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Abstract Neuropsychiatric disorders affect hundreds of millions of patients and families world-

wide. To decode the molecular framework of these diseases, many studies use human postmortem

brain samples. These studies reveal brain-specific genetic and epigenetic patterns via high-

throughput sequencing technologies. Identifying best practices for the collection of postmortem

brain samples, analyzing such large amounts of sequencing data, and interpreting these results

are critical to advance neuropsychiatry. We provide an overview of human brain banks worldwide,

including progress in China, highlighting some well-known projects using human postmortem brain
nces and
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samples to understand molecular regulation in both normal brains and those with neuropsychiatric

disorders. Finally, we discuss future research strategies, as well as state-of-the-art statistical and

experimental methods that are drawn upon brain bank resources to improve our understanding

of the agents of neuropsychiatric disorders.
Introduction

Neuropsychiatric and neurological disorders, such as

schizophrenia (SCZ), bipolar disorder (BIP), major depression
(MD), and Alzheimer’s disease (AD), are the leading cause of
disability worldwide [1]. However, for more than half a cen-
tury, a stagnant understanding of their pathophysiology has

blocked the development of effective and well-validated neu-
ropsychiatric therapies. Yet, the characteristically high heri-
tability of these disorders should inform us that an earnest

understanding of the genetic mechanisms behind these diseases
is essential [2,3]. Genome-wide association studies (GWAS) are
achieving huge successes in identifying disease-associated vari-

ants. For example, the Psychiatric Genomics Consortium
(PGC; http://www.med.unc.edu/pgc) has identified hundreds
of loci associated with SCZ [4], as well as dozens of loci asso-

ciated with BIP [5] and MD [6,7].
Although many disease-associated variants have been iden-

tified, most have small effect sizes and are located in non-
coding regions, which hinders interpretation of their functions

and disease implications. Quantitative trait loci (QTL) analysis
integrates population-based human variation with genome-
wide molecular information, such as gene expression [8],

DNA methylation [9], histone modifications [10], or chromatin
states [11]. QTL is a possible solution for deciphering the func-
tion of non-coding variants [12]. Interestingly, most QTL sig-

nals show strong tissue specificity [13]. For example, the
non-coding variant rs199347, associated with Parkinson’s dis-
ease exclusively, affects the expression of protein-coding gene
GPNMB (Glycoprotein Nmb) in the human brain while sparing

other tissues [14]. Robust brain bank collections can facilitate
the comprehensive molecular profiling needed to advance
research in neuropsychiatric disorders.

Many prominent brain projects on neuropsychiatric disor-
ders generated big data at multiple regulatory levels, including
epigenetic markers and gene expression. Although these multi-

dimensional data identified numerous functional genomic ele-
ments, challenges remain that impede our full understanding
of the underlying molecular etiologies of neuropsychiatric dis-

orders and limit our ability to translate this understanding into
improving human health. Although brain tissue samples have
become a critically valuable resource for neuropsychiatric
studies, to our knowledge, there are only a few comprehensive

reports on brain bank resources. Therefore, in this review, we
present a summary of the most representative brain banks and
brain projects, emphasizing how harnessing these new

resources and technologies can refine our insight into the
underlying mechanisms of neuropsychiatric disorders. For
example, we will discuss brain expression quantitative trait loci

(eQTL) analysis as a methodology to interpret the potential
functions of GWAS signals identified in various brain disor-
ders. We also discuss the insights and limitations of current

brain studies. Finally, we propose best practices for analyzing
postmortem brain samples to more accurately interpret the
resulting multidimensional data, thereby augmenting future
investigations.

Brain banks

A brain bank is a centralized resource that collects and stores
postmortem brain tissues. Brain banks share samples and clin-

ical information with qualified researchers worldwide to
advance brain studies in both basic research and clinical trials.
Currently, hundreds of human brain banks worldwide are ded-

icated to the collection of human post-autopsy brain tissues
[15]. These have been helpful in demystifying brain-related dis-
eases, such as AD, SCZ, BIP, and MD. Although brain tissue

collection is the cornerstone for brain studies, obtaining high-
quality brain tissues can be problematic. To counter this and
enable better access, large networks such as the Australian
Brain Bank Network, BrainNet Europe [16], NeuroBioBank

[17], and the UK Brain Banks Network, share technologies
and brain sample information. These brain banks have collec-
tively standardized disease diagnosis and tissue collection pro-

cedures [18]. Here, we introduce procedures for obtaining
high-quality postmortem brain tissue followed by a brief over-
view of brain banks worldwide and in China.

Working with high-quality postmortem brain tissues

Various factors critically impact the quality of postmortem

brain samples [19]. For example, an extended time interval
between death and acquisition, the postmortem interval
(PMI), can lead to RNA degradation [20]. Effective and rapid
brain tissue acquisition and long-term preservation requires

precise and unified manipulation using anatomical, cryopreser-
vation, and slicing technologies. Rapid autopsy programs
based on round-the-clock autopsy greatly shorten the PMI.

