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Abstract

Background: The innate immune system relies upon a wide range of germ-line encoded receptors including a large number
of immunoglobulin superfamily (IgSF) receptors. Different Ig-like immune receptor families have been reported in
mammals, birds, amphibians and fish. Most innate immune receptors of the IgSF are type I transmembrane proteins
containing one or more extracellular Ig-like domains and their regulation of effector functions is mediated intracellularly by
distinct stimulatory or inhibitory pathways.

Methodology/Principal Findings: Carp SITR was found in a substracted cDNA repertoire from carp macrophages, enriched
for genes up-regulated in response to the protozoan parasite Trypanoplasma borreli. Carp SITR is a type I protein with two
extracellular Ig domains in a unique organisation of a N-proximal V/C2 (or I-) type and a C-proximal V-type Ig domain,
devoid of a transmembrane domain or any intracytoplasmic signalling motif. The carp SITR C-proximal V-type Ig domain, in
particular, has a close sequence similarity and conserved structural characteristics to the mammalian CD300 molecules. By
generating an anti-SITR antibody we could show that SITR protein expression was restricted to cells of the myeloid lineage.
Carp SITR is abundantly expressed in macrophages and is secreted upon in vitro stimulation with the protozoan parasite T.
borreli. Secretion of SITR protein during in vivo T. borreli infection suggests a role for this IgSF receptor in the host response
to this protozoan parasite. Overexpression of carp SITR in mouse macrophages and knock-down of SITR protein expression
in carp macrophages, using morpholino antisense technology, provided evidence for the involvement of carp SITR in the
parasite-induced NO production.

Conclusion/Significance: We report the structural and functional characterization of a novel soluble immune-type receptor
(SITR) in a teleost fish and propose a role for carp SITR in the NO-mediated response to a protozoan parasite.
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Introduction

The innate immune system is an ancient form of host defense

that relies upon a wide range of non-rearranging, germ-line

encoded receptors including a large number of immunoglobulin

superfamily (IgSF) receptors [1,2]. Members of the IgSF typically

contain at least one Ig domain of about 100 amino acids built up

by a sandwich of two b-sheets of antiparallel b-strands packed

together and roughly forming a barrel-shaped structure. Ig

domains are either of the variable (V) type, the constant (C)1 or

C2 types or the intermediate (I) type differing by varying numbers

of b-strands in each of the b-sheets that form the sandwich [3,4].

The number and organization of the Ig domains in surface bound

proteins of the IgSF may vary, but usually the N-terminal Ig

domain is of the V-type, whereas the remaining domain(s) are of

the C1 or C2-type [5,6].

Well-studied Ig-like immune receptors comprise the leukocyte

receptor cluster (LRC) on human chromosome 19 [7]. LRC genes

can be grouped into different multigene families, which induce

leukocyte-Ig-like receptors (LILRs), Ig-like transcripts (ILTs) [8],

killer inhibitory receptors (KIRs) [9], platelet collagen receptor

glycoprotein VI (GPVI) [10], receptor for IgAFc (FCAR) [11],

natural cytotoxicity receptor (NCR) NKp46 [12] and leukocyte-

associated inhibitory receptors (LAIRs) [13]. In addition to the

LRC, two other small clusters have been identified in the human

genome on chromosome 6 and 17. A cluster of single V-type Ig

domain innate immune receptors on human chromosome 6

includes the natural cytoxicity receptor NKp44, triggering
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receptors expressed on myeloid cells (TREM) and TREM-like

transcripts (TLT) [14,15]. More distant relatives of TREM

proteins are the CD300 family found on human chromosome

17, as well as the polymeric Ig receptor (pIgR). CD300 molecules

are transmembrane glycoproteins with a single V-type Ig domain

with a conserved YWCR amino acid motif and two (instead of

one) disulfide bonds and an intracytoplasmic signaling motif

[16,17,18]. Most innate immune receptors of the IgSF are type I

transmembrane proteins containing one or more extracellular Ig-

like domains, a transmembrane segment and a cytoplasmic region

that may contain tyrosine residues [2]. Typically, their regulation

of effector function is mediated intracellularly by distinct

stimulatory or inhibitory pathways. Stimulatory receptors have a

short cytoplasmic tail devoid of canonical signalling motifs but

contain a positively charged amino acid residue within their

transmembrane region that allows the receptor to associate with

ITAM (immune receptor tyrosine-based activation motifs)-con-

taining transmembrane adaptor proteins [19,20]. Inhibitory

receptors have long cytoplasmic tails with a variable number of

ITIMs (immune receptor tyrosine-based inhibition motifs) [21,22].

Soluble receptors can be generated by several mechanisms, which

include proteolytic cleavage of receptor ectodomains, alternative

splicing of mRNA transcripts or transcription of distinct genes that

encode soluble receptors [23]. In mammals, LILRA3 and LAIR2

encoded within the LRC, are devoid of a transmembrane region

and are secreted rather than embedded in the cell membrane

[24,25]. In addition, soluble forms of the TREM family members

(TREM-1, TREM-2 and TLT-1) have been described [26,27,28].

Although their function is unknown, sTREM-1 and sTREM-2 are

thought to negatively regulate TREM receptors signaling through

neutralization of the respective ligands. Some reports suggest that

soluble TREM are obtained by alternative splicing of mRNA

transcripts whereas others report origination by proteolytic cleavage

of the receptors’ ectodomain [29].

Studies in non-mammalian vertebrates have reported the

presence of Ig-like immune receptor families in birds, amphibians

and fish [30]. Novel immune-type receptors (NITRs) are present in

a large number of teleost fish species, are encoded by multigene

families and share structural and signaling similarities with

mammalian KIR receptors [31,32]. Teleost novel immunoglobu-

lin-like transcripts (NILTs) share structural similarities with

mammalian TREM and NKp44 receptors [33,34]. Modular

domain immune-type receptors (MDIRs) from cartilaginous fish

(clearnose skate) and zebrafish share structural similarities with

mammalian CD300, TREM/TLT, FCAR and pIgR receptors

[18,35]. We report the structural and functional characterization of

a Soluble Immune-Type Receptor (SITR) in a teleost fish. Carp

SITR is a type I protein with two extracellular Ig domains in a rare

organisation of a N-proximal V/C2 (or I-) type Ig domain and a C-

proximal V-type, devoid of a transmembrane domain or any

intracytoplasmic motif. The V-type Ig domain of SITR shows clear

sequence homology to mammalian vertebrate CD300 molecules.

Carp SITR is expressed abundantly in macrophages and can be

secreted upon stimulation with the protozoan parasite Trypanoplasma

borreli. Carp SITR promotes PKC-dependent NO production in the

mouse macrophage RAW cell line and is involved in T. borreli-

induced iNOS gene expression in carp macrophages.

Results

Cloning and sequence analysis of carp Soluble
Immune-Type Receptor SITR

A substracted cDNA repertoire from common carp macro-

phages, enriched for genes up-regulated in response to the

protozoan parasite T. borreli, was generated by SSH. Included in

the repertoire (3/300 positive clones) was a partial consensus

sequence for a novel immune-type receptor. Specific primers

based on the initial sequence amplified a full-length cDNA

sequence of 1114 bp with an open reading frame of 723 bp,

encoding for a protein of 241 aa with a predicted molecular weight

of 27.4 KDa.

The novel cDNA has two predicted Ig-like domains and a 15 aa

short proximal C-terminal region. Although the 15 aa proximal C-

terminal region appears rich in positively charged amino acids

(K232, K234, R236), the protein has no clear transmembrane

region nor structural hallmarks suggestive of stimulatory or

inhibitory (e.g.: ITAM, ITIM) signalling potential (Fig. 1A). The

novel protein has a putative N-glycosylation site at position 73 and

several Serine (13 sites), Threonine (4 sites) and Tyrosine (6 sites)

phosphorylation sites as well as a protein kinase C (PKC)

phosphorylation site at position T65 (Fig. 1A). Sequence analysis

classifies it as a type I soluble protein with a putative hydrophobic

24-aa signal peptide expected to induce secretion. No vacuolar

targeting signal was predicted. Thus, structural analysis of the

novel protein sequence suggests SITR to be a secreted protein.

Amino acid sequence alignment of the two Ig-like domains

(Fig. 1B–C) showed a high degree of similarity (BLAST E

value#1029) of the C-proximal Ig-like domain (Fig. 1C, 93 aa)

with Ig domains from mouse CMRF-35-like molecules (CLM) and

human CD300 orthologues as well as with mammalian polymeric

immunoglobulin receptor (pIgR) molecules. In contrast, the degree

of similarity of the N-proximal Ig-like domain (Fig. 1B, 94 aa) with

these mammalian Ig domains was low (BLAST E value#1024).

Most CD300 Ig domains are characterized by the presence of two

pairs of cysteine residues and typical aa motifs contained in strands

forming the two b-sheets of the Ig domain. The novel protein has a

C-proximal Ig-like domain with two pairs of cysteine residues and

a conserved WCR motif in strand C and conserved FTV motif in

strand E (Fig. 1C). In contrast, the N-proximal Ig-like domain has

a single pair of cysteine residues only, with a conserved tryptophan

(W) motif in strand C and a conserved FTVT motif in strand E

(Fig. 1B). Prediction of the b-strands using Swiss Model and

PSIPRED databases and sequence alignment with b-strand

regions defined by X-ray crystallography of CD300A and

CD300 LF molecules, defined a long spacing between the putative

b-strands C and D, suggesting the presence of additional b-strands

(e.g.: C9 and C0). The prediction servers confirmed the presence of

a C9 strand for both Ig-like domains and possibly a C0 strand for

the C-proximal Ig-like domain. Thus, we predict the N-proximal

Ig-like domain to be of the V/C2- (or I-) type and predict the C-

proximal Ig-like domain to be of the V-type.

