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A B S T R A C T   

Purpose: It is difficult to make a clear differential diagnosis of pancreatic carcinoma (PC) and mass-forming 
chronic pancreatitis (MFCP) via conventional examinations. We aimed to develop a novel model incorpo-
rating an MRI-based radiomics signature with clinical biomarkers for distinguishing the two lesions. 
Methods: A total of 102 patients were retrospectively enrolled and randomly divided into the training and 
validation cohorts. Radiomics features were extracted from four different sequences. Individual imaging mo-
dality radiomics signature, multiparametric MRI (mp-MRI) radiomics signature, and a final mixed model based 
on mp-MRI and clinically independent risk factors were established to discriminate between PC and MFCP. The 
diagnostic performance of each model and model discrimination were assessed in both the training and vali-
dation cohorts. 
Results: ADC had the best predictive performance among the four individual radiomics models, but there were no 
significant differences between the pairs of models (all p > 0.05). Six potential radiomics features were finally 
selected from the 960 texture features to formulate the radiomics score (rad-score) of the mp-MRI model. In 
addition, the boxplot results of the distributions of rad-scores identified the rad-score as an independent pre-
dictive factor for the differentiation of PC and MFCP (p< 0.001). Notably, the nomogram integrating rad-score 
and clinically independent risk factors had a better diagnostic performance than the mp-MRI and clinical models. 
These results were further confirmed by the validation group. 
Conclusion: The mixed model was developed and preliminarily validated to distinguish PC from MFCP, which 
may benefit the formulation of treatment strategies and nonsurgical procedures.   

Introduction 

Pancreatic carcinoma (PC), a malignant tumor of the pancreatic 
exocrine glands, is currently recognized as one of the deadliest malig-
nant tumors worldwide [1, 2]. It is characterized by a high degree of 
malignancy, rapid progression, and extremely poor prognosis [3, 4]. 
Because of the extremely low five-year survival rate of patients with PC, 
it may surpass breast cancer as the third leading cause of cancer death by 
2025. Mass-forming chronic pancreatitis (MFCP) is a type of chronic 
pancreatitis [5]. Long-term inflammation of the pancreas causes the 
pancreatic parenchyma to be replaced by fibrous tissue; eventually, a 
lump of tissue with chronic inflammatory cell infiltration is formed 
locally [6, 7]. PC and MFCP usually occur in the head of the pancreas. 

Both are extremely similar in terms of clinical symptoms, serum tumor 
markers, and imaging features [8–10]. Thus, it is very difficult to make a 
clear diagnosis of PC and MFCP before surgery and appropriate treat-
ment. However, their management is completely different; misdiagnosis 
will cause patients with PC to miss the best surgical opportunity, while 
patients with MFCP may receive unnecessary surgical treatment. Ac-
cording to statistics, at least 2.0% - 5.0% of the postoperative pathology 
of the pancreatic head mass is inflammatory [11, 12]. Therefore, accu-
rate diagnosis is important for the survival and prognosis of patients. 

Currently, there are many clinical diagnostic methods for dis-
tinguishing PC from MFCP [13–15]. Tumor markers, such as serum 
carbohydrate antigen 19–9 (CA19–9) and carcinoembryonic antigen 
(CEA), can be used for early screening of pancreatic cancer, but its false 
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negative rate was high [16]. Imaging examinations, including B-ultra-
sound, computed tomography (CT), and magnetic resonance imaging 
(MRI), help to provide valuable information for differential diagnosis; 
however, their accuracy is limited due to the substantial overlap in 
images, so it is still difficult to clearly differentiate MFCP and PC. Biopsy 
is the most precise diagnostic method for discriminating between PC and 
MFCP lesions. However, it is invasive and has many complications [17]. 
Radiomics can convert traditional digital images into mineable 
high-throughput features through objective calculations on a computer 
to extract and analyze texture signatures that cannot be observed by the 
naked eye [18, 19]. Currently, the field of radiomics has grown expo-
nentially and has been applied in the diagnosis of many diseases 
[20–22]. Multiparametric magnetic resonance imaging (MRI) is a 
non-invasive procedure involving non-ionizing radiation that provides 
exceptional diagnostic performance in the differentiation of 
pancreas-related diseases [14]. A rare study has reported an MRI-based 
radiomics model for distinguishing PC from MFCP. 

