.7 However, others 

found that the mechanisms by which ALAD genotype 

may modify the compartmentalization and movement of 

lead are more complex.8–11 Polymorphisms of the vitamin 

D receptor (VDR) gene have been studied for their con-

tribution to the kinetics of lead.10 VDR polymorphisms 

determine calcitriol hormone expression and bone mineral 

density (BMD). Dietary calcium and iron intake, alcohol 

use and smoking also affect BMD. Iron and calcium defi-

ciencies are both associated with higher uptake of lead 

ions, especially in children. Ferritin, the iron transport 

protein, binds as well to lead as it does to calcium. Children 

that are already iron-deficient and calcium-deficient have 

increased circulating ferritin proteins that can bind more 

lead ions. In addition, patients with hemochromatosis (a 

disease of iron overload) have been shown to have higher 

circulating lead levels.

Health effects of lead exposure
Children
Lead exposure is implicated in a broad clinical spectrum 

of disease, including hematological, renal, cardiovascular, 

 neurological, developmental, and behavioral disorders. 

By the end of the 20th Century a strong body of scientific 

evidence showed that children’s ability to learn, memorize, 

behave normally, and concentrate was adversely affected by 

chronic low-level lead exposure, or BLL 10 µg/dL.12–19 

 Neurotoxic lead effects are particularly deleterious to 

 developing central nervous systems in children.19–21 CNS 

damage during the perinatal period from maternal lead body 

burden is also well documented.20 Covariants such as pheno-

type,7–11 nutritional status, and social, economic, and cultural 

factors may alleviate or exacerbate these effects.13,22–24

The Centers for Disease Control and Prevention (CDC) 

still defines the blood lead intervention threshold in children to 

be 10 µg/dL.25,26 However, a 2007 report by the Agency for 

Toxic Substances and Disease Registry27 summarized the large 

body of more recent evidence for adverse health effects at lower 

BLL thresholds. Even BLL as high as 5 µg/dL may adversely 

affect a child’s cognitive development28–31 and physical 

maturation.32 The risk of adverse effects from lead exposure 

is also higher amongst population subgroups, including 

ethnic minorities, low-income groups and those clustered in 

geographic lead pools. Bernard and McGeehin’s33 analysis 

of data collected as part of the Third National Health and 

Table 1 Stages in the succession of societal blood lead level

Stage condition Time frame Typical BLL Health effects

Stage 1 Primitive to ∼500 BCE 1 µg/dL?, world none

Low population. Extraction of metals from ores on a small scale late in this stage

Stage 2 Industrial 500 BCE–1970s 10 µg/dL, US. acute and chronic

Extraction of silver from galena (PbS) by Greeks and Romans marks first large-scale release of Pb to the environment. Increasing releases from 
 industrial revolution (1750 onward), culminating in 20th Century with leaded gasoline and lead-based paints.

Stage 3 Late-Industrial 1970s–2000 1–5 µg/dL, US. developmental

Clean Air Act, phase-out of leaded gasoline, actions on lead-based paint, pipes, and solder. Dramatic drop in US BLL.

Stage 4 Post-Industrial 2000– 1 µg/dL possible goal none?

Remediation or sequestration of secondary sources in soil, old building paints, plumbing. Increased control over remaining primary sources, eg, piston 
aviation fuel, incineration, and coal and gasoline combustion, and substitution for Pb in industrial products, eg, batteries, plasticizers.

Notes: Data from: Settle and Patterson1; National Research Council2; Davidson and Rabinowitz3; Needleman4; Warren5; Reuer and Weiss.6
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Nutrition Examination Survey (NHANES-III) revealed that 

23% and 15% of Mexican-American and non-Hispanic white 

children, respectively, displayed blood lead levels between 

5 and 10 µg/dL. Nearly one-third (32%) of non-Hispanic black 

children had blood lead levels within that range.

