
Calculating Stage Duration Statistics in Multistage
Diseases
Natalia L. Komarova*, Craig J. Thalhauser

Department of Mathematics, University of California Irvine, Irvine, California, United States of America

Abstract

Many human diseases are characterized by multiple stages of progression. While the typical sequence of disease
progression can be identified, there may be large individual variations among patients. Identifying mean stage durations
and their variations is critical for statistical hypothesis testing needed to determine if treatment is having a significant effect
on the progression, or if a new therapy is showing a delay of progression through a multistage disease. In this paper we
focus on two methods for extracting stage duration statistics from longitudinal datasets: an extension of the linear
regression technique, and a counting algorithm. Both are non-iterative, non-parametric and computationally cheap
methods, which makes them invaluable tools for studying the epidemiology of diseases, with a goal of identifying different
patterns of progression by using bioinformatics methodologies. Here we show that the regression method performs well for
calculating the mean stage durations under a wide variety of assumptions, however, its generalization to variance
calculations fails under realistic assumptions about the data collection procedure. On the other hand, the counting method
yields reliable estimations for both means and variances of stage durations. Applications to Alzheimer disease progression
are discussed.
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Introduction

Many human diseases are characterized by multiple, more or

less well-defined stages of progression. One well-known example is

Alzheimer’s disease (AD) [1], where patients’ cognitive and

functional deterioration follows a progression of several stages

[2,3]. Other diseases that follow a certain pattern of progression,

and can be characterized by several stages, include cancers (such

as multiple myeloma [4,5] and Hodgkin’s disease [6]), HIV [7,8],

lyme disease [9,10], chronic kidney disease [11,12], Parkinson’s

disease [13,14], and many others.

While typical patterns of disease progression can be identified,

there may be large individual variations among patients. Like any

biological variable, rates of disease progression cannot be

described by a fixed ‘‘number’’, but rather come from some

(usually unknown) probability distribution. Fundamental charac-

teristics of these distributions, such as the mean rate of progression

and its variance, can be used as important tools in clinical trials

and disease monitoring. For example, knowing both the mean

duration and the amount of its natural ‘‘spread’’ is essential for

evaluation of treatment efficiency. The group of treated patients

must exhibit an average stage duration which is significantly (that

is, more than a standard deviation) longer than that for the

controls.

Quantitative measurements of the mean and the variance in

stage durations of multi-stage diseases is a difficult empirical and

statistical task. One way to approach it would be following many

patients for the entire disease duration, to record the times when

each new disease stage begins. If information of this kind could be

collected for a sufficient number of patients, then computing the

means and variances of stage durations would be the matter of a

trivial calculation. However, such an approach is often impossible

in real clinical situations. Instead, the patient data collected in

longitudinal studies are usually much more sparse and incomplete.

This means that the mathematical task of extracting the mean and

variance of stage durations becomes much more difficult.

A typical longitudinal patient dataset that logs the individuals’

timing of disease progression consists of dates of the clinician’s

visits and the stages of the disease determined at the time of each

visit. The medical records are often sparse, with only a few visits

per patient, and the timing of the follow-up visits is sporadic. Data

of this kind do not provide stage durations for individual patients.

For example, if a given patient was seen at times t1, t2 and t3, and

was found to be at stages 1, 1, and 3 respectively, then we can say

that for this patient, stage 1 lasted at least t2{t1 years, and stage 2

lasted at most t3{t2 years. In this particular example, we are able

to obtain a lower bound on stage 1 duration and an upper bound

on stage 2 duration. For other cases, even this is impossible. For

example, if we have 2 visits at times t1 and t2 at stages 1 and 2
respectively, all we can say is that the total duration of stages 1 and

2 for this patient was at least t2{t1 years.

In statistics, this type of longitudinal data are referred to as

‘‘censored’’. Extracting information about stage duration distribu-

tions from this type of data is a nontrivial task, and large literature

exists that is devoted to statistical methods in this context [15].

Statistical methods to handle such problems include the regression

method [16], Kaplan-Meier (KM) statistics [17], maximum-

likelihood-based methods described originally by Turnbull
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[18,19] and Lagakos [20,21], and nonparametric Bayesian

approaches [22,23]. In addition, a simple counting algorithm

was introduced in [24] to estimate the stage duration cumulative

probability distribution. All types of techniques have advantages

and disadvantages. Here we will focus on two of the above

methods: an extension of the linear regression technique [16,25]

and the counting algorithm. These are by far the simplest methods

of extracting the stage duration means and variances:

N they are non-iterative, so no ‘‘saddle-point’’ solutions can be

observed,

N they are non-parametric, and

N they are computationally very cheap.

The importance of these considerations comes about when one

studies the epidemiology of diseases, and looks for patterns of

disease progression using large patient datasets. Methods of

bioinformatics can be applied to sorting the datasets and

identifying various subgroups of patients with different character-

istics, with a further goal of correlating this with other available

data such as genetic data, demographic data etc. Complex

routines of this kind require estimation of progression statistics for

many subsets of the patient group, to find the meaningful trends.

