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Abstract: Deep learning-based software is developed to assist physicians in terms of diagnosis;
however, its clinical application is still under investigation. We integrated deep-learning-based
software for diabetic retinopathy (DR) grading into the clinical workflow of an endocrinology
department where endocrinologists grade for retinal images and evaluated the influence of its
implementation. A total of 1432 images from 716 patients and 1400 images from 700 patients were
collected before and after implementation, respectively. Using the grading by ophthalmologists as
the reference standard, the sensitivity, specificity, and area under the receiver operating characteristic
curve (AUC) to detect referable DR (RDR) were 0.91 (0.87–0.96), 0.90 (0.87–0.92), and 0.90 (0.87–0.93)
at the image level; and 0.91 (0.81–0.97), 0.84 (0.80–0.87), and 0.87 (0.83–0.91) at the patient level.
The monthly RDR rate dropped from 55.1% to 43.0% after implementation. The monthly percentage
of finishing grading within the allotted time increased from 66.8% to 77.6%. There was a wide range
of agreement values between the software and endocrinologists after implementation (kappa values
of 0.17–0.65). In conclusion, we observed the clinical influence of deep-learning-based software on
graders without the retinal subspecialty. However, the validation using images from local datasets is
recommended before clinical implementation.

Keywords: area under the curve; diabetes; deep learning; image; retinopathy

1. Introduction

Diabetic retinopathy (DR) is the leading cause of blindness among working-age
patients with type 2 diabetes [1]. The prevalence of DR is approximately 24–35% for
patients with type 2 diabetes worldwide [2–6], and the burden of vision-threatening DR has
been increasing owing to the rapid growth of the diabetic population [5–7]. Previous studies
have shown that early screening and timely treatment can reduce the risk of worsening DR
and blindness [8], and international guidelines recommend that screening for DR should be
performed at least once every year for patients with type 2 diabetes [9]; however, adherence
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to this DR screening program has been alarmingly low [2]. The major barrier to annual DR
screening is the lack of trained specialists and equipment to handle the rapidly growing
population of patients with diabetes [10].

The use of deep-learning algorithms in the field of DR screening has demonstrated
promising results [11]. Recent publications have shown that the diagnostic performance
of some deep learning algorithms is similar to, or even better than, that of human ex-
perts [12,13]. In addition, these algorithms have the advantage of high reproducibility
and they could help to reduce time and human resources theoretically. However, how to
translate these advantages into clinical benefits is still in the center of discussion [14,15].
Currently, most studies discussing the use of deep learning algorithms for DR screening
have focused on comparing the performance of the algorithms with diagnosis by local reti-
nal specialists or regional graders [16,17]. The change in the clinical workflow or the impact
on regional graders after implementation of such software has seldom been discussed.

VeriSeeTM (Acer Inc., New Taipei City, Taiwan), a deep-learning-based software for
DR, has recently been approved by the Taiwan Food and Drug Administration as a smart
medical device based on its comparable performance to that of ophthalmologists [18].
In this study, we deployed VeriSeeTM, referred to here as “the software”, in an endocrinol-
ogy department. We compared the diagnostic accuracy of referable DR (RDR) between
regional graders and the software before its implementation and investigated the change
in the clinical workflow and the influence on regional graders after its implementation.

2. Materials and Methods
2.1. Setting and Participants

This cross-sectional study was conducted at Taichung Veterans General Hospital
between June and October 2019. The payment for performance program for diabetes in
Taiwan recommends that patients with diabetes should receive annual comprehensive
screening for diabetic complications, including DR [19]. We included patients with type 2
diabetes who underwent a fundus examination during the study period in our hospital.

2.2. Retinal Imaging

The standard protocol was performed in a dark room to ensure the physical dilation
of the pupils. Retinal images were captured in a single-field, 45-degree view by trained
technicians using a digital retinal camera (CR-2, Cannon Inc., Tokyo, Japan). Images were
retaken if the technician considered them to be of poor quality, and only the image with
the best quality from the repeated assessments was uploaded. All images were collected
anonymously for analysis. Finally, adequate image quality was judged independently by
each grader. The criterion for excluding an image was a poor quality, as judged by any one
of the graders. At the patient level, a patient was excluded if an image of either eye was of
poor quality.

