
OR I G I N A L A R T I C L E

Differential frequency in imaging-based outcome
measurement: Bias in real-world oncology
comparative-effectiveness studies

Blythe J. S. Adamson1,2 | Xinran Ma1 | Sandra D. Griffith1 |

Elizabeth M. Sweeney1,3 | Somnath Sarkar1 | Ariel B. Bourla1

1Flatiron Health, Inc., New York, New York, USA

2University of Washington, Seattle, Washington, USA

3Cornell University, New York, New York, USA

Correspondence

Blythe J. S. Adamson, Flatiron Health, Inc.,

233 Spring Street, 5th Floor, New York, NY

10013, USA.

Email: badamson@flatiron.com

Funding information

Flatiron Health, Inc.

Abstract

Background: Comparative-effectiveness studies using real-world data (RWD) can be

susceptible to surveillance bias. In solid tumor oncology studies, analyses of end-

points such as progression-free survival (PFS) are based on progression events

detected by imaging assessments. This study aimed to evaluate the potential bias

introduced by differential imaging assessment frequency when using electronic

health record (EHR)-derived data to investigate the comparative effectiveness of can-

cer therapies.

Methods: Using a nationwide de-identified EHR-derived database, we first analyzed

imaging assessment frequency patterns in patients diagnosed with advanced non-

small cell lung cancer (aNSCLC). We used those RWD inputs to develop a discrete

event simulation model of two treatments where disease progression was the out-

come and PFS was the endpoint. Using this model, we induced bias with differential

imaging assessment timing and quantified its effect on observed versus true treat-

ment effectiveness. We assessed percent bias in the estimated hazard ratio (HR).

Results: The frequency of assessments differed by cancer treatment types. In simu-

lated comparative-effectiveness studies, PFS HRs estimated using real-world imaging

assessment frequencies differed from the true HR by less than 10% in all scenarios

(range: 0.4% to �9.6%). The greatest risk of biased effect estimates was found com-

paring treatments with widely different imaging frequencies, most exaggerated in dis-

ease settings where time to progression is very short.

Conclusions: This study provided evidence that the frequency of imaging assess-

ments to detect disease progression can differ by treatment type in real-world

patients with cancer and may induce some bias in comparative-effectiveness studies

in some situations.
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KEY POINTS

• Frequency of outcome assessments in real-world oncology care is lower than in clinical trial

protocols, and variable according to treatment.

• Based on the differences observed in a real-world cohort of patients with aNSCLC, differ-

ences in outcome assessment timing may introduce bias in comparative- effectiveness

studies.

• The magnitude of the bias introduced by differences in assessment timing appears to be

minor in generally clinically plausible scenarios, and rarely leads to false conclusions.

1 | INTRODUCTION

Real-world data (RWD) captured during the course of routine clinical

care, and real-world evidence (RWE) generated through RWD ana-

lyses, have emerged as a complement to traditional prospective trials.1

Electronic health records (EHRs) have become a key RWD source,

providing information about patient populations larger and more

inclusive than those in clinical trials. Unlocking the full value of EHR-

derived data, requires determining the reliability of endpoint metrics

obtained from them, especially considering how routine care differs

from clinical trials.

Progression-free survival (PFS), or the time lapsed from an

index date to disease progression (or death) for a specified popula-

tion, as well as response rate, or the proportion of patients with

tumor-burden reductions, are acceptable efficacy measures in sup-

port of regulatory drug approvals and health technology assessment

in oncology research.2–5 In clinical trials in solid tumors, progression

and response are identified by applying the Response Evaluation

Criteria in Solid Tumors (RECIST)6 to imaging assessments timed

according to protocol specifications. In routine clinical practice, clin-

ical judgment is combined with imaging evaluations, and assessment

timing is flexible. These are challenges to the evaluation of tumor

burden endpoints from RWD sources such as EHRs. While prior

work developed a reliable method to identify progression events

from EHR sources7,8 and generate real-world (rw)PFS estimates

consistent with clinical trial results,9,10 accurate quantification of

time-to-event endpoints also depends on the frequency of the origi-

nating imaging assessments.