In conclusion, sequence analysis suggests that the novel cDNA is

a new member of the Ig-SF with a V/C2 type N-proximal Ig

domain and a V-type C-proximal Ig domain. The V-type Ig

domain displays homology with mammalian CD300 molecules

and with modular domain immune type receptors (MDIRs) of the

cartilaginous skate and zebrafish which are multigenic families of

activating/inhibitory receptors. We conclude that we have

identified, in common carp, a novel soluble immune-type receptor

without typical activating/inhibiting characteristics named Soluble

Immune-Type Receptor SITR (GenBank Accession Number:

HM370297, http://www.ncbi.nlm.nih.gov/genbank/).

SITRs belong to a multigene family of soluble receptors
To investigate if the novel SITR gene could be part of a

multigenic family we used the common carp SITR cDNA

sequence to search for SITR orthologues in the genome of

zebrafish, a close relative of common carp [36]. This search

Carp SITR-Mediated Immune Responses
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identified 6 sites coding for SITR-related molecules (named IGSF

in Fig. 2B) in the zebrafish genome, of which several with multiple

genes. We identified one site on zebrafish chromosome 1, two sites

on chromosome 2 (2a, 2b), two sites on chromosome 15 (15a, 15b)

and one site on chromosome 19. We could identify no synteny

between mammalian CD300 or pIgR sites and SITR-related sites

in zebrafish (Fig. 2 A–B).

Carp SITR and the SITR-related zebrafish sequences found on

chromosome sites 2a, 2b, 15a and 19 form a cluster of soluble

receptors only, without evidence for transmembrane domains or

evidence for activating (ITAM) or inhibiting (ITIM) motifs

(Fig. 2C). For this reason, we refer to this cluster as SITR-family.

Additional SITR-related zebrafish sequences found on other

chromosomal sites 1 and 15b do show evidence of transmembrane

domains and form two multigene families distinct from the SITR-

family. Taken together these results suggest carp SITR to be an

orthologue of a multigenic family of SITRs in zebrafish.

Carp SITR displays a high basal expression
The SITR cDNA was initially identified in an SSH repertoire

from carp macrophages stimulated with the protozoan parasite T.

borreli. Studies of basal SITR gene expression in carp macrophages

revealed a highly abundant expression in naı̈ve macrophages

similar to the level of the house keeping 40S ribosomal S11 protein

gene (Fig. 3A). Gene expression in carp macrophages could be 2-

fold upregulated, approximately, by the protozoan parasite T.

borreli (Fig. 3B).

To study protein expression, we affinity-purified an antibody

raised in rabbit against a peptide in the C-proximal Ig-domain of

SITR (YTVGRTDTSQNSSVQIS). Two discrete bands could be

shown in western blot, of which one with predicted 28 KDa MW

(Fig. 3C). Pre-incubation of the anti-SITR antibody with the

immunizing peptide resulted in a partial disappearance of the

45KDa but complete disappearance of the band with predicted

molecular weight of 28 KDa of SITR, confirming specificity of the

antibody.

Sequence analysis showed that, although the 15 aa proximal C-

terminal region of SITR appears rich in positively charged amino

acids, the protein has no clear transmembrane region and has a

secreted function. To study the sublocalization of the protein in

carp macrophages, we performed both surface and intracellular

staining using the anti-SITR antibody. Lack of surface staining

(Fig. 3D) supports the sequence analysis that carp SITR has no

transmembrane region nor plasma membrane anchoring by, for

example, GPI modifications. Clear intracellular staining (Fig. 3D)

of 50–70% of cells indicated that the majority of naı̈ve carp

macrophages express the SITR protein. As a negative control anti-

SITR antibody was pre-incubated with the immunizing peptide,

which reduced intracellular staining to 20% only. Our results

indicate that carp SITR is a soluble immunoglobulin-type receptor

abundantly expressed intracellularly in naı̈ve carp leukocytes.

Carp SITR is expressed mainly in myeloid cells
The SITR gene was detected in protozoan parasite-stimulated

carp macrophages, whereas the presence of SITR protein in carp

macrophages was confirmed by western blot and flow cytometry.

To examine the putative presence of SITR protein in leukocyte

cell types other than macrophages we performed double-staining

using anti-SITR antibody (blue) in combination with monoclonal

antibodies (red) recognizing (WCL-15+) monocytes/macrophages,

(TCL-BE8+) neutrophilic granulocytes, (WCI-12+) B-cells or

(WCL-6+) thrombocytes in spleen from naı̈ve carp. Immunohis-

tochemical analysis confirmed the abundant SITR protein

expression particularly in splenic macrophages (WCL-15+ SITR+
double-positive cells display a dark-purple colour) but not in

neutrophilic granulocytes, B cells and thrombocytes (Fig. 4A–F).

To examine the putative presence of the SITR gene in leukocyte

cell types other than macrophages we also performed real-time

qPCR on cDNA from purified leukocyte cell populations. Gene

expression analysis confirmed the abundant expression of SITR

transcript in monocyte/macrophages, showed moderate SITR

gene expression in neutrophilic granulocyte-enriched fractions and

weak SITR gene expression in B cell-, T cell- and thrombocyte-

enriched fractions (data not shown). This suggests that SITR is

preferentially expressed in myeloid cell types. To verify the high

SITR prevalence in macrophages, two further sources of carp

macrophages were examined for SITR protein expression;

macrophage-enriched MACS-sorted leukocytes from head kidney

and head kidney-derived cultured macrophages. Head kidney is

the hematopoietic organ equivalent to the mammalian bone

marrow. WCL-15+ macrophages displayed SITR+ positivity

(Fig. 4G–H). The SITR protein was never detected on the cell

surface membrane but localized intracellularly within macrophag-

es in vesicle-like structures.

Carp SITR is secreted upon in vitro stimulation with
protozoan parasites

The SITR cDNA was initially identified to be differentially

expressed in carp macrophages stimulated with T. borreli. To

confirm SITR protein regulation by this protozoan parasite,

macrophages were incubated with live T. borreli parasites. The

presence of two distinct populations (SITRdull and SITRhigh),

corresponding to differences in SITR protein expression, was

evident (Fig. 5A). Stimulation with live parasites did not have an

effect on mean fluorescence intensity (MFI) but did result in a

lower number of SITRhigh cells after 15 min (0.25 hour; Fig. 5A).

After 3 h stimulation with live parasites, the percentage of

SITRhigh macrophages reduced from 50% to 35%, approximately

(Fig. 5B). Decrease of the percentage of SITRhigh macrophages

was evident after stimulation with the protozoan parasite

Trypanoplasma borreli as well as after stimulation with a related

parasite (Trypanosoma carassii), but not after stimulation with

Figure 1. Carp Soluble Immune-Type Receptor (SITR) is a member of the Ig superfamily. A. Nucleotide sequence of common carp SITR
with open reading frame (upper case) and untranslated 59 and 39 regions (lower case). The predicted amino acid sequence is shown below the
nucleotide sequence. The predicted signal peptide is underlined and the two Ig-like domains are marked in bold. The potential N-glycosylation site is
boxed and the potential PKC interaction site is circled. Dot indicates the stop codon. A consensus polyadenylation signal (AATAAA) in the 39-UTR is
dashed. B. Alignment of the putative carp SITR N-proximal Ig-like domain (SITR_N, residues 30–123) with V-type Ig domains from human CD300
molecules. C. Alignment of the putative carp SITR C-proximal Ig-like domain (SITR_C, residues 132–224) with V-type Ig domains from human CD300
molecules. Asterisks indicate identity and colons denote similarity. Dashes indicate the introduced gaps to maximize the alignment. Residues
characteristic of the V-type CD300 Ig-like fold and conserved between carp SITR (GenBank Accession Number: HM370297, http://www.ncbi.nlm.nih.
gov/genbank/) and human CD300A (GenBank acc no: NP_009192.2), CD300C (GenBank acc no: NP_006669.1), CD300E (GenBank acc no:
NP_852114.1), CD300F (GenBank acc no: NP_620587.2) are grey shaded. Cysteines conserved between carp SITR and human CD300 molecules are
boxed. Regions of b-strands, as defined by X-ray crystallography for CD300A (PDB acc no: 2Q87, http://www.rcsb.org/pdb/home/home.do) and
CD300LF (PDB acc no: 2NMS) are marked in bold. The positions of the predicted b-strands for carp SITR are indicated above the sequence.
doi:10.1371/journal.pone.0015986.g001
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unrelated ligands such as peptidoglycan or lipopolysaccharide

(data not shown). Our results therefore suggest a ligand-specific

function for SITR in carp macrophages.

To assess whether the observed decrease of intracellular staining

for SITR upon stimulation with live T. borreli should be ascribed to

secretion of SITR protein, an optimized concentration of brefeldin

A (BFA) was used. BFA is an inducer of retrograde protein

transport from the Golgi to the ER, leading to protein

accumulation in the ER and therefore impairs protein secretion.