2.3. Reference Grading

Three ophthalmologists independently graded all retinal images according to the
international clinical classification of the DR scale, which classifies DR into no DR, mild non-
proliferative DR (NPDR), moderate NPDR, severe NPDR, or proliferative DR (PDR). Mod-
erate NPDR, severe NPDR, and PDR are all identified as RDR. The ophthalmologists
graded the images independently and blindly from the output of the software. Disagree-
ments between two ophthalmologists were adjudicated by the senior retinal specialist.
Only images that were graded the same by at least two ophthalmologists were included in
the final analysis, and the grades served as the ground truth.

2.4. The Deep Learning Algorithm

The development of the software has been described previously [18]. Briefly, the model
was built by the convolutional network. The base structure for the convolutional network
model is Inception V4. The number of layers, neurons, loss function, and active function
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are the same as inception V4, and other hyperparameters were fine-tuned to obtain the
optimal accuracy [20]. After pretraining with large public retinal image datasets, the deep
learning model was fine-tuned with 5649 retinal images. The final model was found to
detect RDR with a sensitivity of 89.2%, a specificity of 90.1%, and an area under the receiver
operating characteristic curve (AUC) of 0.950 [18].

2.5. Clinical Workflow

In our clinical practice, retinal images were graded by five endocrinologists. Generally,
approximately 700 patients received fundus examinations per month, and five endocri-
nologists were responsible for all of them. Each endocrinologist was assigned to retinal
images from approximately 140 patients and was requested to complete grading of all
images within three days after the examination. After software was integrated into our
clinical workflow, the preliminary VeriSeeTM report accompanied with corresponding
retinal images was automatically uploaded in the reports system, which endocrinologists
could read before making the final decision in October 2019. Under the awareness of the
diagnostic accuracy of the VeriSeeTM, endocrinologists could either confirm the grading if
they agreed with the preliminary report or revise the grading if they disagreed with it after
examining the image (Supplementary Figures S1 and S2).

2.6. Statistical Analysis

The prevalence of DR is approximately 27–35% in Taiwan [21,22]. With a predefined
sensitivity of 86%, a type I error of 5%, a power of 80%, and a margin of error of 7%,
the sample size was estimated to be at least 350 patients. To assess the performance of the
software and the endocrinologists, the sensitivity, specificity, F1 score, balanced accuracy,
and AUC for detecting RDR were calculated using the grading by the ophthalmologists
as the ground truth. Different from the software which generates the diagnosis of RDR
based on each image, regional graders diagnose RDR at the patient level, which means
clinicians would consider referring a patient to an ophthalmologist if one of the patient’s
eyes was diagnosed with RDR. To address the gap between the laboratory and the real
world, we evaluated the performance of this software at both the patient level and the
image level and compared the performance to the regional grader at the patient level.
A 95% confidence interval (CI) was obtained based on the exact binominal distribution.

To evaluate the influence of the software on the endocrinologists, a quadric-weighted
kappa coefficient was used to determine the agreement between the software and endocri-
nologists before and after software implementation. Kappa values of 0.01–0.20 indicate
none to slight agreement, values of 0.21–0.40 indicate a fair agreement, values of 0.41–0.60
indicate a moderate agreement, values of 0.61–0.80 indicate a substantial agreement, and
values of 0.81–1.00 indicate an almost perfect agreement [23]. The monthly percentage of
finishing retinal image grading within the allotted time (three days after image examina-
tion) and the monthly RDR rate were also compared. All analyses were conducted using R
(Version 3.5.3, R Core Team, R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Patients and Images