In this study, we constructed and validated a comprehensive model 
combining MRI-based radiomics signature with known clinical bio-
markers (CA19–9 and CEA) to enhance diagnostic accuracy in differ-
entiating PC from MFCP, and vice versa. 

Materials and methods 

Patient population 

This retrospective study was approved by the local institutional 
ethics committee; informed consent was waived owing to the retro-
spective nature of the study. The final diagnostic criterion for PC is: 
pancreatic ductal adenocarcinoma confirmed by surgical pathology. The 
final diagnostic criteria for MFCP are: (1) chronic pancreatitis confirmed 
by surgical pathology; (2) chronic pancreatitis confirmed by needle bi-
opsy, and the lesions have shrunk during three-month follow-up after 
conservative treatment. First, the departmental database of Shanghai 
Jiaotong University Affiliated Sixth People’s Hospital between January 
2017 and March 2021 was searched, and 146 patients meeting the 
diagnostic criteria were included in the primary cohort of our study. 
Next, 127 cases were selected according to the inclusion criteria: 1) 
patients who underwent an MRI scan within two weeks before the 
pathological diagnosis; 2) MR images which contained the following 
sequences: T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), 
diffusion-weighted imaging (DWI) with b = 800 s/mm2, and apparent 
diffusion coefficient (ADC) maps; and 3) patients who had complete 
clinical information and pathologic examination results. Finally, as 
shown in Fig. 1, the 102 samples (including 54 patients with PC and 48 
patients with MFCP) were enrolled after the implementation of the 
exclusion criteria: 1) no definite mass was found on MR images; 2) the 
image quality was poor; and 3) patients who received various treatments 
prior to the MRI examination. 

The included dataset was randomly divided into two groups: a 
training cohort (n = 72) and a validation cohort (n = 30). Some clinical 
and imaging characteristics, including age at diagnosis, sex, location and 
size of the lesion, and the presence of CA19–9 and CEA were recorded. 
We defined the CA19–9 level as normal from 0 to 37 U/ml and CEA level 
as normal from 0 to 5 ng/ml; if otherwise, it was considered abnormal. 

MR Image acquisition 

All patients received a 3.0-T MRI (MAGNETOM Skyra, Siemens 
Healthcare); the signal was received using a phased-array 18-channel 
body coil combined with an integrated 32-channel spine coil. The ex-
amination consisted of different sequences: (1) a transversal pre-contrast 
volumetric-interpolated breath-hold examination (VIBE) T1-weighted 
sequence, (2) a fat-suppressed, transversal half-Fourier acquisition 
single-shot turbo spin-echo (HASTE) T2-weighted sequence, and (3) a 
fat-suppressed, single-shot EPI DWI sequence with b-values of 50 and 

800 s/mm2. ADC maps were inline calculated with the b-values acquired 
using a monoexponential function. Detailed information on the acqui-
sition parameters is provided in Table 1. 

Image segmentation and feature extraction 

Axial T1WI, T2WI, DWIb800, and ADC images were acquired for 
image segmentation and feature extraction. For patients with multiple 
significant lesions, only those larger than 1 cm3 were analyzed. Regions 
of interest (ROIs) were manually delineated slice-by-slice along the 
margin of the lesion on all images of different sequences by using 
dedicated software (ITK-Snap, Version 3.6.0; www.itksnap.org). Sub-
sequently, the volume of interest (VOI) delineation was generated. The 
ADC maps and corresponding DWI images were intrinsically co- 
registered; thus, the segmented VOIs were directly replicated from 
DWI to ADC. 