Progression events in patients with solid tumors are anchored on

the dates of imaging tests and subsequent clinic visits. Variability in

assessment frequency causes surveillance bias that impacts compara-

tive PFS estimates (i.e., treatment effects, Figure 1).11–16 A number of

studies have simulated PFS estimations under assessment schedules

in clinical trials.12,13,17 Little has been reported on the potential influ-

ence of real-world variability in assessment timing and frequency

when estimating PFS.

This study aims to characterize the variability in imaging

assessment timing in a cohort of real-world patients with advanced

or metastatic non-small cell lung cancer (aNSCLC) and to

evaluate through simulation the degree of bias that differential

assessment frequency between treatment groups may introduce in

comparative-effectiveness studies.

2 | REAL-WORLD DESCRIPTIVE ANALYSIS

2.1 | Methods

We utilized Flatiron Health's nationwide longitudinal de-identified EHR-

derived database comprised of patient-level structured and unstructured

data, curated via technology-enabled abstraction.18,19 During the study

period, the data originated from approximately 280 US cancer clinics

(�800 sites of care). Institutional Review Board approval of the study

protocol was obtained prior to study conduct and included a waiver of

informed consent. Analyses were conducted in R version 3.6.1.

A database of patients who had undergone next generation

sequencing (NGS) testing of their tumor samples was used to source

F IGURE 1 Conceptual diagram of the effect of differential timing
in assessments when comparing two treatment groups. Even in
theoretical cases where the progression free survival times are the
same, more frequent assessments can bias the detection of
progression towards shorter times
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those with at least two clinic visits on or after January 1, 2011, a con-

firmed diagnosis of advanced or metastatic aNSCLC on or before

December 31, 2018, and documentation of receiving at least one line of

systemic therapy. In order to optimize information availability, patients

had to have at least one radiographic imaging assessment during the

therapy line of interest indicated in their EHR, with the corresponding

documentation manually abstracted. Assessment time points indexed to

a line of treatment were captured retrospectively. Starting from the first

imaging test, imaging tests performed up to 14 days later were consid-

ered one single assessment time point at the date of first imaging, since

unique assessments may encompass a multiple-test succession (e.g., a

chest CT followed by a brain MRI 1 week later) documented in a single

synthesized entry. Any tests in the first 30 days after treatment start

date were excluded, as well as those from anatomic sites without prior

or new disease involvement, from baseline onward (those scans are

likely not intended to assess disease burden changes following therapy).

We excluded patients without structured EHR activity within 90 days

after the advanced diagnosis date.

The primary outcome of interest was imaging assessment fre-

quency during the observation period, defined as the time from start

date of the line of therapy until either the first radiographic disease

progression event, death within 90 days of treatment discontinuation,

or censoring (patients without an event were censored at the date of

the last imaging assessment prior to the treatment discontinuation/

switch [as commonly specified in clinical trials]; Table S1). Imaging

assessment frequency was measured using two methods: (1) we cal-

culated the mean time (weeks) between scans during the observation

period (reported as the observation period divided by the number of

assessments time points) and (2) we defined observation windows,

mimicking imaging assessment cadences common in clinical trials and

intended to reflect clinically meaningful, unique assessment

opportunities,20–22 consisting of six-week periods for the first

36 weeks and nine-week periods thereafter, as in the POPLAR trial.21

Based on this schema, we calculated the proportion of observation

windows with at least one documented imaging assessment at the

individual patient level. The last observation window for each patient

is the last complete window, including the end date of the observation

period. At a cohort level, we calculated the mean, median, and vari-

ance in patients' probability of receiving an imaging assessment in any

observation window, stratified by treatment group (ALK inhibitors,

anti-VEGF–containing therapies, EGFR TKIs, PD-1/PD-L1–based

therapies, platinum-based chemotherapy combination, single agent

chemotherapies, and other). A sensitivity analysis examined imaging

assessment frequency in second-line treatment compared to first-line

treatment (oncologist-defined, rule-based lines of therapy as defined

in prior studies10).