In June 2019, 716 patients underwent fundus examinations before software implemen-
tation, and 1432 retinal images were collected. After excluding images considered to be of
poor quality by the software, ophthalmologists, and endocrinologists, a total of 981 (68.5%)
images were included for analysis. However, only 468 (65.4%) patients had adequate
quality of both retinal images. In October 2019, there were 700 patients with 1400 retinal
images after software implementation. A total of 503 (71.9%) patients having adequate
quality of both retinal images for grading by the software and the endocrinologists were
enrolled for analysis. The rate of adequate image quality judged by endocrinologists was
73% ± 9% before VeriseeTM implantation and 78% ± 2% after implantation (p > 0.05).
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3.2. Sensitivity, Specificity, and AUC of the Software at the Image Level

The ophthalmologists graded 873 (89.0%) images as no DR, 17 (1.7%) images as mild
NPDR, 39 (4.0%) images as moderate NPDR, 12 (1.2%) images as severe NPDR, and 40
(4.1%) images as PDR. The software graded 537 (54.7%) images as no DR, 269 (27.4%)
images as mild NPDR, 122 (12.4%) images as moderate NPDR, 27 (2.8%) images as severe
NPDR, and 26 (2.7%) images as PDR, as shown in Figure 1. A total of 91 (9.3%) and 175
(17.8%) retinal images were graded as RDR by the ophthalmologists and the software,
respectively. The sensitivity and specificity of the software to detect RDR were 0.91 (95%
CI: 0.83–0.96) and 0.90 (95% CI: 0.87–0.92), respectively, and the AUC was 0.90 (95% CI:
0.87–0.93; Table 1) at the image level.
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Figure 1. Distribution of diabetic retinopathy severity graded based on VeriSeeTM and ophthalmolo-
gists.

Table 1. The performance of the software for diagnosing referable diabetic retinopathy (RDR) at the
image level.

VeriSeeTM

Number of patients -

Number of images 981

Sensitivity (95% CI) 0.91 (0.83–0.96)

Specificity (95% CI) 0.90 (0.87–0.92)

AUC (95% CI) 0.90 (0.87–0.93)

F1 score 0.62 (0.58–0.65)

Balanced accuracy 0.90 (0.87–0.91)
AUC = area under the receiver operating characteristic curve; CI = confidence interval.

3.3. Sensitivity, Specificity, and AUC at the Patient Level

Of the 716 patients, 468 (65.4%) were considered adequate quality for grading by the
software, the ophthalmologists, and the endocrinologists. The numbers of patients graded
as RDR by the software, ophthalmologists, and endocrinologists were 117 (25%), 57 (12.2%),
and 258 (55.1%), respectively. As shown in Table 2, the sensitivity, specificity, and AUC for
the software to detect RDR were 0.91 (95% CI: 0.81–0.97), 0.84 (95% CI: 0.80–0.87), and 0.87
(95% CI: 0.83–0.91), respectively. For the endocrinologists to detect RDR, the sensitivity,
specificity and AUC were 0.91 (95% CI: 0.81–0.97), 0.50 (95% CI: 0.45–0.55), and 0.70 (95% CI:
0.66–0.74), respectively (Figure 2).
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Table 2. The performance of software and the endocrinologists for diagnosing referable diabetic
retinopathy at the patient level.

VeriSeeTM Endocrinologists

Number of patients 468 468

Sensitivity (95% CI) 0.91 (0.81–0.97) 0.91 (0.81–0.97)

Specificity (95% CI) 0.84 (0.80–0.87) 0.50 (0.45–0.55)

AUC (95% CI) 0.87 (0.83–0.91) 0.70 (0.66–0.74)

F1 score (95% CI) 0.58 (0.54–0.63) 0.33 (0.28–0.37)

Balanced accuracy (95% CI) 0.87 (0.83–0.89) 0.70 (0.65–0.74)
AUC = area under the receiver operating characteristic curve; CI = confidence interval.

Life 2021, 11, x FOR PEER REVIEW 5 of 10 
 

 

57 (12.2%), and 258 (55.1%), respectively. As shown in Table 2, the sensitivity, specificity, 

and AUC for the software to detect RDR were 0.91 (95% CI: 0.81‒0.97), 0.84 (95% CI: 

0.80‒0.87), and 0.87 (95% CI: 0.83‒0.91), respectively. For the endocrinologists to detect 

RDR, the sensitivity, specificity and AUC were 0.91 (95% CI: 0.81‒0.97), 0.50 (95% CI: 

0.45‒0.55), and 0.70 (95% CI: 0.66‒0.74), respectively (Figure 2). 