Intra- and interclass correlation coefficients (ICC) were employed to 
evaluate the intra- and inter-observer reproducibility of the volume 
segmentation and radiomics feature extraction by two radiologists with 

Fig. 1. Flowchart of patient enrollment in our study.  

Table 1 
The parameters of the magnetic resonance imaging sequence.  

Parameter T1WI T2WI DWI 

Field of view (mm2) 260 × 320 240 × 320 216 × 268 
Acquisition matrix 320 × 195 320 × 197 134 × 108 
Slice Thickness (mm) 3.4 4.5 5 
Flip angle 9 160 90 
Echo train length (mm) 1 96 43 
Echo time (ms) 1.3 80 43 
Repetition time (ms) 3.3 1600 5300 
Pixel Bandwidth (Hz/px) 445 870 2490 
b-value (s/mm2) n.a. n.a. 50, 800 

n.a., not applicable. 
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8 (observer 1) and 15 years (observer 2) of abdominal imaging experi-
ence. First, the MR images of 40 randomly selected patients underwent 
image segmentation and feature extraction by observers 1 and 2, 
respectively. Then, observer 1 repeated the same procedure, with an 
interval of more than one week between delineations. An ICC greater 
than 0.75 was determined to have good feature extraction consistency 
[23, 24]. Finally, the remaining image segmentation and feature 
extraction were performed by observer 1. Consequently, all studies were 
confirmed by observer 2. 

An open-source Python package for quantitative data from medical 
images (Pyradiomics, v2.1.2) was used to extract texture features, 
including both low- and high-order radiomic features. Image pre-
processing was performed to achieve image normalization and dis-
cretization. Pyradiomics provided a normalization method, which 
normalized the image by taking the mean with standard deviation as the 
center. The minimum-redundancy maximum-relevance (mRMR) algo-
rithm and least absolute shrinkage and selection operator (LASSO) were 
used to select the features. First, the mRMR was conducted to maximize 
the relevance between features and categorical variables, and minimize 
the relevance between features and features, finally eliminate multi-
collinearity and prevent over-fitting. For mRMR algorithm, the rele-
vance between features and categories is calculated by the mean value of 
the information gain, and the redundancy between features and features 
is calculated by dividing the sum of mutual information by the square of 
the number of features. Then, LASSO, trained by a ten-fold cross-vali-
dation method, was performed to select the optimized subset of features. 
The most reliable features were used to construct a radiomics model 
using multivariable logistic regression analysis. 

Model building 

In this study, a three-step operation was conducted to build a novel 
mixed-prediction model. First, the diagnostic efficacy of each imaging 

modality to distinguish PC from MFCP was evaluated. To compare the 
efficiency of differential diagnosis of each modality, four predictive 
signatures were built as follows: T1WI, T2WI, DWI, and ADC. Next, 
because T1WI and T2WI can predominantly provide high-resolution 
images of the abdominal anatomy, whereas physiologic and functional 
data are provided by DWI and ADC, a multiparametric MRI (mp-MRI) 
radiomics signature model based on T1WI, T2WI, DWI, and ADC was 
built. Finally, by combining the mp-MRI signature with clinically inde-
pendent risk factors, a mixed-prediction model was established to 
distinguish PC from MFCP. The workflow of the development of the 
radiomic signature and the comprehensive model is shown in Fig. 2. 