Adults
The CDC threshold for intervention in adults is a blood lead 

level 25 µg/dL. The vast majority of cases are related to 

 occupational exposure.34 A growing body of evidence now links 

lifetime cumulative lead exposure, as well as current exposure, 

to chronic health disorders seen in older adults. A systematic 

review by Navas-Acien et al found that hypertension is one 

of the most consistent cardiovascular outcomes seen among 

lead-exposed subjects. There is an estimated increase of 0.6 to 

1.25 mmHg associated with every two fold increase in blood 

lead levels (ie, from 5 to 10 µg/dL). Experimental, mechanistic 

and prospective studies support this relationship. The associa-

tions with cardiovascular and coronary heart disease, peripheral 

artery disease and stroke are less clear.35

Tsaih et al reported on the relationship between lead, 

diabetes, hypertension and renal function in 448 subjects 

that had been selected from the Normative Aging Study 

(NAS), and in which bone and blood lead were measured at 

baseline and follow-up. Age, basal metabolic index, alcohol 

consumption, smoking status, diabetes, hypertension and 

baseline serum creatinine were measured. Bone lead level 

predicted diabetes, hypertension, and progression of kidney 

disease. The association between bone lead (particularly tibial 

bone lead) and renal disease was stronger among diabetic 

subjects.36

Unlike the direct causal relationship between acute lead 

exposure (up to 70–80 µg/dL) and nephrotoxicity, the rela-

tionship between low-level chronic exposure and renal out-

comes from cumulative stores has been less well understood. 

Recent epidemiologic evidence supports relationships 

between lead exposure and renal dysfunction in adults.37,38 

Peters et al studied hypertension status in 513 participants 

recruited from the NAS. They found a positive interaction 

between stress and bone lead on systolic blood pressure, after 

adjusting for age, body mass index, family history of high 

blood pressure, education, smoking, alcohol consumption, 

physical activity and nutritional factors.39

Sources of lead exposure: Banned 
but not gone
Lead is a soft, malleable metal that has proven both 

 magnificent and devastating to human societies through 

the ages. The oldest lead artifact dates from approximately 

3000 BCE. Although lead is a naturally occurring heavy 

metal (at levels of approximately 15–20 µg/g in Earth’s crust 

and uncontaminated soils), the roots of human exposures 

are almost exclusively man-made. Use of lead in ancient 

 civilizations is well documented, as is lead exposure in 

archeological finds of human remains. The element lead itself 

is, of course, essentially indestructible; its compounds are 

variably toxic, bioavailable, and biodegradable. Humans can 

absorb lead through the gastrointestinal tract, by inhalation, 

or, for certain compounds, by absorption through the skin.

A reasonable benchmark for the wealthy societies in 

Europe, the US and elsewhere might be to achieve a typical 

BLL of  1 µg/dL in their populations. The Healthy People 

2010 national public health objectives, to reduce to zero the 

prevalence of elevated BLL in children (BLL 10 µg/dL) and 

in adults (BLL  25 µg/dL), fall well short of the unspoiled 

historic benchmark. This demonstrates continued societal 

tolerance for low-level chronic lead exposure. A recent meta-

analysis of children’s IQ scores and their blood lead concen-

trations showed that each incremental 1 µg/dL increase in 

blood lead concentration resulted in a one-point decrease in 

IQ score (in school-aged children).30 One research team has 

called for lowering the blood lead action level in children 

from 10 to 2 µg/dL.40

In the late industrial Stage 3, US regulatory statutes and 

public awareness have had great impact in reducing adult and 

childhood blood lead levels. However, by post industrial Stage 

4 it is critical to address the heritage of accumulated lead. It 

is important to understand the changing face of exposure and 

risk by tracing the current pathways by which lead reservoirs 

are maintained and recycled.

Exogenous primary sources of lead
The major primary contemporary sources of lead emission in 

the US include leaded aviation fuel for piston-driven engines, 

manufacturing, and metal operations. The emission route 

of greatest concern is through the air, which is naturally 

 dispersive, pervasive, and, unlike an oil spill, impossible to 

remediate. The new US Environmental Protection Agency air-

borne lead standard of 0.15 µg/m3 represents a 90% decrease 

from the 1978 standard of 1.5 µg/m3.41 From a public health 

perspective, although no level of lead exposure is considered 

absolutely safe, primary airborne lead emissions no longer 

represent the major challenge in decreasing BLLs.