Many important parameters are used to determine brain tissue
quality, including brain pH, as well as the integrity of DNA,
RNA, and proteins [19]. In a strict autopsy environment,

which often prolongs the process of sample acquisition, brain
pH can notably affect the integrity of RNA and DNA [19].
While formalin-fixed samples tender brain DNA relatively effi-

ciently, the yields of high-quality RNA is somewhat problem-
atic. It is clear that acquiring and preserving high-quality
postmortem brain tissues requires great skill and adherence
to standard procedures.

Accurately segmenting brain regions is critical, since bio-
logical functions vary by brain regions. There are several brain
regions highly related to neuropsychiatric cognitive and emo-

tional dysfunction. For example, the dorsolateral prefrontal
cortex (DLPFC) and the hippocampus manage cognitive pro-
cesses including working memory, planning, and cognitive

flexibility. The striatum can receive glutamatergic and
dopaminergic inputs from multiple sources functional, in the
cognitive and reward systems. Accurate definitions for land-
marks and label boundaries are important based on our

http://www.med.unc.edu/pgc
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assumption of the close correspondence of brain function to
anatomy. The human cerebral cortex is difficult to label due
to the great anatomical variations in the cortical folds and

the difficulties in establishing consistent and accurate reference
landmarks across the brain. Brain banks classify brain regions
according to the Brodmann atlas, which defines 52 cerebral

cortex regions [21]. Although there are no clear ‘gold stan-
dards’ for measuring the accuracy of anatomical assignments,
it is common to measure consistency across trained human

observers and variability across co-registered landmarks.

Brain banks worldwide

Although the study of human brains is as old as medicine,
brain banks benefitting neuropsychiatric research today arise
from international collaboration, guided by modern principles
of ethics, quality, and safety with valid scientific aims. One of

the most famous brain banks is the Netherlands Brain Bank
(NBB) in Amsterdam (https://www.brainbank.nl/) [16]. The
NBB was established in 1985 to collect human brain tissues

from donors with various neurological and psychiatric disor-
ders and also non-diseased donors. NBB had collected brain
samples from more than 4000 donors. Launched in 2001, the

BrainNet Europe consortium (https://www.neuropathologie.
med.uni-muenchen.de/funktionen/bne/index.html) has 19
members from across the continent. The brain tissues and
the corresponding anonymized summary of each donor’s med-

ical records support extensive national and international
research projects. North America with a wealth of brain bank-
ing resources has over 50 brain banks including the Allen Insti-

tute for Brain Science (https://alleninstitute.org/), Harvard
Brain Tissue Resource Center (https://hbtrc.mclean.harvard.
edu/), and the Stanley Medical Research Institute (http://

www.stanleyresearch.org/). Representative brain banks also
include the New South Wales Tissue Resource Centre (Aus-
tralia, https://nswbrainbank.org.au/about/nswbtrc), Tokyo

Metropolitan Institute of Gerontology (Japan, http://www.
tmig.or.jp/), and the Brain Bank of the Brazilian Aging Brain
Study (Brazil, http://www2.fm.usp.br/gerolab_en/index.php).

Brain banks in China

In China, the number of brain samples is quite limited. The
creation of Chinese brain banks has recently become a prior-

ity for researchers. China’s Han population represents the
world’s largest ethnicity and roughly 80% of East Asia’s
population; yet brain data from this population is currently

understudied and will prove a valuable resource within the
global survey. However, brain banking in China is slowly
developing, with the China Human Brain Banking Consor-

tium established in 2014 at the International Workshop on
Human Brain Banking in China [22]. So far, there are nearly
one thousand brain samples from dozens of consortium
members, including the Xiangya School of Medicine Brain

Bank, the Zhejiang University of China Brain Bank, the Chi-
nese Academy of Medical Sciences & Peking Union Medical
College Human Brain Bank, and others. The consortium

organizes conferences and workshops annually to build up
a unified process for brain tissue acquisition and storage, dis-
cussing policy for sample sharing, and exchanging experi-

ences and new findings [23].
Evolutionary perspectives can help us better understand the
relationship between brain development and disease. There-
fore, nonhuman primate (NHP) brain resources play an

important role in distinguishing human brain-specific regions.
The Nonhuman Primate Reference Transcriptome Resource
(http://nhprtr.org/index.html) began in 2010 [24]. Its goal is

to establish an NHP reference transcriptome consisting of
transcriptome sequencing data from multiple nonhuman spe-
cies, including Papio anubis, Pan troglodytes, Macaca fasicu-

laris, Gorilla gorilla, and 11 other non-human primates.
Within their protocol, 22 tissue types are collected from four
brain regions (i.e., cerebellum, frontal cortex, hippocampus,
and temporal lobe). By comparing brain regions of humans

to those of non-human primates, Doan et al. was able to iden-
tify human-specific social and behavioral traits associated with
autistic spectrum disorder (ASD) that are regulated by the

human accelerated genomic regions [25].