Statistical analysis 

Concerning the clinical data, continuous variables, such as the age of 
the patient and the size of the lesion, are described as means ± SD. 
Categorical variables, such as patient sex, lesion location, and CA19-9 
and CEA levels, were described as numbers and percentages. Normally 
distributed continuous variables were assessed using an independent 
samples t-test; non-normally distributed continuous variables were 
assessed using Mann-Whitney U tests; and categorical variables were 
assessed using Pearson chi-square test or Fisher exact test. The receiver 
operating characteristic (ROC) curve was used to quantify the predictive 
accuracy, sensitivity, and specificity of each imaging modality in both 
the training and validation sets. The corresponding values of the area 
under the ROC curve (AUC) were calculated to evaluate the model 
performance. The AUCs of the ROC curves between different radiomics 
models were compared using the DeLong test. Binomial exact test was 
used for computing the confidence interval of AUC. The accuracy, 
sensitivity, and specificity in Table 3 were calculated as the following 
formula: Accuracy = (True Positive + True Negative) / (True Positive +
True Negative + False Positive + False Negative); Sensitivity = True 
Positive / (True Positive + False Negative); Specificity = True Negative / 

Fig. 2. Workflow showing the development of the radiomic signature and the comprehensive model.  
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(True Negative + False Positive). 
The performance of the mp-MRI radiomics signature model and the 

clinical model were evaluated using the ROC and calibration curves. The 
efficiency of fit of the models was assessed using the Hosmer–Lemeshow 
test. Decision curve analysis (DCA) was used to estimate the clinical 
utility of the established model. The net benefits vs. risk thresholds in 
the training and validation sets were also calculated [25]. 

The LASSO logistic regression model, which combined with penalty 
parameter tuning, were performed using a ten-fold cross-validation 
based on the minimum criteria. The likelihood ratio test, used Akaike’s 
information criterion (AIC) as the stopping rule, was applied for back-
ward stepwise selection. The "glmnet" package in R was used to perform 
LASSO logistic regression. The “cv. glmnet” function was used to select 
the tuning parameter (λ). All statistical analyses were conducted using 
the R statistical software (Version 3.6.3). Nomogram and calibration 
plots were constructed using the "rms" package. The "pROC" package 
was used for ROC plotting. DCA curve plots were constructed using the 
"rmda" package. The "rms" package in R was used to calibrate the 
radiomic signature. Statistical significance was set at p <0.05. 

Results 

Clinical data of patients 

This study consisted of 102 patients; the flowchart of the study is 
illustrated in Fig. 1. Patient characteristics are summarized in Table 2; 
there were no statistical differences in age (p = 0.882, 0.549), sex (p =
0.637, 0.707), lesion location (p = 0.259, 0.657), and lesion size (p =
0.192, 0.414) between the PC and MFCP groups in the training and 
validation cohorts, respectively. However, both levels of CA19-9 and 
CEA were significantly different in patients with PC compared with 
those in patients with MFCP; p values were 0.013 for CA19-9 and 0.033 
for CEA in the validation dataset. 

Intra- and inter-observer reproducibility 

The intra- and inter-observer feature extraction reproducibility was 
evaluated using ICCs. Regarding the intra-observer agreement of 
radiomics features, the ICCs ranged from 0.771 to 0.995; for the inter- 
observer agreement, the ICCs ranged from 0.802 to 0.971. These re-
sults were all greater than 0.75, confirming their advantages for feature 
extraction reproducibility. 

Predictive performance of the individual radiomics signature 

The radiomics signature of each separate imaging modality was 
selected in the training set using the least absolute shrinkage and se-
lection operator (LASSO) algorithm to perform dimensionality reduction 
and was employed in the subsequent modeling analysis. There were 
eight, nine, nine, and eight radiomics signatures included in T1WI, 
T2WI, DWI, and ADC, respectively, for model building (Supplementary 
Material 1). We used ROC curves to demonstrate the predictive per-
formances of the four models in the differential diagnosis of PC and 
MFCP (Fig. 3A and B). The AUCs of the T1WI, T2WI, DWI and ADC 
models were 0.885 [95% confidence interval (CI): 0.788–0.948], 0.898 
(95%CI: 0.804–0.957), 0.872 (95%CI: 0.773–0.939), 0.917 (95%CI: 
0.828–0.969) in the training cohorts, and 0.871 (95% CI: 0.698–0.964), 
0.888 (95%CI: 0.720–0.973), 0.848 (95%CI: 0.670–0.952), 0.908 (95% 
CI: 0.749–0.983) in the validation cohorts. In addition, the accuracy, 
sensitivity, and specificity of all MRI radiomics signature-based models 
were calculated and recorded. The detailed results of the predictive 
performance are presented in Table 3. Applying the DeLong test to 
compare the AUCs across the four radiomics models, we observed that 
there were no significant differences between the pairs of models (all p >
0.05). However, the ADC model had the best predictive performance 
among the four radiomics models; the T1WI model showed lower per-
formance than the other individual sequences. 