2.2 | Results

The real-world analysis included 3118 patients (Table 1; Figure S1;

comparisons between study and parent cohorts, Tables S2–S4). The

frequency of imaging assessments was greater for patients who had

an initial diagnosis of Stage IV aNSCLC (compared to Stage III), and

those diagnosed in 2018 (compared to earlier years).

Imaging assessment frequency was highest for patients receiving

platinum-based chemotherapy (every 10.4 weeks on average; mean

probability for assessment within observation windows, 0.57

[sd = 0.20]), and lowest for EGFR TKIs (every 14.9 weeks; mean proba-

bility for assessment within observation windows, 0.47 [sd = 0.17]; Fig-

ure 2). A sensitivity analysis found similar assessment frequencies and

patterns in first- and second-line therapy (Tables S5 and S6, Figure S2).

3 | SIMULATION STUDY

3.1 | Methods

The assessment probabilities per observation window from the real-

world cohort analysis were used as inputs in a simulation to evaluate

how differences in the frequency of imaging assessments by therapy

class could bias estimates in comparative-effectiveness studies. Simu-

lation modeling allows for generation of the “true” disease progres-

sion event for each individual within a hypothetical study group,

generation of a set of plausible imaging assessment dates dependent

on the treatment arm, and then calculation of the date when disease

progression would be observed; these simulated data were devoid of

confounders (Figure 1).

Key model parameters are provided in Table S7. The event time of

true disease progression and death for each individual was probabilisti-

cally drawn from an exponential distribution with constant hazard

(i.e., Weibull with shape parameter of 1). The overall beta distributions

for each cohort were aggregated based on “individual patient journey”
simulations. The series of imaging dates for each individual were gener-

ated by adding random noise to the scan date schedule and then defin-

ing for each observation window whether the scan occurred, based on

a probabilistic draw from the treatment type-specific parametric distri-

bution of the probability for a patient to receive a scan in the window

(see Data S1). By assigning the true hazard ratio (HRtrue) for Treatment

A compared to B as an input to the model, we could explore the influ-

ence of other model parameters to understand the related effect on

the observed hazard ratio (HRobserved) in comparison to HRtrue. The main

outcome measure of interest was percent bias, defined here as (HRtrue -

HRobserved) /HRtrue to capture the magnitude and direction towards or

away from a null hypothesis. A secondary outcome measure was the

percent of simulated trials where conclusions differ between the HRtrue

and HRobserved. Conclusions differ in the simulated study if the HRobserved

was not statistically significant, having a 95% CI for the HRobserved cross-

ing the null hypothesis value of 1.0.

The primary analysis simulated a set of 1000 comparative-

effectiveness studies with 500 patients in each treatment group (total

of 1000 patients per trial), true median PFS of 4 months with

Treatment A, HRtrue of 0.80 of Treatment B relative to A, and the

probability of an imaging assessment in each observation window was

0.50 for Treatment A and 0.65 for Treatment B. This primary simula-

tion was conceived as an extreme scenario in that the HRtrue is not
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TABLE 1 Characteristics of the real-world cohort of patients with aNSCLC included in this study, overall and by tertile of scan frequency

Total

Frequency of imaging assessment tertilea

Low Medium High
N = 3118 n = 1034 n = 1027 n = 1057

Age at advanced diagnosis, median [IQR] 67.0 [60.0;74.0] 69.0 [61.0;75.0] 67.0 [59.0;74.0] 66.0 [59.0;73.0]

Year of advanced diagnosis

<2014 686 (22.0%) 278 (26.9%) 224 (21.8%) 184 (17.4%)