Brain projects

The collective increase in brain banks globally has spurred a
multitude of brain research projects. For most projects, sam-
ples are obtained from well-constructed brain banks [26]. Brain

research projects focus on many different dimensions, includ-
ing brain development, spatiotemporal gene expression, epige-
netic modification, and pathological characterization of

neuropsychiatric disorders. Some of these efforts include,
BrainSpan (http://www.brainspan.org/) [27,28], UK Brain
Expression Consortium (UKBEC, www.braineac.org/) [29],

Genotype Tissue Expression Project (GTEx, https://gtexpor-
tal.org/) [30], CommonMind Consortium (CMC, common-
mind.org/) [31], BrainSeq (http://eqtl.brainseq.org/) [32], the

Religious Orders Study and Memory and Aging Project (ROS-
MAP, http://www.radc.rush.edu/) [33], PsychENCODE
(http://psychencode.org/) [34], and BrainCloud (http://brain-
cloud.jhmi.edu/) [35]. They aim to gather genotypic data and

data at other regulatory levels for the human brain, to reveal
the genetic regulatory mechanisms of the human brain at dif-
ferent levels (Figure 1 and Tables 1–3).

Benefitting from the continual production of data and
strengthened by in-depth structured analyses, brain projects
are valuable references revealing basic functions as well as

molecular and cellular pathologies related to neuropsychiatric
disorders. As a source of data, each brain project offers unique
design features and advantages for specific research aims. For

instance, the GTEx project, which collects samples from non-
disease tissue sites, including but not limited to the brain,
focuses on tissue specificity of gene expression, cross-tissue
gene expression regulation, and genetic variations that con-

tribute to complex diseases and quantitative traits in humans
[30]. The UKBEC, which collects samples from across a
wide-range of brain regions, up to 12 regions per donor,

focuses on the regulation and alternative splicing of gene
expression [29]. BrainCloud [35] and BrainSpan [27,28] focus
on spatiotemporal gene expression regulation during the devel-

opment of the human brain from embryonic to adult stages.
Although BrainCloud is superior in terms of sample size,
BrainSpan includes more brain regions and types of sequenc-
ing data, such as miRNA expression.

Other brain projects include samples from donors with or
without neuropsychiatric disorders, exploring the differences
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Figure 1 Overview of the representative brain projects

Numbers in cycles indicate the number of brain samples used in each project. Different data types are indicated using different colors,

which include genotype, RNA expression, DNA methylation, and histone modification data. Colors in the bottom panel indicate the

distribution of healthy controls or patients with different diseases included in the respective projects. The projects and their web links for

access were listed below. BrainCloud (http://braincloud.jhmi.edu/) [35]; BrainSpan (http://www.brainspan.org/) [27,28]; UKBEC, UK

Brain Expression Consortium (www.braineac.org/) [29]; GTEx, Genotype Tissue Expression Project (https://gtexportal.org/) [30]; CMC,

CommonMind Consortium (commonmind.org/) [31]; BrainSeq (http://eqtl.brainseq.org/) [32]; ROSMAP, the Religious Orders Study and

Memory and Aging Project (http://www.radc.rush.edu/) [33]. Only Capstone 1 data from PsychENCODE (http://www.psychencode.org/)

were summarized in this figure. PsychENCODE Capstone 1 data comprise BrainGVEX, BrainSpan, CommonMind, UCLA- ASD, Yale-

ASD, BipSeq, LIBD szControl, and CMC_HBCC datasets, but does not include fetal brain samples and outliers. CTL, control; SCZ,

schizophrenia; MDD, major depressive disorder; BIP, bipolar disorder; AD, Alzheimer’s disease; ASD, autism spectrum disorder.

Table 1 Number of individuals across developmental stages per brain project

Stage Age BrainCloud BrainSpan UKBEC GTEx CMC BrainSeq ROSMAP PsychENCODE

Fetal �0 38 19 0 0 0 56 0 0

Infancy and childhood 0–12 34 12 0 0 0 31 0 65

Adolescence 12–20 49 4 2 0 3 60 0 88

Young adulthood 20–40 53 5 18 107 60 179 0 302

Middle adulthood 40–60 73 2 49 357 163 320 0 606

Late adulthood � 60 22 0 65 250 395 100 748 634

Note: Only Capstone 1 data from PsychENCODE were summarized in this table. PsychENCODE Capstone 1 data comprise BrainGVEX,

BrainSpan, CommonMind, UCLA- ASD, Yale- ASD, BipSeq, LIBD szControl, and CMC_HBCC datasets, but does not include fetal brain

samples and outliers. UKBEC, UK Brain Expression Consortium; GTEx, Genotype Tissue Expression Project; CMC, CommonMind Consortium;

ROSMAP, the Religious Orders Study and Memory and Aging Project.