Establishment of mp-MRI radiomics signature and clinical model 

Based on the predictive performance of the radiomics signature of 
each imaging modality, T1WI, T2WI, DWI, and ADC maps were 
employed to build a multiparametric MRI radiomics signature-based 
model. Finally, six radiomics features with non-zero coefficients (one 
from T1WI, two from T2WI, one from DWI, and two from ADC maps) 
were selected out of 960 texture features after LASSO logistic regression 
and were used to construct the mp-MRI radiomic signature (Fig. 4). The 
calculation formula of the radiomics score (rad-score) was established; 
the details are shown in Supplementary Material 2. Compared with the 
radiomics signature of individual imaging modalities, the mp-MRI 
model showed the best diagnostic efficiency for distinguishing PC 
from MFCP. Boxplots showing the rad-score values were significantly 
higher in patients with PC than in patients with MFCP in both the 
training and validation cohorts (Fig. 5). Next, CA19–9 and CEA were 
chosen as clinically independent risk factors for final mixed-model 
building because their levels were significantly different between pa-
tients with PC and those with MFCP. Finally, we built a quantitative 
mixed-prediction model incorporating the mp-MRI rad-score and clini-
cally independent risk factors. A combined nomogram was developed 
incorporating CEA and CA19–9 levels. Each factor is distributed in a 
weighted number of points. The risk of PC was associated with the total 
number of points for each patient, which was calculated using the 
nomogram (Fig. 6A). 

Development and validation of the comprehensive prediction models 

The ROC curve was used to assess the discriminative ability of the 
three models (Fig. 3 C and D). As shown in Table 3, the AUCs of the 
mixed, the mp-MRI, and the clinically independent risk factors models 
were 0.853 (95% CI: 0.750–0.925), 0.950 (95%CI: 0.872–0.988), 0.973 

Table 2 
Characteristics of the study population and MR imaging findings.   

The training 
cohort 

p-value The validation 
cohort 

p- 
value  

PC (n 
¼ 38) 

MFCP 
(n ¼ 34)  

PC (n 
¼ 16) 

MFCP 
(n ¼ 14)  

Age (Y) 61.6 ±
14.4 

62.1 ±
14.1 

0.882 63.3 ±
13.5 

60.5 ±
11.5 

0.549 

Size (cm2) 6.84 ±
2.57 

6.13 ±
1.91 

0.192 7.07 ±
2.48 

6.38 ±
2.01 

0.414 

Sex, n (%)   0.637   0.707 
Male 21 

(55.3) 
16 
(47.1)  

11 
(68.7) 

8 (57.1)  

Female 17 
(44.7) 

18 
(52.9)  

5 
(31.3) 

6 (42.9)  

Location, n 
(%)   

0.259   0.657 

Head or 
neck 

28 
(73.7) 

29 
(85.3)  

12 (75) 12 
(85.7)  

Body or tail 10 
(26.3) 

5 (14.7)  4 (25) 2 (14.3)  

CA19–9, n 
(%)   

<0.001*   0.013* 

0~37 U/ml 11 
(28.9) 

28 
(82.4)  

5 
(31.3) 

11 
(78.6)  

>37 U/ml 27 
(71.1) 