Despite this signif icant decrease in airborne lead 

 levels, workers in the primary lead-impacted industries or 

 activities (eg, recycling) remain at risk from lead exposure. 
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The families of such workers also may be at risk from 

lead transferred to the home or automobile from the work-

place. Even as the US enters Stage 4, many of the workers 

 responsible for this transition remain occupationally at-risk 

of lead exposure. Sources of occupational lead exposure 

include the mining and smelting industries, refineries, 

 construction and remodeling, auto mechanics, plumbing, 

soldering and pottery-making. Occupationally acquired lead 

may be transported to the household setting in work clothes 

and shoes. Particulate emissions from industries, such as 

local smelters or demolition, remain as sources of human 

lead exposure.42–45

Other primary sources in Stage 3 include lead plumbing 

pipes and solder; lead-based paints; lead solder in the 

food industry (eg, cans); and lead in a variety of consumer 

 products, such as cosmetics, pharmaceuticals, crayons, inks, 

etc. Most of these sources are closely regulated, or eliminated 

by industry consent. Nonetheless, legacy issues remain (paint, 

plumbing) to produce secondary sources, and misuse of lead 

in consumer products re-emerges with global trade.

Of special pediatric interest are such lead-containing 

products as glazed pottery,46 imported candy,47 and culture–

bound traditional remedies for illness.48 Lead used in products 

targeting children, including candy and toys, pose particular 

threats to children’s health. Despite a 2007 joint agreement 

between the US Consumer Product Safety Commission 

and China’s consumer regulatory agency to ban lead paint 

on products destined for the US, products tainted with lead 

continue to pose a health hazard for children worldwide.

Exogenous secondary sources of lead
The major pervasive 20th Century sources of environmental 

lead in the US were leaded gasoline, lead-based paint and lead 

plumbing materials. These materials remain as secondary 

sources, and their removal or sequestration are a major target 

of societies intent on reaching Stage 4.

Lead-based paint
Lead-based house paint was widely used in the US in the 

first half of the 20th Century. Basic lead carbonate (“Dutch 

process”) and other lead salts were present at levels of “tens of 

percent”.49,50 With growing concerns about children’s health 

in the 1970’s,51,52 lead was finally banned from household 

paint in the US.53,54 The Residential Lead-Based Paint Hazard 

Reduction Act of 1992,55 also known as Title X, was enacted 

to protect families from exposure to lead from paint, dust, 

and soil, in recognition of the need for strategies to address 

the legacy of lead-based paint in older homes. Section 1018 

of this law directed the US Department of Housing and 

Urban Development (HUD) and the US Environmental 

Protection Agency (EPA) to require the disclosure of known 

information on lead-based paint and lead-based paint hazards 

before the sale or lease of most housing built before 1978. 

A 1998–2000 national survey estimated that about 38 million 

homes contain lead-based paint.56 Lead particles readily settle 

in household dust and can be a toxic source.57,58

Residual lead-based paint presents numerous challenges 

in Stage 4. Older urban housing with lead-based paint 

 typically faces one of several fates. Degradation occurs 

when the house or neighborhood value relegates the 

building to a substandard, low-rent condition. Under such 

 circumstances, lead-based paint will be mobilized due to lack 

of upkeep, ie, sequestration by painting over. Renovation 

can lead to mobilization unless proper care is taken during 

the project. Demolition typically leads to mobilization and 

 dispersal. Paint removal/remediation is expensive, and, if 

not performed by professionals, also dispersive.

Lead in urban soil
The addition of tetra-ethyl lead to gasoline as an anti-knock 

agent began in the 1920’s and resulted in massive roadside 

and airborne emission of a variety of reactive lead-halogen 

compounds. These dispersed into and reacted with urban soils. 

Lead additives in gasoline were gradually phased out in the US 

over a 24-year period ending in 1996.59 The first EPA reduc-

tion standard was published in 1973.53 By 1975 most cars and 

light trucks were manufactured with catalytic converters that 

required lead-free fuel. Lead-containing fuel continues to be 

sold for piston aircraft, and classic and racing cars.