2015–2017 1999 (64.1%) 663 (64.1%) 667 (64.9%) 669 (63.3%)

2018 433 (13.9%) 93 (9.0%) 136 (13.2%) 204 (19.3%)

Sex

Female 1607 (51.5%) 554 (53.6%) 513 (50.0%) 540 (51.1%)

Male 1511 (48.5%) 480 (46.4%) 514 (50.0%) 517 (48.9%)

Race

White 2257 (72.4%) 731 (70.7%) 741 (72.2%) 785 (74.3%)

Black, Afr. Am 204 (6.5%) 75 (7.3%) 61 (5.9%) 68 (6.4%)

Asian 109 (3.5%) 54 (5.2%) 30 (2.9%) 25 (2.4%)

Other 290 (9.3%) 96 (9.3%) 97 (9.4%) 97 (9.2%)

Not reported 258 (8.3%) 78 (7.5%) 98 (9.5%) 82 (7.8%)

Practice type

Academic 95 (3.0%) 30 (2.9%) 34 (3.3%) 31 (2.9%)

Community 3023 (97.0%) 1004 (97.1%) 993 (96.7%) 1026 (97.1%)

Smoking history

Yes 2498 (80.1%) 798 (77.2%) 824 (80.2%) 876 (82.9%)

No 609 (19.5%) 233 (22.5%) 199 (19.4%) 177 (16.7%)

Unknown/Not doc. 11 (0.4%) 3 (0.3%) 4 (0.4%) 4 (0.4%)

Disease stage

Stage I 262 (8.4%) 112 (10.8%) 79 (7.7%) 71 (6.7%)

Stage II 184 (5.9%) 72 (7.0%) 52 (5.1%) 60 (5.7%)

Stage III 578 (18.5%) 256 (24.8%) 183 (17.8%) 139 (13.2%)

Stage IV 2044 (65.6%) 573 (55.4%) 694 (67.6%) 777 (73.5%)

Other 50 (1.6%) 21 (2.0%) 19 (1.9%) 10 (0.9%)

Histology

Non-squamous 2432 (78.0%) 811 (78.4%) 806 (78.5%) 815 (77.1%)

Squamous 566 (18.2%) 184 (17.8%) 181 (17.6%) 201 (19.0%)

NOS 120 (3.8%) 39 (3.8%) 40 (3.9%) 41 (3.9%)

Therapy class in first-line

Platinum-based 1150 (36.9%) 320 (30.9%) 374 (36.4%) 456 (43.1%)

PD-1/PD-L1-based 761 (24.4%) 240 (23.2%) 239 (23.3%) 282 (26.7%)

Anti-VEGF-containing 602 (19.3%) 183 (17.7%) 212 (20.6%) 207 (19.6%)

EGFR TKIs 423 (13.6%) 222 (21.5%) 132 (12.9%) 69 (6.5%)

ALK inhibitors 95 (3.0%) 38 (3.7%) 37 (3.6%) 20 (1.9%)

Single agent chemother. 63 (2.0%) 25 (2.4%) 26 (2.5%) 12 (1.1%)

Other 24 (0.8%) 6 (0.6%) 7 (0.7%) 11 (1.1%)

Abbreviations: ALK, anaplastic lymphoma kinase; aNSCLC, advanced non-small cell lung cancer; EGFR, epidermal growth factor receptor; IQR, interquartile

range; NOS, not otherwise specified; PD-(L)1, programmed death (ligand) 1; TKI, tyrosine kinase inhibitor; VEGF, vascular endothelial growth factor.
aImaging frequency tertile of low, medium, or high corresponds to mean weeks between assessment time points being >11.9, 8.6–11.9, and 3.5–8.5
respectively.
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that far from one (small treatment effect), the PFS is short, and there

is a very large difference in the frequency of imaging assessments

between the treatment groups.