Table 2 Number of individuals by race per brain project

Race BrainCloud BrainSpan UKBEC GTEx CMC BrainSeq ROSMAP PsychENCODE

European 112 21 134 608 500 – 730 1272

African American 147 14 0 91 90 – 14 350

Hispanic 6 4 0 0 26 – 0 41

Asian 4 1 0 8 4 – 3 20

Others 0 2 0 7 1 – 1 5

Note: ‘‘–”, data not available.
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Table 3 Number of samples per brain region per brain project

Brain region BrainCloud BrainSpan UKBEC GTEx CMC BrainSeq ROSMAP PsychENCODE

Prefrontal cortex 269 37 127 129 621 746 748 1695

Temporal cortex 0 39 119 0 0 0 0 134

Anterior cingulate

cortex

0 37 0 121 0 0 0 0

Cerebellum 0 35 130 173 0 0 0 0

Hippocampus 0 37 122 0 0 270 0 0

Caudate 0 0 0 160 0 500 0 0

Amygdala 0 36 0 100 0 0 0 0

Hypothalamus 0 0 0 121 0 0 0 0

Nucleus accumbens 0 0 0 147 0 0 0 0

Putamen 0 0 129 124 0 0 0 0

Substantia nigra 0 0 101 88 0 0 0 0

Note: Samples from BrainSpan, UKBEC, GTEx, BrainSeq, and PsychENCODE datasets were collected from multiple brain regions per individual.
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between brain features of patients and those of controls. The
Religious Orders Study (ROS) [36] and the Memory and Aging

Project (MAP) comprise the ROSMAP project [37], a longitu-
dinal, clinical, and pathological cohort study of aging and
dementia. The ROS component focuses on data from various

conditions of dementia within a limited population, while the
MAP project focuses on reduced cognitive and motor function
and disease risk of those with AD within a more varied popu-

lation. CMC and BrainSeq [31,32] focus on neuropsychiatric
disorders, including SCZ, BIP, ASD, and MD, by comparing
diseased samples with controls. The BrainSeq project seeks
to identify therapeutic drug targets for neuropsychiatric disor-

ders by understanding the genetic and epigenetic regulations
across the human lifespan. The PsychENCODE project [34]
makes an extensive, "multidimensional" genetic and epigenetic

dataset available to the public, derived from the tissue samples
of postmortem healthy and diseased human brains. The pro-
ject characterizes disease-associated regulatory and genetic fea-

tures within pathological models, focusing initially on ASD,
BIP, and SCZ [38–40]. Current data generated from the Psy-
chENCODE project include: chromatin immunoprecipitation
following next-generation sequencing (ChIP-seq), RNA-seq,

whole-genome bisulfite sequencing (WGBS), miRNA sequenc-
ing (miRNA-seq), isoform sequencing (IsoSeq), assay for
transposase accessible chromatin with high-throughput

sequencing (ATAC-seq), enhanced reduced representation
bisulfite sequencing (ERRBS), single nucleotide polymorphism
(SNP) genotypes, array methylation, and reverse phase protein

array (RPPA).
The major findings using postmortem samples from brain

projects are summarized in Table S1. These data provide

important insights into the contribution of genetic and epige-
netic factors to mechanisms underlying neuropsychiatric disor-
ders. Particularly, the BrainSeq Consortium performed RNA-
seq on 495 postmortem brains with ages across the human

lifespan, including 175 samples from SCZ patients and 320
controls [41]. Through integrative analyses, this consortium
demonstrates that 48.1% SCZ GWAS risk variants are associ-

ated with expression of nearby genes, and 237 differentially
expressed genes implicated in synaptic processes are regulated
in early brain development. The earlier study on the epigenetic

landscape of frontal cortex in patients with SCZ [42] shows
that SCZ-associated CpGs strongly correlate with fetal devel-
opment stage rather than the adult stage of the brain. These

results reveal potential SCZ pathogenesis in gene expression
and DNA methylation during brain development and matura-
tion. Moreover, recent studies by the PsychENCODE project

have identified cell composition and maturation leading to spa-
tiotemporal transcriptomic variation patterns in human and
macaque brains [43]. They also observe associations of neu-

ropsychiatric diseases with epigenetic markers [38], QTLs
[39], and isoform-level changes [44]. For example, they have
identified several interesting targets, including DGCR5 and

POU3F2, which play essential roles in regulating SCZ-
related genes at the network level [45,46]. These postmortem
studies provide important insights into the genetic architecture
for robust and informative models of neuropsychiatric disor-

ders, which will help in devising strategies for novel therapeu-
tics interventions.

Strategies and execution

Unarguably, postmortem brain resources are valuable in

revealing the biological underpinnings of neuropsychiatric dis-
orders; however, unravelling the full potential of multidimen-
sional brain data is still a great challenge. One promising
strategy employs QTL analysis, which integrates population-

based human variations with genome-wide molecular informa-
tion (e.g., gene expression, DNA methylation, histone modifi-
cation, and chromatin states). Widely used, QTL captures the

associations between genetic variants and gene expression. For
instance, QTL can be used to investigate variants at
cis-regulatory elements, such as transcription factor-binding

regions, which confer differential expression of target genes.
Combined with GWAS, QTL studies interpret how
disease-associated variants may contribute to molecular traits
and disease susceptibility. In this section, we will discuss eQTL

specifically, summarizing the key steps for pre-processing of
brain gene expression data, highlighting important issues in
eQTL analysis, explaining how to use eQTL to interpret

GWAS signals, and finally, introducing cutting-edge experi-
ments to validate regulatory signals (Figure 2 Overflow of
the research strategies and methods).

