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Malignant brain tumors represent approximately 1.5% of all malignant tumors. The survival
rate among patients is relatively low and the mortality rate of pediatric brain tumors ranks
first among all childhood malignant tumors. At present malignant brain tumors remain
incurable. Although some tumors can be treated with surgery and chemotherapy, new
treatment strategies are urgent owing to the poor clinical prognosis. Iron is an essential
trace element in many biological processes of the human body. Iron transporters play a
crucial role in iron absorption and transport. Ferroptosis, an iron-dependent form of
nonapoptotic cell death, is characterized by the accumulation of lipid peroxidation
products and lethal reactive oxygen species (ROS) derived from iron metabolism.
Recently, compelling evidence has shown that inducing ferroptosis of tumor cells is a
potential therapeutic strategy. In this review, we will briefly describe the significant
regulatory factors of ferroptosis, iron, its absorption and transport under physiological
conditions, especially the function of iron transporters. Then we will summarize the
relevant mechanisms of ferroptosis and its role in malignant brain tumors, wherein the
role of transporters is not to be ignored. Finally, we will introduce the current research
progress in the treatment of malignant brain tumors by inducing ferroptosis in order to
explain the current biological principles of potential treatment targets and treatment
strategies for malignant brain tumors.

Keywords: iron transport, transporters, ferroptosis, malignant brain tumors, therapeutic strategy
1 INTRODUCTION

Brain tumors can be categorized as primary malignant types and secondary forms from metastasis
(1). Of these, roughly 40% will be malignant and the incidence rate of malignant brain tumors is
higher in males (2, 3). Primary brain tumors are the first common tumor and the first cause of
tumor death in children (3). Brain tumors can be classified based on origin, such as glioblastoma
(GBM), neuroblastoma and meningioma (4). GBM is the most common and aggressive malignant
primary brain tumor, with a limited response to the current standard of treatment. Most GBM
patients can only live up to 15-20 months (5).

Malignant brain tumors are commonly intratumoral heterogenic, which likely explains their
poor clinical prognosis of malignant brain tumors poor and easy to relapse (6). Despite current
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multimodality treatment efforts, combining in surgical resection
when feasible, with radiotherapy, chemotherapy and
symptomatic treatment, the median survival remains short (7).

Iron is necessary for life (8). Iron plays an extremely
significant role in brain development and function, and is
involve in many biological processes such as embryonic
neuronal development, myelin formation, neurotransmitter
synthesis and oxidative phosphorylation (9, 10). Iron
deficiency impairs the function of iron-requiring enzymes in
all tissues, however, excessive iron accumulation leads to toxicity
through oxidative stress activation of cell death signaling
pathways (11). To maintain adequate and safe amounts of iron
levels, cells express a the coordination of a wide variety of
proteins, which tightly control both intracellular and systemic
iron metabolism (12). Iron transporters participate in the
regulation of iron uptake, storage and distribution, wherein
help maintain iron homeostasis (13).

Ferroptosis is an iron-dependent form of regulated cell death
(14). The intracellular iron homeostasis and balance between the
oxidation and reduction of phospholipids is tightly associated
with ferroptosis. Ferroptosis occurs when iron overload induces
lipid peroxidation (11). Recent studies showed that ferroptosis is
involved in the death of pathological cells in malignant brain
tumors, which may have a therapeutic potential towards
malignant brain tumors (15, 16). The specific way of
ferroptosis inhibiting cancer may be to induce oxidative stress
and resist treatment antagonism of cancer cells, in which iron
transporters may has a stronger role. Although great progress has
been made in the study of the biological function and disease
correlation of ferroptosis, its biological signal pathway and
underlying mechanism remain to be elucidated.

Starting from the iron transport in the body under
physiological conditions, we further summarize the specific
mechanism of iron metabolism disorder and ferroptosis in the
pathological condition of malignant brain tumors, in particular,
the crucial role of transporters. Finally, we summarized the
specific mechanisms and targets for inducing ferroptosis in the
treatment of malignant brain tumors and introduced potentially
related drugs.
2 IRON PHYSIOLOGY

2.1 Iron and Iron Transporters
2.1.1 Iron Function
Iron is a vital micronutrient for nearly all living organisms due to
its significant role in many biological processes such as catalyzing
redox reactions and transporting oxygen. In addition, iron is
essential for the functions of many enzymes and prosthetic
groups (17, 18).
2.1.2 Dietary Sources of Iron
Iron is required across all human life stages, from embryological
development, to infancy or old age. Estimated daily average iron
requirements are the highest in pregnancy 3rd trimester (19).
Despite having an efficient iron recycling mechanism, humans
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need to absorb about 10% of our total iron needs from regular
dietary to maintain normal health. Dietary iron exists as either
heme iron or non-heme iron. Heme iron is derived from
hemoglobin, myoglobin and neuroglobin found in animal
foods, and its absorption is not affected by diet; meanwhile
non-heme iron is found mainly in plant foods, and its
absorption is influenced by inhibitors and enhancers found in
the diet. Nonetheless both are affected by iron storage levels in
the body (19, 20).

2.1.3 Iron Absorption
The absorption site of iron is mainly in the mucosa of duodenum
and upper jejunum. In a nutshell, iron absorption can be divided
into two steps; first iron in food enters intestinal mucosal cells,
second iron in intestinal mucosal cells crosses the cell membrane
into capillaries and is transported systemically to the whole body
in bloodstream (19).