We conducted a one-way sensitivity analysis to investigate key

factors influencing bias (magnitude and direction), and altering treat-

ment effectiveness conclusions: the size of the differential in imaging

frequency between treatment groups (small or large), direction of the

difference in treatment imaging frequency (i.e., intervention assessed

more or less often than reference), patient cohort size (small or large),

expected reference progression-free time (short or long), and treat-

ment effect size (small or large). We recalculated the model using

plausible upper and lower ranges for these parameter values, one at a

time with all other inputs fixed, and documenting percent bias and

percent of altered conclusions for each simulation.

In addition, three clinically meaningful and practically plausible

comparative-effectiveness case studies were simulated to ascertain

potential bias away from corresponding randomized controlled trial

results with identical imaging assessments across arms (Table 2,

F IGURE 2 Descriptive statistics for
the frequency of imaging assessments
among real-world patients with aNSCLC
on first-line therapy, both for the length
of the interval between assessments and
the probability of assessment in pre-
defined observation windows. Dashed
vertical lines represent the median.
“Other” category includes other minor

therapy classes with less than 20 patients

TABLE 2 Results from simulation model primary analysis and case studya

Primary simulation Case study

Hypothetical base case RWD versus RWD simulation

INPUT

Treatment Group A (reference) Drug A Chemotherapy

True median PFS (95% CI), months 4.0 (3.5, 4.5) 6.0 (5.3, 6.8)b

Imaging frequency, median weeks between scans 12.0 10.6

Treatment Group B Drug B PD-L1inh.

True median PFS (95% CI), months 5.0 (4.4, 5.7) 12.0 (10.5, 13.6)b

Imaging frequency, median weeks between scans 9.2 10.8

True difference in median PFS, months 1.0 6.0

True HR, (95% CI) 0.80 (0.71, 0.91) 0.50 (0.44–0.57)b

RESULT

Observed difference in median PFS, months 0.64 6.6

Observed HR, (95% CI) 0.86 (0.76, 0.97) 0.51 (0.44–0.57)

Bias in HR, mean relative % (95% CI) �7.0% (�20.6, 5.7) �1.3% (�14.0, 11.7)

Conclusions differ,c % of 1000 simulations 30% 0

Abbreviations: CI, confidence interval; EGFR, epidermal growth factor receptor; HR, hazard ratio; PD-(L)1, programmed death (ligand) 1; RWD, real-world

data; TKI, tyrosine kinase inhibitor.
aEHR-derived data analysis stratified by treatment class. Note: Each case study and the main analysis simulate 500 patients in each treatment group and

1000 comparative-effectiveness trials.
bBased on the Keynote-024 study.20

cIn the trials simulations where conclusions differed, the 95% CI of the observed HR crossed 1.0 and the null hypothesis could not be rejected.
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Table S9). Comparisons incorporated real-world assessment frequen-

cies in scenarios corresponding to the Keynote-02420 trial (a phase III

trial comparing two infusional therapies, the immunotherapeutic agent

[PD-L1 inhibitor] pembrolizumab to investigator's choice of platinum-

based chemotherapy, in previously untreated patients with advanced

NSCLC; featured in the main Results) and the EURTAC23 trial (a phase

III trial comparing an oral agent erlotinib [an EGFR TKI] to infusional

platinum-based chemotherapy, in patients with NSCLC and tumors

harboring EGFR mutations; featured in Data S1). We used published

trial results to define treatment arms, true median PFS, and true effi-

cacy input values for case studies. Two case studies simulated possi-

ble outcomes using RWD for each arm (main Results and Supplement

Section 2.5 in Data S1), and a third (Supplement Section 2.5 in Data

S1) simulated outcomes of a clinical-trial arm compared to a real-

world cohort.

The model was coded in R version 3.6.1. Uncertainty in the

observed HR and percent bias is reflected by 95% confidence inter-

vals (CI) from parametric bootstrapping with 1000 simulated datasets

(see Data S1 for parametric distributions). Detailed methods and func-

tions for replication are provided in Data S1.