Therefore, having reliable and very efficient methods for statistical

analysis becomes essential.

The focus of the present analysis is to show that the regression

method performs well for calculating the mean stage durations

under a wide variety of assumptions, however, its generalization to

variance calculations fails under realistic assumptions about the

data collection procedure. On the other hand, the counting

method yields reliable estimates for both means and variances of

stage durations, where the regression method fails. While we will

use AD as the main example for our calculations, this study is

applicable for a wide range of multi-stage diseases.

Example: stages of Alzheimer’s disease
We will illustrate our methodology by using the example of AD.

It has been known for two decades that the rate of progression of

AD varies from patient to patient [26], with illness ranging from a

few years’ duration to as long as 21 years (see [27] and the

references therein). Many factors have been found to be correlated

with the rate of patients’ cognitive deterioration including

apolipoprotein 4 genotype [28,29] and other genetic factors

[30,31], brain atrophy rates [32–34], patterns of regional brain

atrophy [35], ventricular enlargement [36], neuropsychological

and cerebral metabolic profiles [27], vascular factors [37], and

immune system factors [38].

The rate of AD progression can be estimated by using various

cognitive tests, such as the Disability Rating Scale [39], the Mini-

Mental State Examination (MMSE) score[40,41], and Clinical

Dementia Rating (CDR) sum of boxes score [42,43]. Other

measures that have been used are Global Deterioration Scale

(GDS) [44] and its derivative, Functional Assessment Staging

(FAST) [45]. These are reliable assessment techniques for

evaluating functional deterioration in AD patients throughout

the entire course of the illness [46]. They are based on a systematic

examination of the functional changes occurring in patients with

AD, and serve as a strong diagnostic aid for clinicians. The FAST

staging technique has been compared with other scores such as

MMSE, CDR sum of boxes, and others [47], and was found to

correlate with other measures of progression. In a systematic

review of 12 different assessment tools of AD [48], FAST staging

was identified as one of the best studied techniques for reliability,

which shows good to excellent results on intrarater and interrater

reliability.

Although AD is a continuous process, the patient decline usually

follows a number of milestones. FAST staging technique

distinguishes 7 AD stages ranging from 1 (normal adult) to 7
(severe AD). They are further characterized in [16]. The cognitive

and behavioral differences among patients across different stages

are very large, thus making GDS/FAST diagnostics a reliable tool.

In this paper we will apply our statistical tools to a longitudinal

dataset where both FAST and GDS staging systems were applied.

We will focus only on the integer FAST stage values and not on

the FAST substages.

Methods

Data considerations
Data from a longitudinal AD study typically have the following

format [16]. A patient is diagnosed with AD and is seen one or

more times. At each visit, the date of observation and current stage

of AD is recorded according to whatever scale the clinic uses to

track AD progression. Follow-up visits are often conducted at

regular intervals, so that a patient’s record is a sequence of spaced

visits and stage diagnoses. In the absence of knowledge about the

onset date of the current stage, past analyses assume that patients’

first visit and last visit to the clinic occur uniformly within the

current stage [16], so that on average each patient is halfway

through that stage.

One can organize this data in many different ways. A particular

structure which we find useful to impose is that of the transition

class. We consider the set of all patients whose first visit is at stage i
of the disease and whose last visit is at stage j, for iƒj. We call this

subset of patients a transition class. For a disease with K stages

under observation, one can sort the patients into
K(Kz1)

2
transition classes. Note that in clinical practice, not all patient

records extend to the final stage of the disease and thus in a clinical

dataset one may expect to find all transition classes with some

patients in them.

Consider a patient with two or more visits to a clinic, whose first

visit is at stage i and last visit is at stage j, with ivj. Then the total

time that patient has been observed, TP, is the sum of the amount

of time the patient has spent in each observed stage:

TP~
Xj

k~i

akSk, ð1Þ

where Sk is the duration of stage k. The coefficient ak with k~i or

k~j is a random number distributed in (0,1), and otherwise it

satisfies:

ak~
1, ivkvj,

0, kvi or kwj:

�

We call ak the completion coefficient of stage k. In the absence of

any other information, one might assume that across all patients,

ak are distributed uniformly on (0,1). Thus, on average one might

set all ak~
1

2
and thus generate, for each patient, a single equation

of one or more unknowns, depending on how many stages of the

disease the patient has entered. With enough such patient records,

one can form a large, overdetermined system of equations of N
unknowns, N being the number of stages under observation, and

can solve this system in the least squares sense. This process was

applied without justification in [16].

Data generation method 1: prescribed transition class,

prescribed completion coefficients. We first generate data to

Stage Duration Statistics in Multistage Diseases
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specifically conform to the assumptions used in past studies [16],

namely that all patients arrive at their first and last visit at the

clinic on average halfway through that stage, and that all transition

classes are populated. To create the dataset, we:

1. Determine the actual timecourse of the disease from a

predetermined set of distributions (one for each stage).