Table 2. The performance of software and the endocrinologists for diagnosing referable diabetic 

retinopathy at the patient level. 

 VeriSeeTM Endocrinologists 

Number of patients 468 468 

Sensitivity (95% CI) 0.91 (0.81‒0.97) 0.91 (0.81‒0.97) 

Specificity (95% CI) 0.84 (0.80‒0.87) 0.50 (0.45‒0.55) 

AUC (95% CI) 0.87 (0.83‒0.91) 0.70 (0.66‒0.74) 

F1 score (95% CI) 0.58 (0.54‒0.63) 0.33 (0.28‒0.37) 

Balanced accuracy (95% CI) 0.87 (0.83‒0.89) 0.70 (0.65‒0.74) 

AUC = area under the receiver operating characteristic curve; CI = confidence interval. 

 

Figure 2. The area under the curve of the receiver operating characteristic curve (AUC) calculated 

at the patient level for VeriSeeTM and the endocrinologists. 

3.4. Comparison before and after Implementation of the Software 

Before implementation, the monthly RDR rate graded by the endocrinologists was 

55.1% (software: 27%; ophthalmologists: 9%, Figure 3). The monthly RDR rate after im-

plementation decreased to 42.9%. The monthly percentage of finishing grading within 

three days after the examination was 66.8% before implementation, and this increased to 

77.6% after implementation (Table 3). 

Table 3. The performance of endocrinologists before and after implementation of the software. 

 Before After 

Monthly RDR rate 55.1% (258/468) 42.9% (216/503) 

Monthly rate of finishing grading on time * 66.8% (478/716) 77.6% (543/700) 

CI = confidence interval, RDR = referable diabetic retinopathy. * Within three days after fundus 

examination. 

Figure 2. The area under the curve of the receiver operating characteristic curve (AUC) calculated at
the patient level for VeriSeeTM and the endocrinologists.

3.4. Comparison before and after Implementation of the Software

Before implementation, the monthly RDR rate graded by the endocrinologists was
55.1% (software: 27%; ophthalmologists: 9%, Figure 3). The monthly RDR rate after
implementation decreased to 42.9%. The monthly percentage of finishing grading within
three days after the examination was 66.8% before implementation, and this increased to
77.6% after implementation (Table 3).

The characteristics of each endocrinologist and the kappa values before and after imple-
mentation are listed in Table 4. The overall kappa values were low before implementation
and increased after implementation of the software. However, there was heterogeneity
in the improvement of the kappa values, ranging from 0.17 to 0.65 after implementation
(Figure 4).

Table 3. The performance of endocrinologists before and after implementation of the software.

Before After

Monthly RDR rate 55.1% (258/468) 42.9% (216/503)
Monthly rate of finishing
grading on time * 66.8% (478/716) 77.6% (543/700)

CI = confidence interval, RDR = referable diabetic retinopathy. * Within three days after fundus examination.
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Figure 3. The rate of referable diabetic retinopathy (RDR) graded according to the endocrinologists,
VeriSeeTM, and ophthalmologists.

Table 4. The characteristics and Kappa coefficients of the five endocrinologists.

Experience *
(Years)

Accuracy † Images ‡
Kappa §

Before After Change

1 2 0.71 209 0.17 0.50 0.33
2 8 0.72 257 0.16 0.43 0.27
3 11 0.7 230 0.06 0.31 0.25
4 13 0.61 189 0.05 0.17 0.12
5 17 0.77 121 0.37 0.65 0.28

* Experience: years of working as endocrinologist; † Accuracy: the diagnostic accuracy of referable diabetic
retinopathy by the endocrinologists, and the grading by the ophthalmologists as the reference standard. ‡ Image:
the number of images graded by each endocrinologist. § Kappa coefficient: the agreement between the software
and endocrinologists.
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4. Discussion

In the present study, we evaluated the impact of deploying the deep-learning-based
software for RDR diagnosis in clinical practice. A difference in the performance of the
software was observed between implementation in laboratory and real-world settings.
Therefore, validation with local datasets according to local clinical practice is important
before its implementation. Although software implantation was found to have a potential
benefit on lessening the workload, clinical physicians’ acceptance of the new technol-
ogy varied.