The percentage of SITR+ macrophages reduced from 65% to

45%, approximately, after incubation with only BFA (Fig. 6A, C).

Stimulation of macrophages with both BFA and live T. borreli

parasites increased intracellular SITR protein expression from

55% to 70%, approximately (Fig. 6B, C). The use of an inhibitor

of endosomal acidification (chloroquine) did not impair the

secretion of SITR protein upon parasite stimulation, confirming

the targeting of the protein to the extracellular space and not to

the lysosomal compartment (data not shown). Hence, our results

strongly suggest that stimulation of macrophages with live

protozoan parasites promotes the secretion of SITR protein in vitro.

Carp SITR is detected in the supernatant of
parasite-stimulated cells in vitro

Sequence analysis classified carp SITR as a type I soluble

protein expected to be secreted extracellularly. Furthermore,

decrease of intracellular SITR protein expression after stimulation

with T. borreli parasites and increase of intracellular SITR protein

expression after co-stimulation with BFA suggested a parasite-

induced secretion of SITR protein to the extracellular space. To

validate secretion, SITR was immunoprecipitated in the superna-

tants of SITR-transfected HEK 293 cells stimulated with parasites.

In supernatants of control-transfected HEK 293 cells, only the

heavy (,50KDa) and light chains (,25KDa) of the anti-SITR

antibody were detected (Fig. 7A). To confirm the co-elution of the

IgH and IgL chains during the immunoprecipitation procedure,

GAR-HRP was used as the only detecting antibody (Fig. 7B). Two

additional bands were detected in western blots of both cell lysates

and supernatant using anti-SITR antibody as detecting antibody,

of which one with predicted MW for carp SITR of 28 KDa

(Fig. 7A). The presence of SITR protein in supernatants of SITR-

transfected cells only, confirms secretion of SITR protein to the

extracellular space.

Carp SITR may be secreted during in vivo infection with
the protozoan parasite T. borreli

In vitro stimulation of carp macrophages with T. borreli resulted in

a decrease of intracellular staining indicative of SITR secretion.

Immunohistochemical analysis of spleen of T. borreli-infected carp

showed a similar decrease of SITR protein expression at week 1–3

post-infection, increasing to basal levels at 5 weeks post-infection

(Fig. 8A). The simultaneous (moderate) increase rather than

decrease in number of (WCL-15+) monocytes/macrophages

(Fig. 8B), proved that the decrease in SITR protein expression

during infection was independent of the absolute number of

macrophages present. These results suggest a T. borreli-induced

secretion of SITR protein also in vivo.

Overexpression of carp SITR in RAW cells increases NO
production

To investigate macrophage functions associated with SITR

activation, we transfected mouse (RAW) macrophages with a

construct expressing the carp SITR gene. Transfection efficiency

ranged between 25% and 35% as measured by intracellular

staining using anti-SITR antibody (Fig. 9A). RAW cells transfected

with carp TLR2 truncated at the TIR domain (TLR2DTIR), or

non-transfected RAW cells, were used as negative controls.

The SITR protein has several predicted tyrosine phosphoryla-

tion sites as well as a protein kinase C (PKC) phosphorylation site

(see Fig. 1A), suggesting that it could be involved in tyrosine

phosphorylation- and PKC-dependent mechanisms. Total tyro-

sine phosphorylation was analysed by western blot using an anti-

phospho tyrosine antibody. Stimulation of SITR-transfected RAW

cells with T. borreli parasites resulted in an induction of tyrosine

phosphorylation stronger than in negative controls (Fig. 9B).

Nitrite production is one of the signature features of T. borreli

infections in carp and is kinase dependent [37,38]. We observed

an increase of basal NO levels in SITR-transfected RAW cells, but

not in negative controls (Fig. 9C). Inhibition of Src and Syk kinases

did not inhibit SITR-induced NO production in transfected RAW

cells. In contrast, inhibition of PKC kinase, and to some extent

inhibition of PI3K kinase, resulted in an abrogation of SITR-

induced NO production (Fig. 9D). These results suggest that T.

borreli-induced stimulation of SITR results in the activation of

tyrosine phosphorylation dependent cascades, including a PKC-

dependent route that leads to NO production.

Knock-down of SITR in carp macrophages
down-regulates gene expression of iNOS

Overexpression of carp SITR in RAW cells resulted in

increased NO levels, suggesting a role for the SITR molecule in

NO production. To verify SITR involvement in NO induction,

antisense morpholinos were designed to knock-down SITR gene

translation in carp macrophages. Use of a non-specific morpholino

fused to 39-carboxyfluorescein showed morpholino delivery was

successful after 24 h, but maximal after 48 h. Successful inhibition

of SITR translation was evaluated by intracellular staining and

western blot with SITR antibody. Morpholino B, but not

morpholino A nor the non-specific morpholino reduced the Mean

Figure 2. Diversity of carp SITR-related molecules encoded in the zebrafish genome. A. Schematic organization of human CD300 and PIGR
loci on chromosomes (Chr) 17 and chromosome 1. B. Schematic organization of zebrafish SITR loci identified on chromosome 1, chromosome 2 (sites
2a and 2b), chromosome 15 (sites 15a and 15b) and chromosome 19. C. Unrooted phylogenetic tree showing the relationship between the carp SITR
amino acid sequences for the full-length molecule with other known vertebrate Ig-like receptor sequences. This tree was constructed by the
‘neighbour-joining’ method using the clustal X and treeview packages, and was bootstrapped 10,000 times. All bootstrap values less than 75% are
shown. The GenBank accession numbers (http://www.ncbi.nlm.nih.gov/genbank/) of the human CD300 amino acid sequences are: CD300A,
NP_009192.2; ; CD300B, NP_777552.2 ; CD300C, NP_006669.1 ; CD300D, NP_001108624.1; CD300E, NP_852114.1; CD300F, NP_620587.2 ; CD300G,
NP_660316.1. The GenBank accession numbers (http://www.ncbi.nlm.nih.gov/genbank/) of the mouse CD300 amino acid sequences are: CD300A,
CAM18755.1; CD300B, NP_954691.2 ; CD300C, NP_954695.1; CD300D, NP_663412.1 ; CD300E, NP_742047.1; CD300F, NP_663609.2; CD300G,
NP_082263.2. The GenBank accession numbers (http://www.ncbi.nlm.nih.gov/genbank/) of the skate sequences are: MDIR2, ABC86796.1; MDIR3,
ABC86797.1; MDIR4, ABC86799.1. The GenBank accession numbers (http://www.ncbi.nlm.nih.gov/genbank/) of the mammalian PIGR are: RAT,
NP_036855.1; MOUSE, NP_035212.2; HUMAN, NP_002635.2; COW, NP_776568.1; RABBIT, NP_001164516.1. The Genbank accession numbers (http://
www.ncbi.nlm.nih.gov/genbank/) of the carp sequences are: PIGR, ADB97624.1; SITR, HM370297.
doi:10.1371/journal.pone.0015986.g002
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Fluorescence Intensity (MFI) of SITR-positive macrophages (data

not shown). Similarly, only use of morpholino B reduced the

intensity of the 28 KDa SITR-specific band in western blot

(Fig. 10A). Therefore, morpholino B was used to verify SITR

involvement in NO induction by carp macrophages.

Stimulation of carp macrophages with live T. borreli parasites up-

regulated gene expression of IL-1b and iNOS 5-fold approxi-

mately. Pre-incubation of carp macrophages with morpholino B,

but not with non-specific morpholino, specifically reduced iNOS

gene expression (Fig. 10B). These data show the involvement of

SITR in protozoan parasite T. borreli-induced iNOS gene

expression.

Discussion

In this study, we describe the molecular cloning and functional

characterization of a soluble immunoglobulin-like receptor SITR

in teleost fish. Carp SITR has two extracellular Ig-domains with

an unique organization: a V/C2 (or I-) type N-proximal Ig domain

and a V-type C-proximal Ig domain. The carp SITR V-type Ig

Figure 3. SITR gene and protein expression in carp macrophages. A. Real-time qPCR cycle profile for SITR in naı̈ve carp macrophages in
comparison with the house keeping gene 40S ribosomal protein S11 and Toll-Like Receptor (TLR)2 as reference genes. B. SITR gene expression in carp
macrophages after stimulation for 6 h with live T. borreli protozoan parasites (0.56106 per well). mRNA levels of SITR relative to the house keeping
gene 40S ribosomal protein S11 are expressed as fold change relative to unstimulated cells (control). Bars show averages 6 SD of n = 4 fish. Symbol
(*) shows a significant (P#0.05) difference compared with unstimulated cells. C. Western blot analysis of macrophage lysates using as primary
antibody the anti-SITR antibody or the anti-SITR antibody pre-incubated with the immunizing peptide (20mg/ml). D. Surface and intracellular SITR
protein staining detected by flow cytometry using anti-SITR antibody or anti-SITR antibody pre-incubated with the immunizing peptide (20mg/ml).
doi:10.1371/journal.pone.0015986.g003
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domain, in particular, has a close sequence similarity and

conserved structural characteristics to mammalian CD300-like

molecules. In contrast to the majority of IgSF receptors, SITR has

no transmembrane domain. In carp, SITR is secreted by

macrophages upon stimulation with protozoan parasites. Overex-

pression of SITR in mouse macrophages and knock-down of

SITR in carp macrophages provides evidence for involvement of

SITR in parasite-induced NO production.