2. We then randomly determine the transition class to which that

patient will belongs.

3. Then, we draw the completion coefficient for the patient’s first

and last visits from a uniform (0,1) distribution.

4. Finally, given this data we can calculate the time from the

patient’s first visit to their last visit and create a patient record

including total time and stages transited.

Theoretical records created by this method can be modified by

changing the assumptions on the distribution of transition classes

(uniform or skewed) and the assumptions on the completion

coefficient (non-uniformly distributed, skewed to favor early or late

visits).

A ‘‘dataset’’ of Np patients created by this method consists of Np

records specifying the transition class (that is, the first and last stage

of visits) and the total time duration between the two visits.

Data generation method 2: prescribed initial stage,

prescribed first completion coefficient, prescribed inter-

office intervals. We next formulate a method to generate test

data for our analysis algorithms which is closer in mechanism to

that which is used in a clinical setting:

1. As before, we specify the actual timecourse of progression for a

patient through all stages of the disease.

2. Choose the stage number for the first visit. For the data sets

used in this paper, the choice of initial stage is weighted

towards earlier stages to ensure population of all possible

transition classes.

3. Calculate the completion coefficient for the first stage. The

initial arrival can be specified to occur at any time during their

current stage; for example, we will employ both a uniform

distribution for completion coefficients and the assumption that

patients tend to first go to the clinic upon recognition of a new

symptom, which occurs at or very near to the beginning of the

current stage.

4. Patients return to the clinic following a loosely prescribed

interval of time (for example, every two years on average). We

draw the time-intervals between consecutive visits from a

distribution. The distributions for inter-office visit times are

given by the sum of 4 random numbers, uniformly distributed

in the range ½0:5,1:5� years (mean of 1 year, standard deviation

of 1=(4
ffiffiffi
3
p

)&0:14) or ½1:5,2:5� years (mean of 2 years, with the

same standard deviation).

5. For each visit, the patient is evaluated and diagnosed; based on

how much time has elapsed and the true timecourse of the

disease, the patient may or may not have entered into a new

stage.

6. Starting from the second visit, there is a fixed probability (given

by 0:75) for the patient to come back for a subsequent visit, or

to never come back. If a patient’s visit happens after the ‘‘end’’

of the last stage, we disregard this visit and stop the record of

the patient.

A ‘‘dataset’’ of Np patients created by this method consists of Np

records specifying a list of stages at which the patient was seen,

together with the inter-visit time intervals. Such datasets differ

from the ones created by method 1 because each patient may have

more than 2 visits.

Linear regression method for means and variances
We begin by combining the standard linear regression

technique described previously [16] with that of the transition

class. Consider the transition class of all patients starting at stage i

and ending at stage j for iƒj. Then the mean of the total

observation time, T , for all patients in the class is:

E½T �~E½
Xj

k~i

akSk�~
Xj

k~i

E½akSk�~
Xj

k~i

E½ak�E½Sk�,

where we have used the tacit assumption from prior work that the

completion coefficients are independent of the stage durations.

Note that if we assume that ak is uniform (0,1) for k~i,j and

ak~1 for ivkvj, then this system becomes:

E½ti,j �~
E½Ti�

2
z
Xj{1

s~iz1

E½Ts�z
E½Tj �

2
, 1ƒj§iƒN: ð2Þ

This is equivalent to the linear regression scheme described

elsewhere[16]. Herein we have provided a simple justification for

the prior schemes as well as explicitly delineated the assumptions

needed for this method to yield accurate results.

We now turn to the calculation of the variance. As with the

mean, we begin by grouping patient data by transition class.

Under the same assumptions as the mean equations along with an

assumption of independence of each stage duration from one

another, we can calculate:

Var(T)~Var(
Xj

k~i

akSk)~
Xj

k~i

Var(akSk):

We resolve the variance as follows:

Var(akSk)~E½(akSk)2�{E2½akSk�~E½a2
k�E½S2

k�{E2½ak�E2½Sk�

~E½a2
k�E½S2

k�{E½a2
k�E2½Sk�zE½a2

k�E2½Sk�{E2½ak�E2½Sk�

~E½a2
k�Var Skð ÞzVar akð ÞE2½Sk�:

Therefore, if we have information concerning the distribution of

the completion coefficients, then we can write an equation for each

transition class similar to its counterpart in the mean equations:

Var(T)~
Xj

k~i

(E½a2
k�Var(Sk)zVar(ak)E2½Sk�):

Note that if ivkvj, then ak~1, and so Var(ak)~0. The

variance equations are similar in nature to the means equations

with a necessary adjustment to reflect the variance of the

completion coefficients in the first and last stages of a transition

class. For uniformly distributed completion coefficients, we have

the following system of equations for the variance:

Var½ti,j �~
Var½Ti�

3
z

E2½Ti�
12

z
Xj{1

s~iz1

Var½Ts�z

Var½Tj �
3

z
E2½Tj �

12
, 1ƒj§iƒN:

ð3Þ
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Note that another implicit assumption used in the derivation of

these equations is the independence of the stage durations of one

another. This assumption will be discussed later in the paper.