Pre-processing brain gene expression data

Although laborious, data pre-processing is essentially the first

step to ensure proper and efficient data modelling. A clean,
software-compatible format will ensure reproducible results



Figure 2 Overview of strategies and methods in neuropsychiatric studies
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and save hours, even days, of data analysis [47]. Variable
reporting of gene expression can arise from biological factors
and technical variations. To distinguish biological variations

from confounding factors, technical factors (e.g., batch effects)
must be removed or adjusted. Major pre-processing steps
include gene expression normalization and filtering, sample
outlier identification, and covariate correction. Because strate-

gies in the human brain studies are the major focus of this arti-
cle, we will only cover the key steps that may alter the quality
of brain gene expression results. Comprehensive guidelines for

gene expression data analysis are well discussed elsewhere
[48,49] and are beyond the scope of this review.

The first key step is gene quantification and filtering. Tools

for quantification are widely available, such as Cufflinks [50],
eXpress [51], Flux Capacitor [52], kallisto [53], RSEM [54],
Sailfish [55], and Salmon [56]. Each tool can accurately assign

reads to transcripts and quantify expression. These functions
are vital for interpreting tissue-specific expression patterns in
the brain [57]. However, the criteria for poorly expressed genes
vary across studies. For instance, PsychENCODE project fil-

ters genes with transcript per million (TPM) < 0.1 in more
than 25% of samples [58].

The second key step is sample outlier removal. Samples

with a high degree of poorly expressed genes or gene expres-
sion patterns distinct from other samples are removed. This
step can be carried out in dimension reduction analysis such

as principal component analysis (PCA) and multidimensional
scaling (MDS). Network concepts such as standardized con-
nectivity (the overall strength of connections between a given
sample and all of the other samples in a network) are also used

to confirm sample outliers within a group [59].
The third key step is controlling covariates, including both

known and unknown covariates. Known covariates can be

either technical, such as batch effects, or biological, such as
sex and age. Some biological covariates have been ignored
by earlier research, leading to potentially confounding results.

For instance, cell-type composition is one such common prob-
lem: since bulk-tissue RNA-seq only measures the average
behavior, it is unable to capture cellular heterogeneity, which
makes the observed changes in gene expression reflect only
changes in cell-type composition, rather than fundamental
changes in cell states [60]. Therefore, cell numbers and ratios

of multiple cell types are important biological covariates, that
affect brain gene expression profiles, since different cell states
rather than cell type composition reflect distinct biological
activities and gene expression patterns. Another covariate that

is critical but often neglected is drug treatment history. Gene
expression can vary dramatically across therapeutic courses.
The unknown factors, also called hidden determinants, can

reduce the power to find eQTLs. Surrogate variable analysis
(SVA) [34] or probabilistic estimation of expression residuals
(PEER) [61] can calculate unknown sources of variation, fol-

lowed by a linear regression model to remove them. One could
choose ComBat [62] (in R package sva) to remove the batch
effects; finally, a linear regression model will remove the con-

founding factors.

Pitfalls and promises in eQTL analysis

The aim of eQTL analysis or eQTL mapping is to characterize

associations between the expression of corresponding genes
and SNPs, thereby isolating specific regulatory regions within
the genome. A variety of approaches have been proposed,

including using linear regression, ANOVA, and non-linear
models. Some approaches also account for pedigree and other
confounding factors [63], integrating known functional ele-

ments [64], or considering allelic imbalances [65]. FastQTL,
for instance, features expansive permutations that refine P val-
ues and reduce computational burden.

Several issues should be highlighted in eQTL analysis. The

first is computing time. Pairwise association compares up to
one million genetic variants to tens of thousands of genes,
making analysis computationally intensive, especially when

employing a non-linear model on a larger dataset. Secondly,
multiple testing corrections become necessary for many of
the tests performed. One common solution is to calculate the

false discovery rate for each SNP-gene pair. Furthermore, sep-
arating the cis-eQTLs and trans-eQTLs is crucial, since local
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variants may regulate gene expression much more than distal
variants. However, this correction alone is too strict because
those tests are not biologically independent. Therefore,

permutation-based methods, which create the null distribution
of associations by tens of thousands of permutations, were
developed to set up an effective threshold for identifying statis-

tically significant eQTLs. Third, parameter settings can be a
critical factor when comparing eQTLs across multiple studies.
For example, the distance between SNPs and gene locations is

used to differentiate cis-eQTL and trans-eQTL signals, which
could be defined as 1 Mb, 5 Mb or 10 Mb in different studies.
Varied distance settings may lead to different statistical bur-
dens for SNPs located in regions ranging from 1 to 10 Mb

and result in variable outcomes. The customized cut-off
threshold for minor allele frequency (MAF) may also cause
the loss of some true signals. Fourth, some eQTLs have such

strong correlations with gene expression that they may not
prompt gene expression changes. In other words, those genetic
variants may be correlated with the causal variants due to link-

age disequilibrium or other factors. Both statistical and exper-
imental approaches have been proposed to solve this problem
[66,67]; either ways, it is critical to identify true causal variants

when integrating eQTL and GWAS results [68].