Sequence analysis predicted carp SITR to have a N-proximal

Ig-like domain of the V/C2- (or I-) type and a C-proximal Ig-like

domain of the V-type. In general, Ig folds are formed by

antiparallel b-strands arranged into two b-sheets linked by

disulphide bonds and IgSF domains can be classified in V, C1,

C2 and I types according to sequence patterns and length [3,4]. By

convention, the b-strands have been labeled A to G (based on the

C1 domain) with the two additional strands in V–type Ig domains,

present between C and D, labeled C9and C0. One b-sheet consists

of b-strands A, B, E and possibly C9 and C0 while the other b-sheet

contains strands C, F, G. Bork et al. [3] classified Ig-domains as

belonging to V-types having all 9 b-strands, C1 types lacking the

C9 and C0, C2 types having the C9 strand but not the C0 or D

strands and I types, which are a hybrid between V- and C2-type Ig

domains. In contrast to the C-proximal V-type Ig domain,

unambiguous assignment of the N-proximal Ig domain of carp

SITR as of the V/C2- (or I-) type remains challenging. If our

analysis is correct, the organization of the carp SITR into an N-

proximal Ig-like domain of the V/C2- (or I-) type and a C-

proximal Ig-like domain of the V-type is unique [5,6].

We used the SITR cDNA sequence to search for orthologues in

the genome of zebrafish, a close relative of common carp [36].

This search identified 6 sites on 4 different chromosomes (1, 2a,

2b, 15a, 15b and 19) coding for SITR-related molecules of which

Figure 4. SITR protein is mainly expressed in myeloid cells. A. Anti-SITR immunoreactivity (blue) in spleen of naı̈ve carp. B. Anti-SITR
immunoreactivity (blue) after pre-incubation of the anti-SITR antibody with the immunizing peptide (20mg/ml) in spleen of naı̈ve carp. C. Double-
staining for monocytes/macrophages (WCL-15; red) and SITR (blue) in spleen of naı̈ve carp. D. Double-staining for neutrophilic granulocytes (TCL-BE8;
red) and SITR (blue) in spleen of naı̈ve carp. E. Double-staining for B cells (WCI-12; red) and SITR (blue) in spleen of naı̈ve carp. F. Double-staining for
thrombocytes (WCL-6; red) and SITR (blue) in spleen of naı̈ve carp. G. Double-staining for monocytes/macrophages (WCL-15; green) and SITR (red) in
macrophage-enriched cell fractions from head-kidney of naı̈ve carp. H. Staining for SITR (red) in macrophage-enriched cell fractions from head-kidney
of naı̈ve carp. Typical red-stained (WCL-15+, TCL-BE8+, WCI-12+ or WCL-6+) cells are indicated with open arrows and typical blue-stained (SITR+) cells
with closed arrows. Note that in panel C, it is difficult to distinguish between red- and blue-stained cells. Co-localization of both signals results in the
indicated dark purple-stained cells.
doi:10.1371/journal.pone.0015986.g004
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several with multiple genes. Carp SITR and SITR-related

molecules in zebrafish form a cluster of receptors that all appear

to be soluble. However, it is difficult to reliably predict

transmembrane exons from genomic sequences only and thus this

prediction will require further research on cDNA sequences from

zebrafish. In any case, these results suggest carp SITR to be an

orthologue of a multigenic family of SITRs in zebrafish.

IgSF structural domain types differ in species distribution. V-

types are found throughout all animal species in evolution. C1-

types are found only in vertebrates and therefore must have

Figure 5. Effect of parasite stimulation on percentage of SITR-positive cells. A. Density plots of intracellular SITR protein expression
analysed by flow cytometry using anti-SITR antibody. Macrophages were stimulated with live T. borreli parasites (0.56106 per well) for different time
periods or left untreated as negative control. Two populations of cells could be defined on the basis of SITR protein expression: SITRdull and SITRhigh

for the density plot representing negative control cells at 0.25 h. The separation (grey dashed line) between SITRdull and SITRhigh gates was defined
based on each negative control (at 0.25, 0.5, 1, 2 and 3 hours) and set as the line separating the two populations. The same SITRdull and SITRhigh gate
settings were used to analyse the parasite-stimulated samples at the respective time points. Density plots shown are representative of one out of
three experiments. Mean fluorescent intensity (MFI) of FITC and PE are represented in X and Y axes, respectively. B. Percentage SITRhigh cell
populations (averages 6 SD of n = 3 fish) after stimulation of macrophages with live T. borreli parasites for different time periods, or left untreated as
negative control. Symbol (*) indicates a significant (P#0.05) difference in parasite-stimulated cells compared with unstimulated cells at the same time
point.
doi:10.1371/journal.pone.0015986.g005
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evolved late during metazoan evolution. C2-type Ig domains have

been described for Drosophila melanogaster and thus are considered to

have originated in the protostome lineage. Presently, I-type (and

V-type) domains have been found in sub-vertebrate species such as

the sea anemone [39]. In general, about one-third of the

characterized surface proteins of human leukocytes belong to the

IgSF. Approximately half of these IgSF proteins contain two Ig

domains; an N-proximal V-type followed by a C-proximal C2-

type Ig domain [5]. In teleost fish, this type of organization can be

found in, for example, the NITR family [32,40]. The observed

SITR Ig domain organisation may be unusual but is not unique to

carp and seems a conserved feature of the SITR-related genes

found in the zebrafish genome (unpublished data). The presence of

this novel type of IgSF organization may be the result of exon

shuffling through intronic recombination as has been described for

other members of the IgSF [41,42]. Exon shuffling by which

domains can be inserted into a protein, or alternative splicing by

which domains can be excluded from a protein, can contribute to

addition and deletion of Ig domains from the middle of proteins

and therefore give rise to a variety of organisations for IgSF

proteins [43]. In conclusion, we have identified a protein that may

stand as a model for a novel family of soluble immune-type

receptors in fish that displays two unique structural features; (i) the

Ig domains are organised as an N-proximal V/C2- (or I) type and

a C-proximal V-type and (ii) SITR genes may represent genome-

encoded soluble receptors.

The unambiguous assignment of carp SITR sequences as

orthologs or paralogs of other presently known immune receptors

is difficult at this point. Comparison of structure and chromosomal

location of SITRs with previously described Ig-type receptors in

zebrafish such as NITRs [31] clearly demonstrates that SITRs

form distinct cluster(s) of immune receptor genes. Although

alignment and homology searches show a close resemblance of

the C-proximal V-type Ig domain of SITRs with human CD300

genes, members of the CD300 family have a single (V-type) Ig

domain and usually are transmembrane rather than soluble

receptors. CD300 molecules comprise a family of seven members.

All members, except for CD300G, possess structural motifs with

stimulatory or inhibitory potential [18]. Cross-linking CD300

molecules on different leukocyte populations broadly affects gene

transcription, phagocytosis, cytokine production, migration and

survival [44,45,46]. The cell surface expression of CD300 family

members is modulated, in part, by the ability of these molecules to

internalize whereas effective CD300 signalling appears to be

induced by clustering e.g. into lipid rafts [47]. Likely, following the

confirmation of carp SITR as a member of a larger family of

soluble CD300-related molecules in teleost fish, continued studies

on SITRs should provide further insight into the evolution of the

CD300 family of molecules.

As predicted from the sequence analysis, SITR protein is not

found in the cell membrane but located intracellularly in vesicle-

like structures. Upon in vitro stimulation of macrophages with live

T. borreli parasites SITR protein is readily secreted within minutes.

Likewise, we observed a secretion of SITR protein in vivo in spleen

of T. borreli-infected fish already at week 1 post-infection. The

detection of SITR protein in supernatants of parasite-stimulated

SITR-transfected cells corroborated the secretion, rather than

degradation, of carp SITR to the extracellular space.

To assess the function of SITR, we increased SITR protein

expression by overexpression in mouse RAW macrophages or

Figure 6. Intracellular SITR protein sorting. A. Carp macrophages were incubated for 16.5 h with brefeldin A (BFA, 2 mg/ml) or left untreated as
negative control. B. Macrophages were pre-incubated for 30 min with BFA (2 mg/ml) or left untreated as negative control and further stimulated for
16 h with live T. borreli parasites (0.56106 per well). Percentage (%) of cells with an MFI higher than 10u was defined as % SITR+ cells for all the density
plots based on the plot obtained with the negative isotype control. The density plots of intracellular SITR protein expression analysed by flow
cytometry using anti-SITR antibody are representative of four experiments. Mean fluorescent intensity (MFI) of FITC and PE are represented in X and Y
axes, respectively. C. Percentage SITRhigh cell populations (averages 6 SD of n = 4 fish) after pre-incubation for 30 min with BFA, or left untreated as
negative control, followed by stimulation with live T. borreli parasites for 16 h. Symbol (*) indicates a significant (P#0.05) difference in parasite
stimulated cells compared with unstimulated cells.
doi:10.1371/journal.pone.0015986.g006