Our group used synchrotron-based X-ray absorption 

fine structure (XAFS) to identify and quantify the major Pb 

species in numerous soils and air samples in El Paso, TX.60 

Lead humate, and perhaps some similar sorbed forms of lead, 

is the dominant form of lead in contemporary El Paso soil 

and air. Lead humate is a stable, sorbed complex produced 

exclusively in the humus fraction of Pb-contaminated soils. 

Legacy lead from automobile exhaust, lead-based paint, and 

industry have reacted over time to yield lead-humate. This 

material is re-suspended into the local air, and enters houses 

where it may be available for accidental ingestion by tod-

dlers. We found that the form of lead present in household 

dust wipes was similar to that found in soil lead, with some 

contribution from lead paint.61,62

Although humates are biologically active, the relative 

bioavailability of lead sorbed on soil is thought to be lower 

compared to other forms of lead. Casteel et al found that 
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the bioavailability of lead in soil and soil-like materials 

varied between 6% and 105%. Although soil chemistry is 

important in determination of bioavailability, speciation 

data are not yet adequate to predict bioavailability of lead 

in soil.63

Lead plumbing
Lead contamination of water distribution systems includes 

lead pipes, lead solder on copper pipes, and plumbing 

 fixtures.64 Legislation has eliminated the installation of 

such pipes and solder; brass fixtures containing lead are no 

 longer used in kitchens. Nonetheless, many such installations 

remain in service and drinking water is still a potential or 

actual source of ingested lead. Scaling formed on the inner 

surfaces of lead pipes and solder often prevents leaching of 

lead, a phenomenon similar to the painting over of lead-based 

paints. But the pH and chemistry of the water can result in 

lead leaching at unhealthy levels.

The removal of lead from municipal water distribution 

systems, the upgrading of plumbing in older houses, and 

the inexorable attrition of older housing through demolition 

are gradually decreasing the actual and potential transfer of 

lead to drinking water. Hastening this process should be a 

component of a society’s Stage 4 lead strategy.

Endogenous lead source – body  
lead burden
Lead exposure in industrialized countries such as the US 

tends toward low-dose, temporal or chronic exposure. 

Although technologies for measuring body lead burden have 

improved, technologies for discerning health effects have 

not advanced as much. Blood is a short-term reservoir for 

body lead burden. Blood lead measurement is the standard 

for pediatric and adult clinical surveillance,65 although 

twenty-four-hour urine analyses provide useful clinical 

measures of heavy metals (eg, lead, cadmium), renal function 

(creatinine) and bone resorption (eg, calciuria, calciotropic 

hormones).66–68

Lead that is deposited in bone remains sequestered 

for considerably longer periods of time relative to lead 

found in the blood or soft tissue.69 The cumulative dose of 

lead absorbed throughout the lifecycle in adults is reliably 

 measured by K-shell X-ray fluorescence (KXRF) of the 

bone.70,71 Lead that is stored in porous trabecular bone is 

thought to be more bio-available and may have a shorter 

half-life compared to dense cortical bone.37 The prolonged 

half-life of lead in bone makes it a useful benchmark of 

chronic lead exposure that may not manifest in BLL.72

Cadmium-source KXRF is used to estimate cumulative lead 

exposure using both patellar and tibial bone.71 Lead sequestered 

in the bone is measured as µg/g of mineralized bone. KXRF 

can provide a relatively unbiased estimate of bone lead levels, 

normalized to bone mineral content as micrograms of lead per 

gram of bone mineral.38,73–77 The half-life of lead sequestered 

in bone can extend to 15 years. About 95% of the lead in the 

body of an adult, and up to 70% of the lead in the body of a 

child, is thought to be sequestered in the bones.78–80

Limitations of the KXRF technique are related to detection 

limits for lead and interpretation of results.70 Lead levels 

 measured by KXRF vary according to BMD. In turn, BMD 

may vary by age, ethnicity and other covariates. Changes 

in BMD occur throughout the lifespan in both men and 

women, such as in pregnancy, lactation or osteoporosis.77,81–83 

 Progress has been made using age-adjusted mean bone 

 mineral curves for areal and volumetric BMD for calculating 

standards among certain ethnic groups.84

The association between body lead burden and social 

adjustment was first investigated using KXRF spectroscopy 

by following through adolescence 301 first grade boys, 

 identified as being at risk for antisocial behavior. The boys 

with higher bone lead levels had a higher risk for attention 

impairment, delinquent behavior and academic failure.22,24 

Others have since found associations between bone lead level 

and low-income, minority status and immigrant status.85,86

Bone lead measurements are more predictive of renal 

function in older subjects, and in subjects with hypertension. 