Interpreting GWAS signals

GWAS variants can increase or decrease gene expression, a

culprit behind the etiology of many diseases; QTL helps us
interpret how non-coding GWAS variants work. Several kinds
of methods, each with unique principles, have been developed

to integrate GWASs and eQTL results (Table 4). One type of
method is based on gene expression imputation, such as
PrediXcan [70] and transcriptome-wide association study

(TWAS/FUSION) [71]. These methods estimate the geneti-
cally regulated component of expression using reference tran-
scriptome datasets such as GTEx [30], GEUVADIS [8], and

DGN [85] among others to build a database of prediction
models. For each new genotype data, these methods impute
gene expression and then correlate that gene expression to a
trait of interest to identify trait-associated genes. The second

group investigates the co-localization of GWAS causal vari-
ants and eQTL causal variants. For example, COLOC [72],
MOLOC [73], ENLOC [86], HyPrColoc [74], and Sherlock

[75] use a Bayesian statistical framework to integrate GWAS
summary data and eQTLs to estimate the causal variants,
and eCAVIAR [78] considers multiple causal variants within

one locus. Other groups include enrichment methods, such as
S-LDSC [82] and eQTLEnrich [81], and mediation methods.
Summary data-based Mendelian Randomization (SMR) [66]
and generalized SMR (GSMR) [84] test whether the effect of

a GWAS SNP on a specific trait has been mediated by the
expression of a gene.

While using eQTL to interpret GWAS results is a good way

to understand gene regulatory mechanisms, it is not without
limitations. First, for some diseases if the most relevant tissue/-
cell types or developmental stages are not available in eQTL

analysis, we can find neither the true genetic regulation nor
the related genes. Second, gene expression is only one dimen-
sion of genetic regulation. If the biological mechanism is inde-

pendent of gene expression levels but affects other regulatory
cascades, such as splicing, chromosome accessibility, or ribo-
some profiling, eQTL alone will not be enough to explain
the underlying processes. Third, QTL and GWAS focus on
common variants, therefore they cannot capture rare variants

with higher effect sizes in gene expression [87].

Experimental approaches to characterize functional variants

After identifying disease risk variants or regulatory elements
using the aforementioned bioinformatics analysis methods,
the next step is to characterize the function of the variants.

To validate risk variants as the eQTL signal, using high-
throughput and sensitive methods to measure their effect on
gene expression is a widely adopted approach. As a favored

method, reporter gene assay screening validates whether func-
tional elements with eQTL signals regulate target gene expres-
sion, by cloning the regulatory elements into an expression
reporter vector [74]. Whereas reporter assays validate regula-

tory functions of variance in vitro, CRISPR can be used to val-
idate regulatory functions of the variance within native
chromosome regions in vivo. For instance, Diao et al. used a

CRISPR tiling-deletion-base genetic approach to identify
some cis-regulatory elements in mammalian cells [88]. Further-
more, high throughput CRISPR screening systems, such as the

CRISPR-Cas9, have been used to investigate the effect of the
regulatory variance on the downstream target genes
[75,78,81,82,84]. Recently, studies have refined the resolution
of this technique, including the dCas9 fusion APOBEC1

(Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit
1)/TadA (tRNA-specific adenosine deaminase)-mediated effi-
cient single base mutation system [69,87]. While CRISPR tech-

nology has these advanced capabilities, it is not without
limitations. For instance, inconsistencies such as off-target
genome editing (i.e., inducing unwanted allelic variances) have

been problematic to date [89]. Nonetheless, CRISPR has
tremendous potential for single base screening and clinical
applications. We are confident that CRISPR will mature into

a dependable tool for correcting genetic variation in the future.
To understand the influence of risk variants on gene expres-

sion, several productive tools have been developed. For the
chromatin states, ChIP-seq is an efficient genome-wide method

to identify the transcription factor binding sites in open chro-
matin regions, including promoter, enhancer and other tran-
scription active elements. Based on the principle of ChIP-seq,

a series of targeted chromatin DNA sequencing technologies
have been developed (e.g., DNase-seq, MNase-seq, FAIRE-
seq and ATAC-seq). For example, Forrest et al. revealed the

function of non-coding GWAS risk variants using ATAC-seq
data from neurons derived from SCZ patient induced pluripo-
tent stem cells (iPSCs) [90]. Chip-related technology can help us
to annotate and interpret the functionality of disease-associated

non-coding variants. Data on DNA-protein binding generated
by sequencing technologies requires validation using in vitro
methods, including the electrophoretic mobility shift assays

(EMSAs). However, the throughput of the EMSA-based exper-
iments is limited. To improve the throughput of this in vitro val-
idation, mass spectroscopy proteome-wide analysis of SNPs

(PWAS) can be applied for screening genetic variants for differ-
ential transcription factor binding [91].