Figure 7. Detection of SITR protein in the supernatant of SITR-transfected HEK 293 cells. TLR2ÄTIR (negative control)- and SITR-
transfected HEK 293 cells were stimulated with live T. borreli parasites (106 per well) for 16 h. Supernatants and cell lysates from transfected HEK 293
cells were collected and SITR was immunoprecipitated using the affinity purified anti-SITR antibody. A. Western blots of immunoprecipitated
supernatants (SPN) of TLR2ÄTIR-transfected (negative control, 2.5 or 5mg construct ) HEK 293 cells. SITR expression was evaluated using anti-SITR
antibody. B. Western blots of immunoprecipitated supernatants (SPN) of SITR-transfected (5mg construct) HEK 293 cells. Co-elution of the heavy (IgH)
and light chain (IgL) of the anti-SITR antibody during the immunoprecipitation protocol was confirmed using goat-anti-rabbit conjugated with
horseradish peroxidase (GAR-HRP). C. Western blots of immunoprecipitated supernatants and cell lysates of SITR-transfected (2.5 or 5mg construct)
HEK 293 cells. SITR expression was evaluated using anti-SITR antibody.
doi:10.1371/journal.pone.0015986.g007
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reduced SITR protein expression by knock-down in carp

macrophages. Cellular activation upon overexpression or inhibi-

tion of SITR protein expression was evaluated by means of radical

production, phosphorylation analysis and gene expression. Carp

SITR itself could act as receptor when overexpressed in mouse

macrophage RAW cells and also human HEK cells (unpublished

data). Stimulation of these SITR transfectants with live T. borreli

parasites promoted tyrosine phosphorylation-dependent intracel-

lular signaling cascades. Also, overexpression of SITR in RAW

cells increased NO production. The NO induction appeared to be

PKC- and partly PI3K-dependent, corroborating the predicted

ability of SITR to interact with the PKC kinase and revealing the

potential of SITR activation to initiate a phosphorylation-

dependent signaling cascade upon stimulation with protozoan

parasites. The ability of IgSF receptors to associate with kinases

has been proven to exist already in the earliest metazoans such as

poriferans [48]. Thus, carp SITR (Ig-like domains) proteins may

have retained this function. Nitrite production is one of the

signature features of T. borreli infections of carp as has been shown

by strongly increased iNOS gene expression in head-kidney and

spleen, increased serum nitrite levels and extensive tyrosine

nitration in the spleen [37,49]. Ex vivo restimulation of macro-

phages from T. borreli-infected carp with LPS or parasite lysates

indicated the presence of classically activated macrophages (caMF)

during T. borreli infection [50]. Furthermore, NO production

during T. borreli infection was shown to be protein tyrosine kinase

(PTK) and PKC-dependent [38]. However, despite all the

information acquired on the NO production induced by T. borreli,

the innate immune receptors implicated in this production are still

largely unknown.

Certainly, the increased SITR gene expression in T. borreli-

stimulated macrophages and the secretion of SITR protein during

in vivo T. borreli infection suggests a role for this IgSF receptor in the

host response to this protozoan parasite. Knock-down of SITR

protein expression in carp macrophages, using morpholino

antisense technology, confirmed the involvement of carp SITR

in the induction of iNOS gene expression by T. borreli. A

hypothesis could be that an intracellular activating signal from a

cell surface-bound receptor, upon recognition of parasite-derived

ligand, promotes the interaction of PKC kinase with intracellular

SITR and initiate a phosphorylation-dependent cascade leading to

NO production. In this situation, extracellular secretion of

carp SITR could either represent a strategy to counter-regulate

the concentration of intracellular SITR or a strategy to facilitate/

antagonize the intracellular SITR-dependent activation

[23,51].

Collectively, this study provides a comprehensive analysis, not

only in vitro but also in vivo, of the regulation and putative biological

activity of SITR in carp. Further molecular and functional

characterization of additional members of an apparent larger

family of SITR genes will shed light on the specificity and

complementarity of the mechanisms of action between SITR

receptors and other innate immune receptors. Finally, we propose

a role for carp SITR in the NO-mediated response to the

protozoan parasite Trypanoplasma borreli.

Materials and Methods

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and/or local animal

welfare bodies, and all animal work was approved by the animal

experimental committee of Wageningen University, Wageningen,

The Netherlands. (license numbers: 2004079/2004137/2008054).

Animals
European common carp (Cyprinus carpio carpio L.) were reared in

the central fish facility of Wageningen University, The Nether-

Figure 8. SITR protein expression during in vivo T. borreli infection. A. Anti-SITR immunoreactivity (blue) in spleen tissue from non-infected
fish (control) and at 1, 3 and 5 weeks post-infection with T. borreli parasites. B. Staining for monocytes/macrophages (WCL-15; red) in spleen tissue
from non-infected fish (control) and at 1, 3 and 5 weeks post-infection with T. borreli parasites.
doi:10.1371/journal.pone.0015986.g008
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lands at 23uC in recirculating UV-treated tap water and fed

pelleted dry food (Skretting, Nutreco) daily. R36R8 carp are the

hybrid offspring of a cross between fish of Hungarian origin (R8

strain) and of Polish origin (R3 strain) [52]. Carp were between 9

and 11 months old at the start of the experiments.

Parasites
Trypanoplasma borreli was cloned and characterized by Steinhagen

et al. [53]. Parasites were maintained by syringe passage through

carp. Parasitaemia was monitored in 106diluted blood in cRPMI

[RPMI 1640 (Invitrogen, CA, USA) adjusted to carp osmolarity

280 mOsmkg21 containing 50 U/ml of heparin (Leo Pharma BV,

Weesp, The Netherlands)] using a Bürker counting chamber. The

minimum detection limit by this method was 105 parasites/ml of

blood (viability.95%). For parasite isolation, blood was collected

from 3-weeks-infected fish and purified on a 1612cm ion-

exchange chromatography using DEAE cellulose (DE-52; What-

man international) [54]. After purification, parasites were

resuspended in HML medium [55] supplemented with 5% pooled

carp serum, L-glutamine (2 mM, Cambrex, Verviers, Belgium),

penicillin G (100 U/ml, Sigma-Aldrich), and streptomycin sulfate

(50 mg/l, Sigma-Aldrich).

Figure 9. Overexpression of SITR in mouse RAW macrophages. A. Intracellular SITR protein expression in RAW cells analysed by flow
cytometry using anti-SITR antibody (1:50). RAW cells were non-transfected (NT) or transfected with carp SITR. B. Western blot of cell lysates of
TLR2DTIR- (control) and SITR-transfected RAW cells stimulated with live T. borreli parasites (Par, 0.56106 per well) for 15 min or left untreated as
control. Tyrosine phosphorylation was evaluated using an anti-phospho tyrosine antibody. C. Nitrite concentration (averages 6 SD of n = 5) in
supernatants of non-transfected (NT), TLR2ÄTIR-(control) and SITR- transfected RAW cells determined by Griess reaction at 24 h. Symbol (*) indicates a
significant (P#0.05) difference compared with TLR2ÄTIR - transfected RAW cells. D. Nitrite concentration (averages 6 SD of n = 3) in supernatants of
SITR- transfected RAW cells pre-incubated for 30 min with inhibitors of Src kinase (Src i, PP2, 20mM), Syk kinase (Syk i, Piceatannol, 50mM), and PI3K
kinase (PI3K i, LY294002, 50mM), PKC kinase (PKC i, Staurosporine, 1mM) or left untreated as control. TLR2ÄTIR-(control)- transfected RAW cells were
used as negative controls (data not shown). Nitrite levels were determined by Griess reaction at 24h. Symbol (*) indicates a significant (P#0.05)
difference compared with unstimulated cells.
doi:10.1371/journal.pone.0015986.g009
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Figure 10. Knock-down of SITR protein in carp macrophages. A. Western blot of cell lysates from carp macrophages incubated for 48 h with
control morpholino (control, 5mM), SITR morpholino A (SITR_A, 5 mM) or SITR morpholino B (SITR B, 5 mM) or left untreated as control. SITR protein
expression was analysed using anti-SITR antibody. B. Real-time gene expression in carp macrophages pre-incubated for 48 h with control morpholino
(mo_ctrl, 5 mM), SITR morpholino A (mo_A, 5 mM) or SITR morpholino B (mo_B, 5 mM) or left untreated. Macrophages were further stimulated for 6 h
with live T. borreli parasites (0.56106) or left unstimulated. mRNA levels of inducible nitric oxide synthase (iNOS) and Interleukin-1b (IL-1b) are shown
relative to the house keeping gene 40S ribosomal protein S11 and are expressed as fold change relative to unstimulated cells (fold change = 1). Bars
show averages 6 SD of n = 4 fish. Symbol (*) shows a significant (P#0.05) difference compared to macrophages incubated with control morpholino.
doi:10.1371/journal.pone.0015986.g010
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Reagents
Inducer of retrograde protein transport Brefeldin A (BFA) from

Penicillium brefeldianum and LPS from Escherichia coli were purchased

from Sigma-Aldrich (St. Louis, MO). Inhibitor of endosomal

acidification chloroquine and inhibitor of phosphatidylinositol 3-

kinase (PI3K) LY294002 were purchased from InvivoGen (Cayla

SAS, France). Syk tyrosine kinase inhibitor Piceatannol was

purchased from Bio-connect (Tocris Biosciences, Missouri, USA)

and Src tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-

butyl)pyrazolo[3,4-d]pyrimidine (PP2) was purchased from Gibco

(Invitrogen, CA, USA). Protein kinase C (PKC) inhibitor

Staurosporine was purchased from Alexis Biochemicals (San

Diego, CA, USA).