6 (17.6)  11 
(68.7) 

3 (21.4)  

CEA, n (%)   0.037*   0.033* 
0~5 ng/ml 15 

(39.5) 
22 
(64.7)  

6 
(37.5) 

11 
(78.6)  

>5 ng/ml 23 
(60.5) 

12 
(35.3)  

10 
(62.5) 

3 (21.4)  

*Data are statistically significant with p <0.05. 
Y, years; PC, pancreatic carcinoma; MFCP, mass-forming chronic pancreatitis; 
CA19–9, carbohydrate antigen 19–9; CEA, carcinoembryonic antigen. 
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(95%CI: 0.904–0.997) in the training cohort, respectively, and 0.799 
(95% CI: 0.613–0.922), 0.942 (95%CI: 0.791–0.994), and 0.960 (95% 
CI: 0.817–0.998) in the validation cohort, respectively. Between the 
three models, the comprehensive model displayed the best evaluation 
performance in both the training and validation cohorts and was sta-
tistically different from the clinical model (p = 0.011 and 0.029. 
respectively). The mixed model also possessed the highest accuracy 
(0.898 and 0.909, respectively), the highest specificity (0.871 and 
0.875, respectively), and the highest sensitivity (0.922 and 0.939, 
respectively) in the differential diagnosis of the two cohorts. 

A calibration curve was used to illustrate the consistency between 
the predicted risks and the actual observed outcomes. The red dotted 
line fitted the gray line, which represents the reference line showing the 
"ideal" prediction. As shown in Fig. 6B, the Hosmer–Lemeshow test also 
showed good calibration of the mixed model in the validation cohorts (p 
= 0.935), confirming the excellent predictive accuracy of the mixed 
model. Furthermore, a DCA curve was used to intuitively show the net 
benefits of the potential population under different risk thresholds and 
to determine whether the final mixed model could help with clinical 
treatment strategies (Fig. 6C). According to the DCA, when the risk 
thresholds varied from 0 to 1, the mixed model achieved the highest net 
benefit compared with the "treat all" and "treat none" strategies as well as 
with the clinically independent risk factors and mp-MRI models in both 
the training and validation cohorts. For example, in the validation 
cohort, if we defined the risk threshold as 50%, the standardized net 
benefit of patients was 0.82 and 0.58 for the mp-MRI model and 

Fig. 3. Receiver operating characteristic (ROC) curves of four single radiomics signature in the training group (A) and the validation group (B). ROC curves of three 
prediction models in the training group (C) and the validation group (D). 

Table 3 
Predictive performance of different models.   

AUC 95%CI ACC SEN SPE 

T1WI      
Training 0.885 0.788–0.948 0.833 0.790 0.882 
Validation 0.871 0.698 to 0.964 0.789 0.714 0.875 
T2WI      
Training 0.898 0.804–0.957 0.847 0.816 0.880 
Validation 0.888 0.720 to 0.973 0.827 0.786 0.879 
DWI      
Training 0.872 0.773–0.939 0.778 0.711 0.853 
Validation 0.848 0.670 to 0.952 0.767 0.837 0.688 
ADC      
Training 0.917 0.828–0.969 0.842 0.857 0.824 
Validation 0.908 0.749 to 0.983 0.886 0.895 0.875 
Clinical      
Training 0.853 0.750–0.925 0.694 0.632 0.765 
Validation 0.799 0.613–0.922 0.734 0.688 0.786 
Mp-MRI      
Training 0.950 0.872–0.988 0.875 0.921 0.824 
Validation 0.942 0.791–0.994 0.894 0.928 0.857 
Mixed      
Training 0.973 0.904–0.997 0.898 0.922 0.871 
Validation 0.960 0.817–0.998 0.909 0.939 0.875 

AUC, area under the curve; CI, confidence interval; ACC, accuracy; SPE, speci-
ficity; SEN, sensitivity. 
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clinically independent risk factors model, respectively, whereas the 
standardized net benefit was 0.84 for the mixed model. 