Risk variants located in the untranslated region (UTR) and

intronic regions may also contribute to disease through post-
transcriptional regulation, such as splicing, RNA stability, or



Table 4 Algorithms and software for integrating GWAS and eQTL data

Name Description LD considered Programming language Operating system Link Ref.

MetaXcan Gene expression imputation Y Python Unix/Linux http github.com/hakyimlab/MetaXcan [69]

PrediXcan Gene expression imputation N Python Unix/Linux http github.com/hakyimlab/PrediXcan [70]

TWAS / FUSION Gene expression imputation Y R Unix/Linux, Mac OS, Windows http usevlab.org/projects/fusion/ [71]

COLOC Co-localization Y R Unix/Linux, Mac OS, Windows http github.com/chr1swallace/coloc [72]

MOLOC Co-localization Y R Unix/Linux, Mac OS, Windows http github.com/clagiamba/moloc [73]

ENLOC/fastENLOC Co-localization Y Perl Unix/Linux, Mac OS, Windows http github.com/xqwen/integrative [73]

HyPrColoc Co-localization Y R Unix/Linux, Mac OS, Windows http github.com/jrs95/hyprcoloc [74]

Sherlock Co-localization Y - Web interface http herlock.ucsf.edu/ [75]

JEPEG Joint eQTL analysis Y C++ Unix/Linux http dleelab.github.io/jepeg/ [76]

CAVIAR Co-localization Y C Unix/Linux, Mac OS, Windows http enetics.cs.ucla.edu/caviar/ [77]

eCAVIAR Co-localization Y C Unix/Linux, Mac OS, Windows http enetics.cs.ucla.edu/caviar/ [78]

GMAC Mediation analysis N R Unix/Linux, Mac OS, Windows http cran.r-project.org/web/packages/GMAC [79]

FINEMAP Co-localization Y C Unix/Linux, Mac OS http ww.christianbenner.com/ [80]

eQTLEnrich Enrichment Y MATLAB Unix/Linux, Mac OS, Windows http segrelab.meei.harvard.edu/software/ [81]

S-LDSC Enrichment Y Python Unix/Linux, Mac OS, Windows http github.com/bulik/ldsc [82]

NEO Structural equation model N R Unix/Linux, Mac OS, Windows http labs.genetics.ucla.edu/horvath/htdocs/aten/NEO/ [83]

SMR Mendelian randomization Y C Unix/Linux, Mac OS, Windows http nsgenomics.com/software/smr [66]

GSMR Mendelian randomization Y R Unix/Linux, Mac OS, Windows http nsgenomics.com/software/gsmr/ [84]

Note: eQTL, expression quantitative trait loci; TWAS, transcriptome-wide association study; JEPEG, joint effect on phenotype of eQTL nctional SNPs associated with a gene; CAVIAR, causal

variants identification in associated regions; eCAVIAR, eQTL and GWAS causal variants identification in associated regions; GMAC, nomic Mediation Analysis with Adaptive Confounding

Adjustment; NEO, Network Edge Orienting; SMR, summary-data-based Mendelian randomization; GSMR, generalized summary-data-b ed Mendelian randomization.
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non-coding regulation. High-throughput analysis of RNA
isolated by cross-linking immunoprecipitation sequencing
(CLIP-Seq) could be used to map protein-RNA binding site

or RNA modification site in vivo [92–94]. This technique can
reveal risk variants that affect gene expression at the post-
transcriptional level. For example, Eric T. Wang used RNA-

seq and CLIP-seq to reveal the transcriptome-wide regulation
of pre-mRNAsplicing andmRNA localization inmyotonic dys-
trophy [95].

It is important to note that risk variants may not necessarily
affect expression of the nearest gene. Disease risk variants may
also affect expression of distal genes through long-range
chromatin interactions [96–98]. The interaction of chromatin-

specific regions can be explored by classic chromatin confor-
mation capture (3C) techniques. This 3C-based technology
involves cross-linking chromatin interaction sites, using gen-

ome DNA cleavage with a restriction enzyme and a ligation
reaction to join cross-linked DNA fragments. Chromatin
interactions at specific candidate loci could be further vali-

dated by polymerase chain reaction (PCR) [99]. For example,
Panos Roussos et al. demonstrated physical interactions
between the CACNA1C eQTL risk locus and distal regulatory

elements using 3C techniques in prefrontal cortex [100].
The next step is to explore disease-associated phenotypes of

genetic risk variants by establishing cellular models or animal
models. For example, human iPSCs (hiPSCs) research detects

molecular and cellular phenotypes (e.g., migration, prolifera-
tion, and electrophysiology) together with the genetic back-
ground of specific patients. Moreover, the 3D culturing of

pluripotent stem cells produces organoids, demonstrating their
remarkable capacity for self-organization and differentiation.
This approach can be used to study human brain specific fea-

tures and the mechanism of neurodevelopment and neuropsy-
chiatric disorders. For example, Marina Bershteyn et al. used
human-derived cerebral organoids to model the cellular fea-

tures of Miller-Dieker syndrome caused by 17p13.3 deletion
[101]. While animal models differ from humans in terms of
genetic background, they resemble the spectrum of human dis-
ease phenotypes, ranging from tissue and organ to behavior.