Wu et al found an association between patellar (trabecular) 

bone lead and renal function in a sample recruited from the 

Normative Aging Study, but no association with ALAD 

genotype.87 In their study of men also recruited from the 

Normative Aging Study, Kim et al found that bone lead is 

associated with age, but lead level remains more consistent 

in tibial bone than in patellar bone or in blood.74

Emergent sources of lead
Because much of the world remains in Stages 2 and 3, the 

movement of people and products into the US and other Stage 

4 nations will present continuing challenges throughout the 

21st Century. Despite regulations, products with unacceptable 

levels of lead (eg, toys from China, candies and lead-glazed 

ceramics from Mexico) can be expected to arrive within 

the US though international trade. Even strong legislation, 

(eg, the European Restriction of Hazardous Substances 

(RoHS) Directive), cannot prevent sporadic importation 

of lead-tainted products. Similarly, immigrants from Stage 

2 or 3 nations may unknowingly carry a locally acquired 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Blood Medicine 2010:176

Amaya et al Dovepress

submit your manuscript | www.dovepress.com

Dovepress 

endogenous bone lead burden that will be a potential source 

of blood lead for decades into the future.

Emergent sources can and will also appear from within a 

Stage 3 or 4 nation. For example, in the Washington D.C. area, 

changes in the chemical procedures for treating municipal water 

unexpectedly resulted in leaching of lead from old plumbing 

pipes.88 This presented a serious health challenge to affected 

residents. Undoubtedly, other unanticipated lead “events” will 

mar the attainment of the sub-microgram Stage 4 goal.

Discussion and conclusions
A roadmap to sub-microgram blood lead levels delineates 

the challenges our society will face to meet this goal in the 

21st Century. Regulation of exogenous primary sources of 

lead is straightforward and effective. Control before release 

into the environment can be planned and is usually cost-

 effective. Control of exogenous secondary sources is more 

difficult due to dispersal of the targets. Lead in plumbing 

systems is widespread but not diffuse (the offending materials 

can be mechanically removed) and remediation by replace-

ment is not a particularly hazardous process. Lead-based 

paints are widespread and diffuse, and removal is both 

difficult and hazardous. Abatement by proper maintenance 

is the cost-effective strategy, accompanied by proper regu-

lation of demolition practices. Lead in soil is widespread 

and extremely diffuse. Removal and sequestration of lead-

contaminated soils in hazardous waste dumps is a simple 

mechanical process requiring appropriate safety precautions. 

But the magnitude of this task and the expense involved is 

large. Perhaps a geometric analogy highlights the control 

of secondary sources. Lead plumbing can be thought of as 

a one-dimensional (linear) system composed of pure lead. 

Rip it out. Lead-based paint is a two-dimensional (planar) 

system with high lead content. Paint it over. Contaminated 

soil is a three-dimensional (volumetric) system of diffuse 

lead, at a level less than one percent. Shovel it.

The exogenous body lead burden, a legacy of 20th 

 Century exposures, will persist well into the 21st Century in 

the US and most other countries. It will diminish by natural 

attrition; at present there is no bone-lead cleansing regimen. 

Research methodologies that discern health effects are 

 limited to epidemiologic and genomic designs, and still rely 

much on animal models. The technology for tracking lead 

body burden is reliable for measuring both circulating lead 

and bone-sequestered lead, although KXRF is not clinically 

in use. It is important to consider that many of the covariants 

of lead exposure may also be seen as markers of the overall 

living conditions in a society.

Elimination of lead intake from exogenous sources 

is crucial in controlling future body lead burdens in our 

population. Primary prevention would appear to be the 

most important public policy strategy. Rapid and effective 

response to emerging lead sources is another essential part 

of the strategy to meet the one-microgram goal. Even if the 

one-microgram goal is possible technically, it remains to be 

seen whether it will it be possible politically.
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