3.2 | Results

In the primary analysis simulation of 1000 studies with 1000 patients

per study, where the probability of undergoing imaging assessment

F IGURE 3 Results from simulated
comparative-effectiveness studies
for A, the primary simulation and B, a
case study based on real-world
assessment frequencies. Black points
represent the observed HR for each
study with 95% CI bars in gray,
horizontal orange line compared to
true HR at yellow line. The 1000
studies are ordered by observed HR
along the x-axis
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during an observation window was 0.50 for Treatment A and 0.65 for

Treatment B, the HRtrue was fixed to 0.80 and the mean HRobserved was

0.86 (95% CI: 0.76 to 0.97). These conditions resulted in a surveillance

bias of �7% (95% CI: �21 to 6%). In 30% of the replicated studies,

conclusions differed because of biased HR with 95% CIs crossing 1.0,

therefore the null hypothesis could not be rejected, leading to false

null results. The true difference in median PFS between treatments A

and B was 1.0 month and the observed incremental gain from Treat-

ment B was 0.6 months (Table 2).

In our case studies, the assessment frequency differences across treat-

ment arms introduced a smaller amount of bias and no conclusions differed

from truth (Table 2, Table S9, Figure S4), that is, HRobserved was in the same

direction asHRtrue and the null hypothesis was correctly rejected. The main

case study compared pembrolizumab versus chemotherapy, with HRtrue of

0.50 based on clinical trial Keynote-024.20 Using the real world frequency

of imaging from our descriptive analysis for the corresponding therapies

(both simulation arms), the difference in the assessment frequency was

1.8%. This difference introduced a �1.3% bias in the HR analysis, for an

HRobserved of 0.51, which did not lead to false conclusions in any of the

1000 simulations performed (Table 2 and Figure 3).

In both the primary simulation and the case study, the more

effective treatment arm had similar or greater imaging assessment fre-

quency. The bias attributed to that differential shifted the effective-

ness estimate towards the null hypothesis, yielding a higher HR

estimate. However, the shift was larger in the pre-specified primary

theoretical simulation and smaller in the case study based on actual

observations from real-world practice (Figure 3).

Our one-way sensitivity analysis dissected key inputs one by one, eval-

uating the impact that surveillance differences may have on the ultimate

results according to a range of values for each input (drivers of bias,

Figure 4). The key drivers of percent bias were the size of absolute and rela-

tive differences in frequency of imaging assessments between treatments,

with greater differences causing greater bias. Results were also sensitive to

the true PFS in the reference group, where longer PFS time in the reference

treatment group reduced susceptibility to bias from imaging frequency.

4 | DISCUSSION

We found imaging assessments in routine practice to be usually less

frequent than clinical trial schedules for patients with aNSCLC,19–21

and consistent with NCCN Guidelines®.24 The comparative-

effectiveness study simulation quantified the magnitude and direction

of bias in the HR for PFS introduced by differences in assessment fre-

quencies. Having an inferior comparator arm with fewer assessments

than an intervention arm biased results towards the null. In a theoreti-

cal scenario, a comparison of a single-arm clinical trial (novel therapy

arm) with an external control RWD arm under extremely divergent

assessment conditions, would yield false negative results (erroneous

rejections of an effective therapy) nearly a third of the time, but would

not lead to false positive results with erroneous benefit claims for the

investigational therapy. However, our descriptive results indicated

that real-world variability may not necessarily reach the span we theo-

rized for our pre-specified simulation, which allowed us to craft

F IGURE 4 Key considerations influencing susceptibility to surveillance bias from differential imaging assessment frequency in comparative-
effectiveness studies, based on one-way sensitivity analysis results. The one-way sensitivity analysis calculates results for the upper and lower
range of a parameter while holding all other parameters fixed. The horizontal axis dashed line represents the value estimated in the main analysis.
HR, hazard ratio; PFS, progression free survival; pp, percentage points of mean relative percent bias in observed versus true hazard ratio
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clinically plausible case studies; in those cases, the bias was smaller

and did not change the conclusions in any of the simulations

performed.