Discussion 

With the increasing occurrence of alcohol- and smoking-related 
habits, the incidence of chronic pancreatitis has also increased gradu-
ally, to which MFCP has become more common clinically. However, it is 
extremely difficult to make a clear diagnosis between MFCP and PC 
before surgery and appropriate treatment according to existing imaging 
technology and clinical data. Pathological biopsy is the gold standard for 
the diagnosis of solid pancreatic lesions. In the last few years, 

endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB) has been 
used for clinical practice of sampling pancreatic masses, which can 
obtain histological tissue samples to easily perform immunohisto-
chemistry [26]. The diagnostic accuracy of independent EUS-FNB 
without rapid on-site evaluation (ROSE) can reach 0.974 (95% CI: 
0.953–0.988) [27]. Multiparametric MRI-based radiomics analysis is 
non-invasive and efficient, providing a quantitative measure of intrale-
sional heterogeneity that may help in distinguishing benign and ma-
lignant lesions, assessing tumor aggressiveness, and evaluating 
treatment response [19]. Multiparametric MRI has already been used for 
the differentiation of PC from MFCP in some studies [15, 28, 29], but 
those applying the mp-MRI radiomics signature remain scarce. In the 

Fig. 4. LASSO logistic regression for texture feature selection. (A) Selection of the tuning parameter (λ) in the LASSO model. (B) LASSO coefficient profiles of the 17 
texture features. 

Fig. 5. Boxplots of the distributions of radiomics scores to distinguish MFCP from PC group according to mp-MRI prediction model in the training dataset (A), and 
validation dataset (B). 
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present study, we first developed and validated a comprehensive model 
that combined MRI-based radiomics signature with clinically indepen-
dent risk factors to enhance the diagnostic accuracy in differentiating PC 
and MFCP lesions. 

T1WI and T2WI are regular sequences for MR inspection. The DWI 
and ADC measurements used for discriminating PC from MFCP have 
been suggested in some studies [30, 31]. Therefore, we first compared 
the diagnostic performance of the single-imaging modality, involving 
radiomics signatures extracted from T1WI, T2WI, DWI, and ADC se-
quences. We found that although there was no significant difference 
between the four single-imaging modalities (all p > 0.05), the radiomics 
signature of ADC had the best AUC, accuracy, specificity, and sensitivity 
for differentiating PC and MFCP. Furthermore, the differences in histo-
logical features between PC and MFCP might be attributed to their large 
variance in ADC. PC is a highly fibrotic malignancy, which may consist 
of more intense cellular density and denser fibrin matrix than MFCP, 
thus presenting with an even lower ADC value [32]. In a study by Lee 
et al., ADC images analyzed by abdominal radiologists showed a speci-
ficity of 69.2% and a sensitivity of 87.2% for differentiating between PC 
and MFCP [33]. Compared with the traditional manual imaging evalu-
ation, the radiomics signature of ADC not only showed a high sensitivity 
of 0.895, but also displayed a high specificity of 0.875, thereby sug-
gesting a lower misdiagnosis rate. Our results confirmed that radiomics 
signature was more effective and reliable for distinguishing PC from 
MFCP, as the imaging texture features could distinguish differences in 
tumor microarchitecture, intratumor heterogeneity, subtle phenotypic, 
etc., which are difficult to observe with the naked eye. 