To solve these equations, we employ a nonlinear least squares

regression algorithm implemented in MATLAB. We use a

restricted variant of this general algorithm which guarantees

non-negative values for both the mean and variance calculations.

The counting method for means and variances
The counting method first introduced in [24] is somewhat

similar in design to the Kaplan-Meier statistic [17], but exhibits

less bias induced by a coarse sampling methodology which is

common in longitudinal studies of long-term diseases such as AD,

see below.

Unlike the regression method which computes all the stage

durations at once, the counting method considers each stage

separately. For a given stage, say, stage k, we calculate the

numerical cumulative probability distribution of the stage

duration, Pk(t). The method is illustrated in figure 1. We identify

all the patients whose first visit corresponds to stage k as group Gk

patients. For these patients, we assume that their first visit is at

t~0 (the onset of stage k is therefore on average at time t~{~tt=2).

In figure 1, there are 12 patients diagnosed with stage 1 at time 0.

Consider all the patients in group Gk who visit the doctor’s office

in some relatively short interval Ii~½ti,tiz1�. The interval lengths,

Dti~tiz1{ti, are chosen to ensure that each patient within the

grouping has no more than one visit in the interval. Then we can

compute Ni
t to be the number of patients who, upon visiting the

doctor between times ti and tizDti, transited to the next stage of

the disease. Thus, for all these patients, the duration of stage k was

less that ti. In figure 1, among the 3 patients seen during interval

I1, two remained in stage 1 and one transited to stage 2.

Therefore, we have N1
t ~1. Likewise, we define Ni

s as the number

of patients seen at the clinic in the time interval ½ti,tizDti� who

remained in stage k. For all of these patients, the duration of stage

k is greater than tizDti. For all the patients who have an office

visit in the interval Ii we define ~tti to be the mean time of these

office visits, and compute Pk(ti)~
Ni

t

Ni
szNi

t

. The ordered pairs

(~tti,Pk(ti)) for i~1:::N are thus a numerical approximation to the

cumulative distribution function, see the bottom panel of figure 1.

We further assume that the underlying probability distribution

has finite support; that is, there exist some tmin for which

tƒtmin[P(t)~0 and tmax for which t§tmax[P(t)~1. We

specify tmin and tmax as follows: set tmin~floor(t1) and

tmax~ceiling(tM ). The choice of interval lengths Dti is somewhat

arbitrary, and defines the discretization grid for the numerical

approximation of the cumulative probability function. We choose

this grid to be non-uniform: we define the time-intervals such that

the number of patients, J , in each of the intervals is the same.

It is important to note here that, as it stands, the counting

method is unable to analyze the final stage in a multistage disease,

as there are no transitions out of the final stage. With sufficiently

accurate information (for example, dates of death for patients in

the study) it may be possible to include the final stage in the

analysis; however, absent that information, we restrict this work to

the first n{1 stages of the disease.

Given the cumulative distribution function derived above, it

becomes a simple calculation to compute the mean and variance

of the underlying distribution. We have:

E½X �~tmax{
XN{1

i~1

Pk(ti)zPk(ti{1)

2
Dti, ð4Þ

Var(X )~(tmax{E½X �)2{
XN{1

i~0

½(~tti{E½X �)Pk(ti)

z(~ttiz1{E(X ))Pk(tiz1)�Dti:

ð5Þ

A more detailed description of the counting method, as well as an

analysis of its properties, is given in Text S1.

Underlying distributions in a 4-stage disease
To begin testing the methods described herein for their ability to

accurately calculate the mean and variance of the underlying

distributions of a multi-stage disease, we first must prescribe some

test distributions. We simulated a 4-stage disease by constructing

three probability distributions for each of the 4 stages. Note that

these probability distributions are not meant to model the real

course of AD or any other disease, but are used as a technique to

test our estimators. For these distribution, the mean stage

durations correspond to the published means for FAST stages

4–7 of AD [49], and the variances are listed in table 1. The three

distributions have different shapes: distribution A is uniform over a

certain time-interval; distribution B is a triangle distribution (the

sum of two uniform distributions), and distribution C is more bell-

shaped and center-concentrated (the sum of four uniform

distributions). Most of the results presented in the figures below

pertain to distribution A, and some results to distribution B. It

turns out that the main findings reported below do not change

with the shape of the distributions.

Results

We first test the methods by using artificial datasets to assess

their validity and reliability under different assumptions. The

Figure 1. A simple illustration of the counting method. We use
the method to approximate the probability distribution of stage 1
duration of a multistage disease. The top panel shows 12 patients’ visits.
The horizontal axis is the time elapsed from stage 1 onset, and the
numbers on top of vertical arrows indicate the stage assessment for
each patient. The time-axis is split into 4 unequal intervals, I1, . . . ,I4 ,
with J~3 patient visits in each. The corresponding average visit times,
~tti , and the numbers of transiting patients, Ni

t , are calculated. In the
bottom panel, the approximation (~tti ,P

1(ti)) is plotted, where
P1(ti)~Ni

t=3.
doi:10.1371/journal.pone.0028298.g001
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advantage of this approach is that in the case of artificial datasets,

we actually know the true ‘‘answer’’ and can compare our

estimates with the correct values. Once the properties of the

statistical methods have been established, we will apply them to a

real-life dataset.