Generation of a subtracted cDNA library
A substracted cDNA repertoire was generated by Suppression

Substraction Hybridization (SSH) using the PCR (polymerase

chain reaction)-Select cDNA substraction kit Catalog no. 637401

(Clontech, Palo Alto, CA). cDNA from macrophages stimulated

with live T. borreli parasites for 6h was used as tester and cDNA

from unstimulated macrophages was used as a driver. Tester and

driver samples represent a pool of cDNA samples from n = 4 fish.

The substracted cDNA repertoire was amplified by PCR

according to the manufacturers protocol of the PCR-Select cDNA

substraction kit (Clontech). The resulting PCR products were

ligated and cloned into JM-109 cells using pGEM-Teasy kit

(Promega) according to the manufacturer’s protocol. Two

hundred and eighty-eight clones were picked and sequenced. A

nucleic-acid homology search revealed that out of 288 clones,

3 clones represented the SITR molecule described in this

manuscript.

Amplification of carp SITR full-length cDNA
Oligonucleotide primers for carp Soluble Immune-Type

Receptor (SITR) were designed based on the (partial) consensus

sequence of 274bp obtained by SSH. cDNA from macrophages

stimulated with T. borreli for 6h was used as template for PCR or

nested PCR. The 59and 39ends of SITR were amplified using

gene-specific primers (Forward SITR: ATTTCAGTCG-

GATTTTGGCTCAG and Reverse SITR: CGTAGCTTTCAA-

CACCTAAACTGAGC) by 59and 39rapid amplification of cDNA

ends (RACE) using the Gene RacerTM RACE Ready cDNA kit

(Invitrogen, Breda, The Netherlands) according to the manufac-

turer’s protocol. PCR reactions were performed in Taq buffer,

using 1U Taq polymerase (Promega, Leiden, The Netherlands)

supplemented with MgCl2 (1.5 mM), dNTPs (200 mM) and

primers (400 nM each) in a total volume of 50 ml. PCR and

nested PCR were carried out under the following conditions: one

cycle 4 min at 96uC; followed by 35 cycles of 30 sec at 96uC,

30 sec at 55uC and 2 min at 72uC; and final extension for 7 min at

72uC, using a GeneAmp PCR system 9700 (PE Applied

Biosystems, Foster City, CA). Products amplified by PCR, nested

PCR or RACE-PCR were ligated and cloned in JM-109 cells

using the pGEM-Teasy kit (Promega) according to the manufac-

turer’s protocol. From each product both strands of eight clones

were sequenced, using the ABI prismBigDye Terminator Cycle

Sequencing Ready Reaction kit and analysed using 3730 DNA

analyser.

Bioinformatic analysis of carp SITR sequence
Nucleotide sequence was translated using the ExPASy translate

tool (http://us.expasy.org/tools/dna.html) and aligned with

Clustal W (http://www.ebi.ac.uk/clustalw). The signal peptide

cleavage site and the transmembrane region was predicted by

using the SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP/)

and the TMHMM 2.0 (http://www.cbs.dtu.dk/services/

TMHMM-2.0/) servers, respectively. Subcellular location was

predicted using the TargetP (http://www.cbs.dtu.dk/services/

TargetP/) server. Post-translational modifications were predicted

using the NetNGlyc 1.0 (http://www.cbs.dtu.dk/services/NetNGlyc/),

the NetPhos 2.0 (http://www.cbs.dtu.dk/services/NetPhos/)

and the NetPhospho K1.0 (http://www.cbs.dtu.dk/services/

NetPhosK/) servers. Homology searches were performed using

blastp http://www.expasy.org/tools/blast/ and the WU-Blast

http://www.proweb.org/Tools/WU-blast.html servers. Identifi-

cation of protein domains were predicted using PFAM (http://

pfam.sanger.ac.uk/) and SMART (http://smart.embl-heidelberg.

de/) servers. Prediction of â-strands for each Immunoglobulin

domain was predicted using Swissmodel (http://swissmodel.

expasy.org/) and PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/)

servers.

Zebrafish SITR sequences retrieval and phylogenetic
analysis

Chromosomes (Chr) within the zebrafish genome database were

searched by basic local alignment search tool (BLAST) analysis

[56] using the amino acid sequences for the carp SITR protein.

Subsequently, the DNA surrounding homologues of this gene was

retrieved (,400,000 bp) for further analysis with the following

sequence software programs; Genscan [57] identified possible

coding regions within the genomic DNA, whereas the amino acid

sequences were analysed using BLAST [56] and FASTA [58].

Phylogenetic relationships were constructed from ClustalX v1.81

[59] generated alignments of the full-length amino acid sequences

of the known SITR-related molecules using the Neighbor-joining

method [60]. The tree was drawn using TreeView v1.6.1 [61] and

confidence limits added [62].

Macrophage cell culture
Head kidney-derived macrophages, considered the fish equiv-

alent of bone marrow-derived macrophages, were prepared as

previously described [63,64]. Briefly, carp head-kidneys were

gently passed through a 100 mm sterile nylon mesh (BD

Biosciences, Breda, The Netherlands) and rinsed with homogeni-

zation buffer [incomplete-NMGFL15 medium containing 50 U/

ml penicillin G, 50 mg/ml streptomycin sulphate, and 20 U/ml

heparin (Leo Pharmaceutical, Weesp, The Netherlands)]. Cell

suspensions were layered on 51% (1,07 g.cm23) Percoll (Amer-

sham Biosciences, Uppsala, Sweden) and centrifuged at 450 g for

25 min at 4uC with the brake disengaged. Cells at the interphase

were removed and washed twice in incomplete NMGFL-15

medium. Cell cultures were initiated by seeding 1.756107

(viability.95%) head kidney leukocytes in a 75 cm2 culture flask

containing 20 ml of complete NMGFL-15 medium [incomplete-

NMGFL-15 medium supplemented with 5% heat-inactivated

pooled carp serum and 10% fetal bovine serum]. Head kidney-

derived macrophages, named macrophages throughout the

manuscript, were harvested after 6 days of incubation at 27uC
by placing the flasks on ice for 10 min prior to gentle scraping.

Gene expression analysis
Total RNA was isolated using the RNeasy Mini Kit (Qiagen,

Leusden, The Netherlands) including the accompanying DNase I

treatment on the columns, according to the manufacturers’

protocol and stored at 280uC until further use. Prior to cDNA

synthesis, a second DNase treatment was performed using DNase I,

Carp SITR-Mediated Immune Responses

PLoS ONE | www.plosone.org 15 January 2011 | Volume 6 | Issue 1 | e15986



Amplification Grade (Invitrogen). Synthesis of cDNA was

performed with Invitrogen’s SuperScriptTM III First Strand

Synthesis Systems for RT-PCR using random primers according

to the manufacturer’s instructions. A non-reverse transcriptase

control was included for each sample. cDNA samples were further

diluted 50 times in nuclease-free water before use as template in

real-time PCR experiments. Real time quantitative PCR (RT-

qPCR) was performed in a 72-well Rotor-GeneTM 6000 (Corbett

Research, Mortlake, Sydney, Australia) with the BrilliantH SYBRH
Green QPCR (Stratagene, La Jolla, CA, USA) as detection

chemistry as previously described [64]. The primers used for RT-

qPCR are listed in Table 1. Fluorescence data from RT-qPCR

experiments were analysed using Rotor-Gene version 6.0.21

software and exported to Microsoft Excel. The cycle threshold

Ct for each sample and the reaction efficiencies (E) for each primer

set were obtained upon Comparative Quantitation Analysis from

the Rotor-Gene version 6.0.21 software. The relative expression

ratio (R) of a target gene was calculated based on the E and the Ct

deviation of sample versus control [65,66], and expressed relative

to the S11 protein of the 40S subunit as reference gene.

Morpholino delivery in carp macrophages
A morpholino knockdown approach was used to knock-down

SITR protein expression in carp macrophages by inhibition of

SITR mRNA translation according to the manufacturer’s

instructions (Gene Tools, LLC, Philomath, USA). Two antisense

morpholino (Gene Tools) were designed: SITR_morpholino_A

(mo_A) and SITR_morpholino_B (mo_B). mo_A (59-

TCTTCGTGTAGGAGGCCATTTCTTT-39) targets the carp

SITR mRNA at positions 26 to +19 with respect to the ATG.

mo_B (59-CTCTTTGCTGATGTTTCCTGTAAGA-39) targets

the carp SITR mRNA at positions -32 to -7 with respect to the

ATG. As a negative control, we used a standard control (mo_ctrl,

59-CCTCTTACCTCAGTTACAATTTATA-39) which was ex-

pected to have no target and no biological activity in carp

macrophages (Gene Tools). The standard control was fused to

carboxyfluorescein to estimate the efficiency of morpholino

delivery. Carp macrophages were resuspended in rich-NMGFL-

15 medium [incomplete-NMGFL-15 medium supplemented with

2.5% heat-inactivated pooled carp serum and 5% fetal bovine

serum] and mo_control (5 mM), mo_A (5 mM), mo_B (5 mM) and

Endo-Porter (6 mM) were added. The mix was immediately

swirled, and after 48h of incubation, the efficiency of morpholino

activity was tested by means of intracellular staining and western

blot analysis of protein expression and by gene expression analysis.