Understanding factors driving surveillance bias and potentially

false conclusions is important, considering the growing interest in

using RWE to contextualize clinical trial results.25–30 According to our

univariate sensitivity analysis (Figure 4), the extent of relative bias

remained similar for small and large effect sizes, but incorrect conclu-

sions became more likely with smaller effect sizes. Therefore, the

potential impact of differential assessment frequencies may become a

relevant limitation in RWD studies with small treatment effects. The

risk for false negative results also depended on the direction of

the assessment frequency differential (whether the arm with more/

less frequent assessments is the one with superior/inferior outcomes),

becoming greater when the direction of surveillance bias opposes the

true difference direction (i.e., the arm with more true events has fewer

observed events), as when an inferior treatment arm has less frequent

assessments. When the surveillance bias has the same direction as the

true difference (i.e., the arm with more true events has more observed

events), estimates tend to shift away from the null (the larger the dif-

ferences in assessment frequency, the greater the shift), making this

the only setting risking false positive findings and overestimated ben-

efit. Therefore, the risk for false results rests on both the magnitude

and the direction of differential scan frequency, in the context of the

effectiveness differences between arms. Researchers should consider

these factors, particularly when facing binary decisions (i.e., yes/no

regulatory decisions or go/no-go in clinical development).

The recent study by Kapetanakis et al31 explored a similar ques-

tion in the context of comparisons of separate single-arm clinical tri-

als. That setting has the advantage of processing information from

two treatment arms where imaging assessment timing may be differ-

ent, but modifiable in a uniform manner. Our simulation study used

real-world inputs to investigate the potential bias that could be intro-

duced by imaging assessment frequency variations; therefore the

inter-cohort differences (between real-world cohorts, or clinical trial

cohorts and real-world control arms) were non-modifiable, and

exhibited intrinsic variability.

This study has some limitations. Our originating data source for

the descriptive analysis is EHR-derived information for a specific

patient cohort who has received NGS testing and has EHR documen-

tation of imaging assessments. We focused on this cohort to filter

potentially incomplete data in our EHR-derived database since data

missingness is a known issue in RWD sources (Ma et al18 reported a

comprehensive comparison of our master data source to other stan-

dard observational databases in oncology). Yet, the entry require-

ments could be exerting some cohort selection bias, which we tried to

contextualize by comparing baseline characteristics of our study

cohort to patients with no documented scans (see Data S1). Another

limitation is the potential unmeasured bias related to insurance cover-

age, which may be an important determinant of assessment practices,

for which, unfortunately, our databases lack comprehensive informa-

tion. We made some specific research choices: focus on one single

disease (aNSCLC), a simulation model structure with a unique

likelihood of imaging assessment per window for each individual,

maintained constant over time as a simplification, and we presented

idealized comparisons devoid of other confounders. Subsequent

research on actual cohorts should investigate the generalizability

across tumor types and disease stages and will likely have to face

more complex scenarios where surveillance bias may be compounded

by real-world confounding factors. Finally, we assigned relatively large

sample sizes to our simulated studies; in cases with smaller sample

sizes, true differences may become more difficult to detect.

Imaging assessment in real-world oncology practice is likely to be

less frequent and less consistent than in clinical trials and can system-

atically differ by treatment type. The potential influence of differences

in the timing of outcome measurement should be considered during

the design stage when assessing the feasibility and validity of real-

world comparisons. When differential scan timing may impact results,

more guidance on best practices to correct and/or minimize bias

would be beneficial. Possible approaches for debate could include sta-

tistical adjustment or interval censoring. The scientific community

must define and develop these methods for surveillance bias correc-

tion in order to rigorously learn from the experiences of patients with

cancer and generate valid evidence for decision-making.
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