Mean and standard deviation reconstruction via
regression

To study the accuracy of the regression-based method, we adopt

the following strategy. For each total data sample size, Np, we

randomly generate a large number of datasets (namely, 10,000 for

the examples presented here), and for each such dataset we

calculate the stage means and standard deviations based on

equations. We assume that the number of patients is given by (a)

Np~1,000, (b) Np~10,000, and (c) Np~100,000. The calculated

mean and standard deviation values are then compared with the

true means and standard deviations.

Typical histograms of calculated mean and standard deviation

values are given in figure 2 for the means calculations and figure 3

for the standard deviation calculation. In both figures we used

stage duration distribution A, table [?]. In each panel, the rows

represent different numbers of patients considered, and the

columns correspond to the four stages of the disease. The true

values of the mean and the standard deviations are marked on

each histogram by vertical lines, for comparison.

A convenient measure of accuracy of a method is as follows. The

accuracy of a mean or standard deviation calculation is the length

of the 95% confidence interval centered around the true value of

the mean or standard deviation, respectively. From figures 2 and 3

we note the following trends:

N The histograms for the mean and standard deviation

calculations have a bell-shaped form centered around the true

mean. The spread of the mean and standard deviation

estimates decreases with the number of patients.

Table 1. Test Distributions for AD simulations.

Stage Mean Variance A St. Dev. A Variance B St. Dev. B Variance C St. Dev. C

4 2 3/4 0.87 3/8 0.61 3/16 0.43

5 1.5 1/3 0.58 1/6 0.41 1/12 0.29

6 2.5 4/3 1.16 2/3 0.82 1/3 0.58

7 7 169/12 3.75 169/24 2.65 169/48 1.88

doi:10.1371/journal.pone.0028298.t001

Figure 2. Regression method: the mean stage durations for data generation method 1. Sets of 1,000 (top row), 10,000 (middle row) and
100,000 (bottom row) patients were considered. Each column presents the calculated mean for 10,000 simulations for each stage of a 4-stage disease.
The true mean values are shown by dashed vertical lines.
doi:10.1371/journal.pone.0028298.g002
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N The accuracy of the calculations increases with the patient

number. For all stages, increasing the patient number by a

factor of ten leads to an increase in accuracy by a factor of 3:1
for the mean calculations and by a factor of 2:5 for the

variance calculations.

N At low patient numbers, the standard deviation calculations

are uncertain. A fraction of variances calculated at the 1,000
patient level returned a negative value (these patients are not

shown in the histograms of figure 3). Thus the standard

deviation calculation procedure requires significantly more

data to yield accurate and precise results than does the mean

(see Text S1 for a mathematical explanation of this

observation).

N The accuracy of the first and the last stage mean calculations is

slightly lower than that for middle stages. The reason for that is

the smaller number of transition classes which include the end

stages; for example, there is no transition class which fully

transits the first or the last stage. It is noteworthy that the

difference in accuracy of end stages compared to the middle

stages is not large (less than a factor of 2).

N We have performed calculations for three different distribu-

tions of stage durations (not shown). We observe that the

accuracy of the mean calculations does not depend strongly on

the underlying distribution. The accuracy of the standard

deviation reconstruction is more sensitive to the relative

magnitude of the distribution’s variance (a smaller distribution

variance increases the relative error of reconstruction).

To conclude, we note that, given data which conforms to the

assumptions needed to derive the governing equations, this

method is surprisingly accurate in the calculations of the mean.

Even for small patient samples with a large number of disease

stages (which translates into a very small number of patients per

transition class), we obtain accuracy in the reconstruction on the

order of just a few percent error. However, the variance

reconstruction proves to be much more sensitive to the number

of patients in the sample size than does the mean reconstruction.

With sufficient number of patients per class, it is still possible to

attain accuracy to within 5% error; however, many more patients

are needed in the variance reconstruction than in the mean

reconstruction.

Regression method: non-independent completion
coefficients

We next explore the ability of the linear regression algorithm to

compute the mean and variance of data created by data

generation method 2. We maintain the assumption that patients

initially arrive at the clinic at a random time during their current

stage, and are seen thereafter at time-intervals determined by a

preset distribution. We simulate data sets of 10,000 patients with

disease course determined by distribution set B, with a mean inter-

office interval of 1 year. The results for 1,000 independent runs are

presented for the first stage of the disease in figure 4.