A previous study has also used radiomics analysis to distinguish PC 
from MFCP, but this research only compared the diagnostic efficiency of 
four single-imaging modalities, including T1WI, T2WI, and the artery 
and portal phases of dynamic contrast-enhanced MRI. In our study, we 
built a multiparametric MRI radiomics signature model based on T1WI, 
T2WI, DWI, and ADC. The mp-MRI model showed the best predictive 
performance compared to the individual models. The texture features in 
the mp-MRI radiomic signature included first-order statistics, shape- 
based features (3D), gray level co-occurrence matrix (GLCM), gray 
level run length matrix (GLRLM), and gray level size zone matrix 
(GLSZM). Based on the weight of radiomics features, we suggest that 
high-order features, such as GLCM, GLRLM, and GLSZM, better reflect 
tumor heterogeneity and biology, which is consistent with previous 
studies [34, 35]. The boxplots of the distributions of radiomics scores 
indicated that the multiparametric MRI-based rad-score was an inde-
pendent diagnostic factor for the differentiation of PC and MFCP. 

In addition, we wanted to explore whether predictive performance 
would be better when combining MRI-based radiomics signature with 
clinically independent risk factors. Several imaging and clinical char-
acteristics were analyzed in this study. We found that only serum 
CA19–9 and CEA levels were significantly different between patients 
with PC and MFCP in both the training and validation cohorts. Previous 
studies demonstrated that serum CA19–9 levels could be helpful for 
differentiating PC from MFCP; however, its false negative rate was high 
[36, 37]. Sakamoto et al. applied CEA, which is a glycoprotein that can 
be elevated in PC, to monitor the prognosis of patients with PC, but its 
specificity was low [38]. These results suggested that the clinically 

Fig. 6. (A)The nomogram of the mixed model incorporating the radiomic signature, the CA19–9 level, and the CEA level. (B) The calibration curve of the mixed 
model in the validation group. (C) The decision curve analysis (DCA) curve of clinical use assessment of three prediction models in the validation group. 
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independent risk factors perform poorly in differentiating PC and MFCP. 
In our study, we established a clinical model by combining serum 
CA19–9 and CEA levels to identify PC and MFCP; however, the results 
showed that the AUC, accuracy, specificity, and sensitivity were low, 
which was consistent with previous studies. For these reasons, separate 
clinically independent risk factors could be used as a reference for the 
diagnosis of these two diseases. 

Therefore, we constructed a comprehensive model incorporating 
clinical factors (CA19-9 and CEA levels) and MRI-based radiomics 
signature, which showed excellent performance and superior diagnostic 
accuracy in the differentiation of PC and MFCP in both training and 
validation cohorts. Finally, the calibration curve indicated adequate 
consistency between the predicted risk of the mixed model and the 
actual outcome. DCA showed that the mixed model surpassed the solely 
radiomic signature across a wide range of threshold probabilities, which 
revealed that clinically independent risk factors added incremental 
value to diagnostic accuracy. Our mixed model had several advantages. 
The data used in the model showed beneficial results, which were easily 
accessible and cost less. Compared with invasive biopsies, non-invasive 
radiomic analysis can be widely applied to patients. Furthermore, bi-
opsies could lead to sampling bias because of intra-tumoral heteroge-
neity, whereas the radiomic signature represents a comprehensive 
evaluation of the whole tumor. 

Our study had some limitations. First, the dynamic contrast- 
enhanced MRI, including the arterial and portal venous phases, was 
disregarded because we wanted to ensure sufficient samples to develop 
the model. Second, this was a retrospective study, which might have 
resulted in selection bias. Third, the clinical characteristics analyzed 
were not sufficient. Finally, although our set is one of the largest cohorts 
regarding radiomics and differential diagnosis of PC and MFCP lesions, 
the sample size is relatively small, and the study lacks of external vali-
dation. Large number of samples and external validation are necessary 
for the development of a model for clinical application. Large-scale and 
multicenter studies should be conducted in the future. 

Conclusions 

We developed and preliminarily validated a novel model integrating 
a multiparametric MRI-based radiomic signature and clinically inde-
pendent risk factors to distinguish PC from MFCP. An accurate differ-
ential diagnosis may aid in formulating treatment strategies and may 
help to avoid unnecessary surgical operations. Although the advantages 
and results are promising, this prediction model still needs to be 
explored in a larger sample size. 
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