Primary Antibodies
Mouse monoclonal antibody WCI-15 strongly reacts with the

cytoplasm of carp monocytes and macrophages in tissue sections

[67]. Mouse monoclonal antibody TCL-BE8 binds to carp

neutrophilic granulocytes (strong affinity), monocytes (low affinity)

[68]. Mouse monoclonal antibody WCI-12 binds to the heavy

chain of IgM in carp B cells [69,70]. Mouse monoclonal antibody

WCL6 recognizes a 90KDa membrane molecule on carp

thrombocytes [71]. Mouse monoclonal anti-phosphotyrosine

antibody and rabbit IgG anti-b-tubulin antibody were purchased

from Abcam (Cambridge, UK).

Polyclonal rabbit antibodies anti-carp SITR were produced

against each of two synthetic peptides coupled to keyhole limpet

hemocyanin (KLH), according to a 3-months standard protocol

(Eurogentec S.A., Seraing, Belgium). For peptide 1, amino acids

45-60 (CYYDKKYTQQKKYWYS) and for peptide 2, amino

acids 169–185 (YTVGRTDTSQNSSVQIS) of the carp SITR

protein were chosen for immunization. Each of the peptide is

present on a different Ig domain of the SITR protein. Affinity

purification of rabbit IgG was performed against purified peptides

and specificity assessed by ELISA (Eurogentec). Anti-SITR

antibody produced against peptide 1 binds to a 28KDa protein

as assessed by western blot analysis but, in contrast to anti-SITR

produced against peptide 2, does not lead to any positivity when

assessed by flow cytometer or immunohistochemistry. For this

reason we measured SITR protein expression using anti-SITR

antibody produced against peptide 2 and used the remaining anti-

SITR antibody as isotype control.

Magnetic activated cell sorting (MACS)
Macrophage-enriched fractions of head kidney leukocytes were

obtained essentially as previously described [64]. Cell suspensions

were layered on a discontinous Percoll gradient (1.020, 1.060,

1.070 and 1.083 g cm23) and centrifuged 30 min at 800 g with the

brake disengaged. Cells at 1.070 and 1.083 g cm23 were collected,

pooled and washed twice with cRPMI [RPMI 1640 adjusted to

carp osmolarity 280 mOsmkg21]. The monoclonal antibody

TCL-BE8 (1:50) was used to separate neutrophilic granulocytes

from macrophages by MACS as previously described. Briefly, after

incubation for 30 min with TCL-BE8 on ice, the leukocyte

suspension was washed twice with cRPMI and incubated with

phycoerythrin (PE)-conjugated goat anti-mouse (1:50; DAKO,

Glostrup, Denmark) for 30 min on ice. The magnetic separation

was performed on LS-MidiMACS Columns (Mitenyi Biotec)

according to the manufacturer’s instructions. The purity of the

TCL-BE8+ (neutrophilic granulocyte-enriched fraction; .90%)

and TCL-BE82 (macrophage-enriched fraction; ,10%) fractions

was confirmed by flow cytometric analysis using a FACScanH flow

cytometer (Becton Dickinson, Mountain View, CA, USA).

To obtain B cell-, T cell- and thrombocyte-enriched fractions,

blood was collected by puncture of the carp caudal vessel using a

heparinised (Leo Pharmaceuticals Products Ltd, Weesp, The

Netherlands) syringe. Blood was centrifuged 15 min at 800 g at

4uC. The buffy coat was collected and layered on 3 ml Ficoll

(density 1.077 g cm23, Amersham Biosciences, Uppsala, Sweden).

Following subsequent centrifugation at 800 g at 4uC for 25 min

with the brake disengaged, cells at the interface were collected and

washed twice with cRPMI. The monoclonal antibody WCI-12

(1:50) was used to separate B-cells and the monoclonal antibody

WCL-6 (1:50) was used to separate thrombocytes by MACS as

above described. The purity of the WCI-12+ (B cell-enriched;

Table 1. Primers used for real-time qPCR analysis.

Primer Sequence (59-39)
GenBank
Accession No.

40S Fw CCGTGGGTGACATCGTTACA AB012087

40S Rv TCAGGACATTGAACCTCACTGTCT

TLR2 Fw TCAACA+CTCTTAATG+TGAGCCAa FJ858800

TLR2 Rv TGTG+CTGGAAA+GGTTCAGAAAa

SITR Fw GCTCCTGATGTGT+CTGTGGTGAa HM370297

SITR Rv CTCC+CCACTGTG+TAACAGCa

iNOS Fw AACAGGTCTGAAAGGGAATCCA AJ242906

iNOS Rv CATTATCTCTCATGTCCAGAGTCTCTTCT

IL-1â Fw AAGGAGGCCAGTGGCTCTGT AJ245635

IL-1â Rv CCTGAAGAAGAGGAGGAGGCTGTCA

aThe ‘+’ is before the nucleic acid in which the locked nucleic acid was placed.
doi:10.1371/journal.pone.0015986.t001
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.95%), WCI-122 (T cell-enriched) and WCL-6+ (thrombocyte-

enriched; .95%) fractions were confirmed by flow cytometric

analysis using a FACScanH flow cytometer (Beckman Coulter,

Epics XL-MCL, Miami, Florida, USA).

Western blot analysis
Carp macrophages or mouse RAW macrophages were resus-

pended by pippeting and transferred to pre-cooled eppendorf tubes.

Cells were washed twice in ice-cold PBS, lysed on ice with lysis

solution [0.5% Triton X-100, 20 mM Tris, 100 mM NaCl, 1 mM

EDTA, 50 mM NaF (Sigma), 5mM Na3VO4 (Sigma) 1 mM

phenylmethylsulfonyl fluoride (PMSF, Sigma)], homogenized with

a syringe and incubated 10 min on ice. Cell lysates were centrifuged

at 21000 g for 10 min at 4uC. Supernatant was collected and total

protein content was determined by the Bradford method. Samples

(20–25 mg) were boiled at 96uC for 10 min with loading buffer

containing â-mercaptoethanol and separated by 10% or 12.5% SDS-

PAGE and electrophoretically transferred to nitrocellulose mem-

branes (Protrans, Schleicher & Schuell, Bioscience GmbH). Mem-

branes were blocked in 5% w/v milk powder in TBS-T (10 mM Tris,

150 mM NaCl, 0.1% Tween-20, pH 7.5) for 1 h at room

temperature and then incubated with primary antibody overnight

at 4uC in 5% w/v BSA in TBS-T. Following antibodies were used:

polyclonal rabbit anti-SITR antibody (1:100), mouse monoclonal

anti-phosphotyrosine antibody (1:500) and rabbit IgG anti-â-tubulin

(1:500). Membranes were then incubated with goat-anti-mouse

HRP-conjugated (1:1000, Dako, Glostrup, Denmark) or goat-anti-

rabbit HRP-conjugated (1:2000, Dako) in 5% w/v milk powder in

TBS-T for 1 h at room temperature. Between each incubation step,

membranes were washed three times in TBS-T for 10 min at room

temperature. Signal was detected by development with a chemolu-

minescence kit (Amersham) according to the manufacturer’s protocol

and visualized by the use of Lumi-film chemiluminescent Detection

Film (Roche, Woerden, The Netherlands).

Intracellular SITR staining
For intracellular staining of SITR in carp macrophages, 16106

cells were resuspended in 50mL FACS buffer (0.5% BSA, 0.01% in

PBS) and transferred to a 96-well U-bottom plate. For intracellular

staining of SITR in mouse RAW macrophages, 0.256106 cells

were resuspended in 50mL FACS buffer and transferred to a 96-

well U-bottom plate. Following steps were perfomed on ice unless

stated otherwise. Cells were first incubated 20min with blocking

solution (10% foetal bovine serum in PBS) to reduce non-specific

immunofluorescent staining. After washing with FACS buffer, cells

were permeabilized by incubation for 15min with 100mL Cytofix/

Cytoperm (BD Bioscience, California, USA). After a washing step

with 16Perm/Wash buffer (BD Bioscience), cells were incubated

for 30min with affinity-purified polyclonal rabbit anti-SITR

antibody or with the isotype control (both at 1:10 in Perm/Wash

buffer). After washing 16Perm/Wash buffer, cells were incubated

for 30min in the dark with the swine-anti-rabbit antibody

conjugated with fluorescein isothiocyanate (SWAR-FITC, 1:50,

Dako) as secondary antibody. After extensive washing with 16
Perm/Wash buffer, cells were transferred to flow cytometer tubes.

Fluorescent intensities of 104 events were acquired in log scale

using a Beckman Coulter Epics XL-MCL flow cytometer.

Incubation with the isotype control (anti-SITR antibody produced

against peptide 1) lead to no positive reaction.

Immunohistochemistry
Cryosections (7 mM) of spleen tissue were mounted on poly-L-

lysine-coated glass slides (BDH Laboratory Supplies, Poole, UK),

air-dried for 60 min and incubated in a 0.3% H2O2 solution in

methanol for 20 min to inactivate endogenous peroxidase.