Those two models, when combined with postmortem brain
data, may unlock the mysteries of risk variant function and
increase the probability of decoding the pathology of neu-

ropsychiatric diseases.
Future directions

In this review, we summarized the most representative brain
banks and brain projects worldwide, supporting a multidimen-
sional understanding of neuropsychiatric disorders from

pathology, genetic, and gene expression perspectives. Brain
banks and projects are establishing research resources and
building coalitions to reduce the incidence and impact of neu-

ropsychiatric disorders. Multidimensional data collected using
brain bank resources facilitate the study of complex neuropsy-
chiatric disorders, as brain banks are increasingly linked to

important sources of clinical information. Different brain pro-
jects use brain bank samples to generate a wide spectrum of
data types and serve as an important resource to promoting
brain research. Developing advanced research methods and

experimental validation of findings increases our capability
of finding true causal signals of neuropsychiatric illnesses.
Postmortem brain samples have lent profound insight into
genomic, transcriptomic and epigenomic studies, however
brain disorder research faces many challenges. Various cell

types from different brain regions form specific neural circuits
that govern complex behaviors. Most brain studies include
samples from different brain regions and use the bulk brain tis-

sue as a whole, which obviously contains many cell types, such
as neurons, astrocytes, microglia, and oligodendrocytes.
Single-cell studies are increasingly needed to achieve higher

resolution in detailed genomic insights. Some recent studies
have been used single-cell methods to isolate specific cell types
from healthy human brain tissue to characterize human brain
development [102,103]. Heterogeneity in medical treatment is

one confounding factor that can affect gene expression profiles
and some epigenetic marks. Almost every psychotic patient has
a long history of drug therapy, but individuals without neu-

ropsychiatric disorders may not, which may result in possible
false-positive findings. Furthermore, integrating the drug his-
tory relies on obtaining hospital medical records or self-

reporting, both of which can be unreliable. For example,
patients may refuse to take prescribed medications, while
others may not be able to accurately recall their medication

history. Directed toxicology testing for each sample is the best
solution but may not be practical due to the many types of
antipsychotic drugs available and the high expense involved.
Moreover, smoking and drinking history, state of death (e.g.,

unexpected death, expired while asleep, unconsciousness, fever
and hypoxia) are also confounding factors for postmortem
gene expression and other studies [104,105]. Consider this nec-

essary information when collecting samples.
One vital but challenging aspect of brain collection is the

use of fetal and infant brains. In most banks, donated brains

come from aged individuals, appropriate for the research of
neurodegenerative diseases. For neurodevelopmental diseases,
such as autism, SCZ, and intellectual disability, however, fetal

and infant brain samples are critical for investigating disease
etiology. So far, only a few banks have prenatal samples,
and their samples sizes are relatively small. Including fetuses
with lethal defects and those with defects not affecting brain

function, identified through prenatal genetic screening, could
increase available resources. Another solution would be using
iPSC-derived neurons or other brain cells to model the very

early stages of brain development. Combining these strategies,
we can characterize the temporal regulatory landscape of brain
development and genomic aberrations related to psychiatric

illnesses.
Recently, it has been suggested that all postmortem brain

studies are underpowered to correct for genetic and phenotypic
heterogeneity [106]. This begs the question, how can these

studies derive from the brain banks with limited sample sizes
achieve enough statistical power? One solution is in more accu-
rately defining disease-related phenotyping and levels of dis-

ease taxonomy. For example, in BIP, only about 30% of
patients respond to lithium [107,108], and a portion of patients
have DLPFC or hippocampal volume abnormalities [109–112].

Classification of these disease subtypes improves the under-
standing of disease phenotype. Availability of shared data is
another big issue often limiting the power needed for research

into neuropsychiatric disorders. With more and more data
generated and released, an open public and user-interactive
data center is needed to collect and to manage all the reposito-
ries. Our group established the Brain EXPression Database
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(BrainEXP, http://www.brainexp.org/) focusing on brain gene
expression patterns in various regions, by sex and age [113].
This database currently includes 4567 brain samples of 2863

normal individuals and will integrate approximately the same
number of patient samples in the near future. These combined
efforts hold the promise of powering brain studies adequately.

In conclusion, given the expanding framework of brain
bank and brain project networks, we can improve exploration
into the molecular regulatory mechanisms of neuropsychiatric

disorders and facilitate research toward new avenues of
treatment.
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