As seen in panels A and B of figure 4, the regression method is

able to accurately recreate neither the means (panel A) nor the

standard deviation (panel B), in sharp contrast to the results from

data generation method 1. Note that the variance values generated

by the algorithm were mostly negative, and they are replaced by

zero values in panel B of figure 4. We next attempt to determine

why the method has failed. Panels C and D of figure 4 show

histograms of the completion coefficients for one particular

realization of a patient dataset, for transition classes 1?2 and

2?3. We can see that in neither of these cases are the completion

coefficients uniformly distributed across the interval ½0,1�.

Figure 3. Regression method: the standard deviation of stage durations. All the parameters are as in figure 1.
doi:10.1371/journal.pone.0028298.g003
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Moreover, despite the fact that both of these transitions represent

i?iz1 transitions, the distribution of completion coefficients are

not the same, indicating that the assumption that completion

coefficients are independent of the underlying stage distribution is

no longer valid. In fact, the distribution for the 1?2 class appears

to have a peak around the value 0.4, whereas the 2?3 class

appears to be monotonically decreasing across the domain. Given

that this fundamental assumption of the regression method no

longer holds, it is clear that the method cannot give reliable

estimates of stage means or standard deviations.

We next look to determine if the regression method might still

be of some use for data of type 2. Instead of arriving randomly

throughout their current stage, in this new experiment the patients

are assumed to come to their first clinician’ visit at the beginning of

the stage. This is reflected both in the way we generate the

datasets, and in the way we implement the regression algorithm:

all transitions of type i?j, ivj will have an entry coefficient of 1.

This assumption still gives no information about the exit

coefficients nor the single coefficient of i?i transitions, so we will

leave the initial estimate of a value of
1

2
for the mean and

1

3
for the

variance in place. We plot the results of mean and standard

deviation calculation on a 10,000 patient dataset in panels E and F

of figure 4 respectively. We see here that correct knowledge of the

entry coefficient is sufficient to recover most of the accuracy of the

means calculations, but there is still significant error in the

standard deviation calculation.

Thus, we must conclude that, short of extensive knowledge of all

the completion coefficients, the regression technique is in general

only suitable for calculation of the mean stage durations if

N the data is collected in a manner similar to method 1, or

N the data is collected in a manner similar to our method 2,

where patients arrive to their first visit near the onset of the

current stage.

The standard deviation calculations by regression technique are

only reliable in the case (a) above.

Mean and standard deviation reconstruction via the
counting method

We adopt a similar strategy for exploring the accuracy of the

counting method as we did for the regression model. We generate

datasets based upon our three underlying distribution sets and

perform a counting analysis on those sets. This process is repeated

7,500 times so that accuracy statistics may be generated. We

perform these simulations twice, first on a dataset of 1,000
patients, and then on a set of 10,0000 patients. In order for the

counting method to be valid, the patients’ first visit must coincide

with the current stage onset (see the Methods section). Therefore,

to test the counting method we use data generated from procedure

2, which adds another layer of complexity to the analysis. Data

type 2 involves sampling patients at time intervals drawn from a

given distribution. For this test, we consider two such sampling

distributions, one with a mean inter-office visit interval of 1 year

and the other with a mean of 2 years. In other words, in the former

set patients return on average each year for a visit to the clinic,

whereas in the latter set patients come on average every 2 years.

The latter sampling methodology represents a much coarser study,

which is not uncommon in AD longitudinal studies. We will refer

Figure 4. Failure of the regression method to accurately calculate standard deviations in data generation method 2. (A,B). Accuracy
histogram of mean (panel A) and standard deviation (panel B) reconstruction for the first stage of a 4-stage disease using a data set of 10,000 patients
created via method 2 with an inter-office interval mean of 1 year. Entry coefficients were assumed to occur uniformly. (C,D). Actual distribution of
entry-stage completion coefficients for the transition classes 1?2 (panel C) and 2?3 (panel D) for the data in panels A and B. (E,F) Same as in panels
(A,B) but the entry coefficients were assumed to be 1 (patients first visit the clinic at the beginning of their stages). The true values of the mean and
the standard deviations are marked on histograms A, E and F by vertical lines.
doi:10.1371/journal.pone.0028298.g004
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to the sampling distribution with 1 year means by a ‘‘finer

sampling’’ and the other one as the ‘‘coarser sampling’’ case.

We plot representative histograms for the results for distribution

A for sampling intervals of both 1 and 2 years. Figures 5 and 6

show the histograms for mean and standard deviation calculations

for the coarser sampling distribution, which is a more difficult case.

The results for the finer sampling case are presented in Text S1.

The results shown in figures 5 and 6 are striking. Unlike the

regression method, the counting method works very well for type 2

data, both for mean and standard deviation calculation. We do

note that a small bias exists in both the mean and standard

deviation calculations for data sampled at 2 year intervals for

1,000 patients; however, that bias is eliminated with a larger

dataset (see figure 5 and compare row 1 versus row 2, the effect is

most apparent in the left and right columns). This is expected from

our analysis of the counting method, see Text S1. Results for the

counting method can be compared with those for the traditional

KM statistics (Text S1), which suffer from a strong bias in the

context of nonuniform sampling distributions. Unlike the case of

the counting method, this bias is not eliminated by larger sampling

sizes. Thus the counting method can provide accurate and precise

estimates of both stage means and stage standard deviations for a

multistage disease observed in even a coarsely sampled longitu-

dinal study.