Following steps were performed at room temperature unless

stated otherwise. Cryosections were washed for 5 min with PBS,

then short with distilled water and incubated in proteinase-K

solution (50 mg/ml in distilled water) for 10 min at 37uC. Samples

were fixed in 4% paraformaldehyde in PBS for 10 min at 4uC
followed by washing in 0.1% Triton PBS (PBS-T) for 10 min at

4uC and subsequently in PBS-T for 7 min at room temperature. A

blocking solution of 5% normal goat serum was then added onto

the slides and incubated for 30min. Affinity-purified polyclonal

rabbit anti-SITR antibody (1:10) was then added alone or in

combination with the mouse monoclonal antibodies WCL-15

(1:50), TCL-BE8 (1:50), WCI-12 (1:50) or WCL-6 (1:50) in PBS

for 1h. After washing twice for 10min in PBS-T, sections were

incubated with the secondary antibody for 1h with goat anti-rabbit

antibody conjugated to alkaline-phosphatase (GAR-AP, Dako,

1:150 in PBS) alone or in combination with goat anti-mouse

antibody conjugated to horseradish peroxidase (GAM-HRP,

Dako, 1:150 in PBS). When only GAR-AP antibody was used,

sections were first incubated in AP-buffer (0.1M Tris-Cl, 0.1M

NaCl, 0.05M MgCl2, pH 9.5) for 10min and then stained using

AP substrate [4.5 ml/ml nitro-blue-tetrazoleum (Roche Applied

Science) and 3.5 ml/ml 59-bromo-49-chloro-39-indolyl phosphatase

(BCIP; Roche Apllied Science) in AP buffer] for 2–5 min followed

by four washes in distilled water. Alternatively, when both

secondary antibodies were used (double-staining), sections were

first AP stained as described above. After rinsing four times with

distilled water, sections were incubated for 10 min in 0.05 M

sodium acetate buffer, pH 5 and following addition of 0.4 mg/ml

3-amino-9-ethyl-carbazole (AEC; Sigma-Aldrich) in sodium ace-

tate buffer containing 0.03% H2O2 and incubated for 25 min.

Finally, cryosections were rinsed four times in distilled water and

embedded in Kaiser’s glycerine gelatin (Merck, Darmstadt,

Germany). As negative immunohistochemistry controls, cryosec-

tions were first incubated with the rabbit anti-SITR antibody

followed by only GAM-AP or first incubated with mouse WCL-15,

TCL-BE8, WCI-12, WCL-6 antobodies followed by only GAR-

HRP. As positive immunohistochemistry controls, cryosections

were first incubated with the rabbit anti-SITR antibody followed

by GAR conjugated with HRP (GAR-HRP) or first incubated

with mouse WCL-15, TCL-BE8, WCI-12, WCL-6 antibodies

followed by GAM conjugated with AP (GAM-AP).

Confocal laser scanning microscopy
Cytospins on poly-L-lysine coated glass slides (BDH Laboratory

supplies) of TCL-BE8 negative fraction (MACS sorted) or carp

macrophages were made by fixing in 100% alcohol and 99% acetic

acid (10:1). Mouse monoclonal WCL-15 (1:50) antibody and /or

polyclonal rabbit anti-SITR (1:10) antibody were used as primary

antibodies. Goat anti-mouse antibody conjugated to fluorescein

isothiocyanate (GAM-FITC, Dako, 1:50 in PBS) and goat anti-

rabbit conjugated to tetramethylrhodamine-5-(and 6)-isothiocya-

nate (GAR-TRITC, Dako, 1:50 in PBS) were used as secondary

antibodies. Cytospins were embedded in Vectashield Mounting

medium (Vector Laboratories) and examined with a Zeiss LSM-510

laser scanning microscope. FITC (green) signal was excited with a

488 nm argon laser and detected using a band-pass filter (505–

530 nm) and TRITC (red) signal was excited with a 543 nm

helium-neon laser and detected using a long-pass filter (560 nm).

SITR-GFP and TLR2DTIR-GFP expression plasmids
The vivid colorTMpcDNATM6.2/C-EmGFP-GW/TOPOH (In-

vitrogen, catalog no. K359-20) expression vector combined with

TOPOHcloning was used to fuse full-length SITR or TLR2DTIR
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(TLR2 truncated at TIR domain, [64] to EmGFP at the C-

terminal end. Isolation of highly pure plasmid DNA suitable for

transfection was performed using S.N.A.P.TM Midi Prep Kit

(Invitrogen, catalog no. K1910-01) according to the manufactur-

er’s protocol. C-terminal fluorescent-tagged protein could be

visualized using confocal microscopy.

Transient transfection of HEK 293 cells
Human embryonic kidney HEK 293 cells were cultured in

DMEM supplemented with 10% FBS, 50 U/ml penicillin G and

50 mg/ml streptomycin sulphate. Two days prior to transfection,

HEK 293 cells were seeded into tissue culture flasks to reach 80–

90% confluence at the day of transfection. For transfection of

HEK 293 cells, 2.5 or 5 mg of the carp SITR-GFP or TLR2DTIR-

GFP (negative control) constructs was transfected into HEK 293

by nucleoporation using nucleofactorTM solution V and program

A-23 (Lonza Cologne AG, Germany) according to the manufac-

turer’s instructions. Forty-eight hours after transfection, cells were

trypsinized (0.5% trypsin, GIBCO) and plated overnight in a 24-

well plate, as described earlier [72]. The next day, cells were

stimulated for 16 h with live T. borreli parasites (106 per well). Cells

and supernatants were collected and used for immunoprecipitation

using affinity-purified polyclonal rabbit anti-SITR antibody and

SITR expression was evaluated by western blot analysis.

Immunoprecipitation protocol
Supernatants of TLR2DTIR-GFP (negative control)- or SITR-

transfected HEK293 cells stimulated with live T. borreli parasites

were centrifuged at 800 g for 10 min and the parasite pellet

discarded. SITR-transfected HEK293 cells were lysed with ice-

cold IP Lysis/Wash buffer (Pierce Biotechnology, Rockford, USA),

the cell lysate centrifuged at 13000 g for 10 min at 4uC to pellet

the cell debris and the remaining supernatant collected. Immu-

noprecipitation of SITR protein in these two preparations was

performed using a Thermo Scientific Pierce Classic IP kit (catalog

no. 26146, Pierce Biotechnology, Rockford, USA). Briefly, 20 mg

of affinity purified anti-SITR antibody was combined with the two

preparations and incubated overnight at 4uC to form immune

complexes. Following centrifugation steps were performed at

1000 g for 1 min at 4uC. Then, 20 ml of the Protein A/G Agarose

resin (Pierce Biotechnology, Rockford, USA) was added into a

Pierce Spin Column, washed three times with ice-cold IP Lysis/

Wash buffer and the flow-through discarded. The immune

complexes were added to the resin in the column and the column

was incubated with gentle end-over-end shaking for 1 h at 4uC.

The resin was washed four times with 200 ml IP Lysis/ Wash

buffer and once with 100 ml Conditioning Buffer (Pierce

Biotechnology, Rockford, USA). Then, 50 ml of reducing Sample

Buffer (Pierce Biotechnology, Rockford, USA) was added to the

resin and incubated at 100uC for 10 min. Co-elution of antibody

and immunoprecipated SITR was obtained after centrifugation

and evaluated by western blot analysis.

Transient transfection of murine RAW 264.7
macrophages

Mouse macrophage RAW 264.7 cell line was cultured in RPMI

(Invitrogen, CA, USA) supplemented with 10% fetal bovine serum

(FBS, Invitrogen) and 50 U/ml penicillin G (Sigma-Aldrich) and

50 mg/ml streptomycin sulphate (Sigma-Aldrich). One day before

transfection, RAW cells were seeded into tissue culture flasks to

reach 60–70% confluence at the day of transfection. For transient

transfection, 2.5 mg of the carp SITR-GFP or TLR2DTIR-GFP

constructs were transfected into RAW cells by nucleoporation

using nucleofactorTM solution V and program D-32 (Lonza

Cologne AG, Germany) according to the manufacturer’s instruc-

tions. For western blot analysis, 24hours after transfection, cells

were scraped, counted using Trypan blue exclusion and plated

overnight at a concentration 56105 cells/ well in a 24-well tissue

culture plate. The next day, cells were stimulated with 56105 live

Trypanoplasma borreli parasites for 15 min or left untreated as

control and lysed on ice with lysis solution [see Western blot

section]. For measurement of NO production, 24hours after

transfection, cells were scraped, counted using Trypan blue

exclusion and plated overnight at a concentration of 26105 cells/

well in a 96-well tissue culture plate. The next day, 75 ml

supernatant was collected and nitrite production was measured.

Nitrite production
Nitrite production was measured essentially as described before

[73]: to 75 ml of cell culture supernatant, 100 ml of 1%

sulfanilamide in 2.5% (v/v) phosphoric acid and 100 ml of 0.1%

(w/v) N-naphthyl-ethylenediamine in 2.5% (v/v) phosphoric acid

were added in a 96-well flat-bottom plate. The absorbance was

read at 540 nm (with 690 nm as a reference) and nitrite

concentration (mM) was calculated by comparison with a sodium

nitrite standard curve.

Statistical Analysis
Transformed values (ln) were used for statistical analysis in SPSS

software (version 17.0). Homogeneity of variance was analyzed

using the Levene’s test. Significant differences between treatments

(P#0.05) for the in vitro studies were determined by one-way

ANOVA followed by Sidak’s test. In case of unequal variances

between treatments, the one-way ANOVA was followed by a

Games–Howell test.
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