It has been reported that some types of deep-learning-based software demonstrated a
high level of performance in the laboratory but reduced sensitivity and specificity in real-
world practice [12,24]. Ting et al. [12] externally validated their deep learning algorithm,
which showed various levels of specificity from 73.3% to 92.2% for detecting RDR in ten
multiethnic clinical datasets, despite there being a specificity of 91.6% in the primary
validation dataset. Verbraak et al. [24] reported a deep-learning-based device for RDR with
a sensitivity of 79.4% and specificity of 93.8% in the primary care setting, despite the fact
that the device had a sensitivity of 87.2% and specificity of 90.7% in the original report [16].
In line with previous reports, our study showed a difference in performance between
laboratory and real-world practice. In addition, we found a slight drop in specificity at the
patient level compared to that at the image level. Physicians consider referring a patient
to an ophthalmologist when one eye reveals RDR, even though the other eye is in good
condition. Patient-based judgment is different from how the software is trained based on
images. Therefore, validation of the accuracy of the software at both the image and patient
levels is warranted before implementation.

The performance of non-retinal specialists on DR has been well investigated. It was
reported that the diagnostic sensitivity and specificity of PDR diagnosis made by physicians
other than ophthalmologists were 49% and 84%, respectively, and the rate of correct
PDR diagnosis made by endocrinologists was only 31% [25]. Suboptimal sensitivity and
specificity should be alerted for non-retinal specialists to detect DR [26]. In the present
study, the endocrinologists had a good sensitivity level but a relatively low specificity
level regarding the diagnosis of RDR. A possible reason for the high sensitivity with low
specificity is that endocrinologists tended to refer a patient if they were uncertain of the
diagnosis to avoid the misdiagnosis of patients with RDR. Therefore, the monthly referral
rate for RDR was 55% before the implementation of the software, and this was surprisingly
higher than the DR prevalence. With the assistance of the software, the monthly rate
of RDR graded by endocrinologists was closer to the true prevalence in Taiwan [21,22].
Our study also demonstrated that deep-learning-based software is helpful as it lessens the
workload of non-retinal specialists by decreasing the time spent on grading retinal images
and increasing the rate of finishing grading within the allotted time.

It is notable that our results showed heterogeneous acceptance among the endocrinol-
ogists for diagnosis made by software according to the kappa value. Despite the evidence
regarding the high performance of the software [18], not every endocrinologist followed
the DR grades assessed using the software in the present study. The human and machine
interaction is complex, and further studies are needed to determine the important factors
that influence clinicians’ acceptance.

The strength of this study is that we included endocrinologists, who play an important
role in DR screening and are the main graders of retinal image in Taiwan. To the best
of our knowledge, this is the first report to evaluate the clinical impact of deep-learning-
based software on regional graders. However, the present study has several limitations.
First, the sample size was relatively small, and we evaluated the impact of the software
shortly after its implementation. A long-term investigation with a large sample size is
needed in the future. Second, macula edema was not investigated in the study, because the
software was not developed for the detection of macula edema. Finally, the percentage
of poor quality reached approximately 30% in our retinal images captured using a non-
mydriatic fundoscopy, and this percentage is higher than that found in previous reports [27].
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Although the use of mydriatic retinal images could improve image quality, the use of non-
mydriatic image was more practical due to convenience [28].

5. Conclusions

We observed a gap between the use of deep-learning-based software in laboratory
and real-world settings. We addressed the importance of clinical validation using local
datasets for real-world practice. We also demonstrated the potential benefit of deep-
learning-based software in terms of decreasing the time spent on grading retinal images.
However, the interaction between clinicians and the software appears to be complex.
The acceptance of this new technology was found to vary between clinicians, and individual
differences in clinical use require further investigation.
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