We further observe the following trends in the calculations by

the counting method:

N Unlike the regression method, there is no loss of accuracy

(defined in the previous subsection) in the calculation of the

first stage parameters. This is a feature of treating each stage

separately rather than grouping all patients together for a

single calculation.

N However, due to the fact that each stage is treated separately,

the increase in accuracy after increasing the number of

patients by a factor of 10 is less than that observed for the

regression method.

Application to an AD dataset
In order to demonstrate the applicability of the two methods, we

use these techniques to analyze a longitudinal dataset of AD

patients, which is an outcome of a study performed between the

years 1983 and 2006 [25]. The following information is contained

in the dataset: the date of each patient’s visit to the clinic, current

GDS and FAST stage, and some demographic information on

each patient (such as gender, age and years of education). The

total number of AD patients in the dataset is 1321, of which 648

have repeated records (that is, they were seen more than once).

The latter group is the one we considered in this study. The mean

number of records per patient is 2:6+0:9. The patients’ age at the

first visit to the clinic is 73:1+8:7 years. 66% of the patients are

female, and 34% male. The average length of education received

by the patients is 13:1+3:4 years.

In figure 7 we present the inter-visit time distribution, which

shows how long the patients waited before their next visit to the

doctor. Two observations are important. (1) The distribution has a

strong peak around 2 years, and then a weaker mode around 4

years, which tells us that the sampling times are strongly biased.

This is because the patients were instructed to schedule their

subsequent visits after 2 years, see [25]. This results in a highly

Figure 5. Counting method: the mean stage durations for data generation method 2 (the coarse case). Sets of 1,000 (top row) or 10,000
(bottom row) patients were considered. Each column presents the calculated mean for 7,500 simulations for stages 1–3 of a 4-stage disease. The true
mean values are shown by dashed vertical lines.
doi:10.1371/journal.pone.0028298.g005
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biased distribution of sampling times in the dataset. For this

reason, a traditional method such as Kaplan Meier would be

strongly compromised, see Text S1. (2) The average inter-visit

time in the dataset is 3:03+1:59, which is comparable with the

approximate average stage duration for GDS/FAST stages 4–6.

For these reasons we conclude that the dataset at hand is most in

line with the data collecting method 2, under the coarse sampling

conditions.

Figure 7. Real-life AD dataset: a strong bias in the sampling distribution.
doi:10.1371/journal.pone.0028298.g007

Figure 6. Counting method: the standard deviation of stage durations. All the parameters are as in figure 4.
doi:10.1371/journal.pone.0028298.g006
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An example of results for GDS and FAST stage calculations is

presented in figure 8, see [24] for more information. We plot the

cumulative probability distribution estimated by the counting

method for AD stages 4–6. The mean stage durations and their

standard deviations calculated by this method are provided on top

of the graphs. We further applied the regression method to

calculate the mean stage durations. The results were 2:39 yrs,

1:49, and 2:49 yrs for stages 4, 5 and 6, respectively, see [25]. We

did not attempt to calculate the standard deviations of stage

durations by the regression method because we have established

the method’s poor reliability in this context.

First we note that the graphs of the cumulative probability

distribution approximations (figure 8) have very non-uniform

number of points along the time axes. The striking increase in the

density of points near the 2-yrs mark corresponds to the peak of

the inter-visit time distribution, figure 7. Looking at the results for

the mean values calculated by the two methods, we can see that

they are within the standard deviation of each other, and also

within the standard deviation of the previously reported values,

which are 2 yrs, 1:5 yrs and 2:5 yrs for stages 4, 5, and 6,

respectively [49]. We further notice that the values calculated by

the counting method are somewhat higher than those obtained by

the regression method. This is because for a small number of

patients (see figure 5, top row), there is a certain bias in the

estimates for the mean. This bias can be corrected by increasing

the sampling size.

Finally, we observe that the values of the standard deviations are

very large and are comparable with the mean values. It is true that

these values is a slight overestimation because of the aforemen-

tioned bias which comes with small sampling sizes. However, in

[24], these values were compared with the ones obtained by a

different method (the method of Lagakos [20]), and the results

turned out to be very similar, confirming that the values obtained

by the counting method were valid.

Although before Ref. [24], no values for the standard deviations

of GDS/FAST stage durations of AD had been published, the

magnitude of the calculated values is consistent with the general

notion of AD being a heterogeneous disease [50]. In [51],

inhomogeneity is observed with respect to the rates of ventricle

enlargement, which are related to rates of cognitive decline. Many

papers report a wide spread of progression rates of AD patients

and find different correlates of progression speed. In [52], the

presence of aphasia in AD patients is correlated with a more rapid

course of the disease. Ref. [27] discovers an association between

relatively severe frontal lobe involvement and a rapid clinical

course of AD, measured by using the dementia rating scale and

estimating the symptom duration time. In [53], it is found that the

average rates of decline vary with respect to three types of

measures: a cognitive measure (Alzheimers disease Assessment

Scale-Cognitive Subscale), a functional measure (Physical Self-

Maintenance Scale), and a global measure (CDR sum of boxes).

Although no direct estimate of the variation is presented, these

results clearly show that AD progression rates are heterogeneous in

many respects.

Discussion

In this paper we have presented two different methods which

may be applied to the analysis of multi-stage diseases, where the

goal is to reconstruct the individual stage distribution parameters

(mean and standard deviation). This information is critical for

statistical hypothesis testing needed to determine if an experiment

is having a significant effect on the progression through one or

more stages, e.g. if a new therapy is showing a delay of progression

through a multistage disease. The present study is purely statistical

Figure 8. Application of the counting method to estimating the cumulative probability distributions of AD GDS/FAST durations for
stages 4, 5, and 6 from an AD dataset [25]. The parameter ~tt~0:3 yrs was used. The mean and the standard deviation estimated by this method
are given on top of each figure.
doi:10.1371/journal.pone.0028298.g008
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and no elements of modeling are used. In other words, our focus is

to develop analytical tools for existing and future patient datasets

in multistage disease with the goal to infer (in the most efficient

and precise way) information about stage durations and their

variations. To this end, we tested two statistical methods and

demonstrated particular situations in which each method might be

applied properly.

The counting method requires more stringent restrictions on the

entry-stage completion coefficients, namely that the onset of a

stage be known as precisely as possible. It, however, makes no

restriction on the exit coefficients. It is also not possible to

reconstruct the parameters of the final stage in the sequence unless

detailed exit data is obtained. Despite these restrictions, this

method gives relatively accurate estimates of both means and

variances even under coarsely sampled data. Thus this method is

most useful for measurements of stage variances, which are critical

for any hypothesis test needed to evaluate treatments, assuming a

sufficiently large patient dataset. This method was used in [24] to

study the statistics of AD progression in a longitudinal patient set.

In particular, it was discovered that GDS and FAST stage

durations of AD patients are characterized by large variances,

confirming the notion of AD being a highly heterogeneous disease

[27,50–53].

Conversely, the regression method is most applicable in

situations where, firstly, the general distribution of the completion

coefficients is known and, secondly, where the data are insufficient

to properly perform the counting method. However, in those

situations, based on our results on the means, calculation may be

trusted at lower numbers of patients if (a) enough information is

available concerning the completion coefficients, and (b) different

stage durations are independent of one another. To see that, recall

that when we derived the equations for the regression method, we

used the assumption of independence of different stages. Care

must be taken when considering the validity of this assumption, as

there are many possible avenues by which it can be broken. For

example, in the AD community there are hypotheses [27,39–

41,54] which concern the presence of different subclasses of

progression speed. That is, there may be sub-populations of

patients in the dataset which progress through each and every

stage at rates drawn from a distribution with a lower mean than

those of other patients. In this case, the stages would only be

conditionally independent from one another, and the equations

will not represent the variances accurately. On the other hand,

given that a patient is in the fast or slow subgroup, the stage

distributions become independent.

Because of these considerations, the regression method is most

useful in searching for partitions within a larger dataset. For

example, several previous reports in the AD literature hypothesize

the presence of fast progressors and slow progressors within the

general AD population [26,27,34]. That is, there are patients

whose AD stage durations are in general shorter than those of their

counterparts across all stages of the disease. A sorting routine, e.g.

based on a genetic algorithm, can be used to partition these

patients into fast progressing versus slow progressing subgroups.

The regression method is the better option to use in such sorting

routines within a defined dataset [25].

In this paper we demonstrated an example of how our

methodology can be applied to studying the stage duration

distributions in AD. In the data set we used, GDS and FAST

staging systems were applied to assess the patients’ decline. Recent

clinical trials involving candidate treatments for AD have targeted

cohorts that already exhibit mild dementia (roughly equivalent to

FAST stage 4). It is generally hypothesized [55] that the failure of

those trials is attributable in large part to enrolling only demented

participants; clinicopathological evidence suggests that even mild

clinical symptoms appear only after AD pathology has advanced

to the point at which neurons are damaged or destroyed.

Therefore, the strongest current focus of AD research is to

identify and treat the early symptomatic and even pre-symptom-

atic stages of the disease (before FAST stage 4), and prevent the

development of significant pathology before ostensibly irreparable

brain damage has occurred [56]. Because these early stages may

last for several years and may have rather poorly-defined borders,

future trials are likely to require more precise measures of

cognitive decline, with greater sensitivity to small cognitive/

behavioral changes. Methods developed in this paper are relevant

to the development of new treatments for AD in the context of

other rating systems with greater sensitivity to detect small changes

in cognition early in the disease. This is the subject of future work.

Supporting Information

Text S1 Details of the methodology developed in the paper.

(PDF)
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