2.1.4 Iron Transport
In humans, a number of proteins have evolved which tightly
regulate iron homeostasis since we cannot rapidly excrete iron in
the urine and iron must be transported and stored intracellular
on a protein carrier due to extremely low free iron levels both
systemically and intracellular (21). These includes the proteins
that are involved in iron transport, both in the circulation and
intracellularly, the reductases and oxidases that facilitate the
movement of iron across cell membranes, and other proteins
that regulate these processes (22). Iron transporters are vital role
to maintain iron homeostasis in the body, and a total of 22 iron
transporters have been identified (Table 1). The functions of
several iron transporters are introduced below.

Transferrin (TF) is regulator of free iron levels in body fluids,
binding, sequestering, and transporting Fe3+ ions. This iron
carrier protein helps maintain iron availability systemically and
prevents tissue oxidative damage caused by excessive free radical
accumulation (23).

SLC25A37 (Mitoferrin 1, Mfrn1) is a solute carrier localized
in the mitochondrial inner membrane. When iron enters cells,
Mfrn1 transport iron into mitochondria, which is used to
synthesize mitochondrial heme and iron sulfur clusters.
Mitoferrin-1 is necessary for neuronal energy metabolism and
influences brain function (24).

SLC11A2 (Divalent metal cation transporter 1, DMT1), is a
proton-dependent iron importer of Fe2+, is involved in systemic
iron recycling and cellular iron absorption. DMT1 is located on
the parietal membrane of duodenal intestinal epithelial cells,
where it brings dietary free iron into cells and promotes iron
absorption (25). DMT1 is also involved in transferrin/transferrin
receptor 1 (TF/TFR1) pathway, wherein transports iron
absorbed by this pathway from the endosome into the
cytosol (26).

SLC40A1 (Ferroportin 1, Fpn1), is a major iron export
protein, is expressed in many cells, such as placental
syncytiotrophoblasts, wherein plays a role in transferring
maternal iron to the fetus and releasing iron from tissue into
the blood. It should be noted that inactivating the murine Fpn1
gene globally is embryonic lethal (27).
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TABLE 1 | Iron Transporters. For detailed information about the gene tables, please visit: http://www.bioparadigms and http://www.org.genecards.org.

Human
gene
name

Protein
name

Aliases Substrates Tissue and cellular expression Sequence
accession ID

Mouse
KO

model

SLC11A1 NRAMP1 NRAMP1
NRAMP
LSH

Mn2+, Fe2+, other
divalent metal ions

Phagolysosomes of phagocytes (macrophages, neutrophils) NM_000578.4 No

SLC11A2 DMT1 NRAMP2
DCT1

Fe2+, Cd2+, Co2+,
Cu1+, Mn2+, Ni2+,
Pb2+, Zn2+

Widespread, including intestine (duodenum), erythroid cells, kidney,
lung, brain, testis (Sertoli cells), thymus

NM_
001174125.2

Yes

SLC22A17 BOIT BOCT, NGALR 1-methyl-4-phenyl-
pyridinium (MPP
(+)), Fe

Brain NM_020372.4 No

SLC25A28 Mitoferrin 2
(Mfrn2)

MRS3/4, MRS4L Fe2+ Ubiquitous (heart, liver, kidney) NM_031212.4 No

SLC25A37 Mitoferrin 1
(Mfrn1)

HT015, MSC,
MSCP

Fe2+ Fetal liver, bone marrow, spleen, placenta, liver, brain NM_016612.4 No

SLC39A14 ZIP14,
LZT-Hs4

ZIP14
KIAA0062
NET34

Zn, Fe, Mn, Cd Widespread, liver NM_
001128431.4

Yes

SLC40A1 MTP1,
IREG1

Ferroportin 1
(FPN1)

Fe2+ Duodenum, macrophages, liver Kupffer cells, placenta, kidney NM_014585.6 Yes

SLC41A1 MgtE MgtE, NPHPL2 Mg2+ (Sr2+, Zn2+,
Cu2+, Fe2+, Co2+,
Ba2+, Cd2+)

Kidney, heart, testis, skeletal muscle, prostate, adrenal gland, thyroid NM_173854.6 Yes

SLC41A2 SLC41A1-
L1,
SLC41A1-
like 1

SLC41A1-L1 Mg2+ (Ba2+, Ni2+,
Co2+, Fe2+, Mn2+)

Highest expression in cerebellum, lymph nodes, stomach, lungs, testis,
skin

NM_032148.6 No

SLC46A1 PCFT HCP1 Reduced folates,
folic acid,
antifolates, heme

Small intestine, choroid plexus, kidney (proximal tubule), liver
(sinusoidal), placenta

NM_080669.6 No

SLC48A1 HRG-1 HHRG-1
HRG1,
HRG-1

Heme Liver, heart, CNS, kidney, skeletal muscle, small intestine NM_017842.3 No

SLC49A1 FLVCR1 FLVCR,
MFSD7B,
AXPC1, PCARP

Heme Ubiquitous, high expression in intestine, liver, kidney, brain, bone
marrow

NM_014053.4 No

SLC49A2 FLVCR2 MFSD7C, CCT,
EPV, PVHH,
FLVCRL14q

Heme Liver, kidney, brain, lung, placenta, fetal liver, bone marrow NM_017791.3 No

SLC57A1 NIPA1 NIPA1,
SPG6,
FSP3

Mg2+, Sr2+, Fe2+,
Co2+

Constitutively express at low levels, significant enrichment in the brain
(human); widely expressed, including heart, kidney, liver, colon, less in
the brain, not in the small intestine (mouse)

NM_144599.5 No

SLC57A3 NIPAL1 NIPA3 Mg2+, Sr2+, Ba2+,
Fe2+, Cu2+

Biased expression in esophagus, skin and 13 other tissues NM_207330.3 No

SLC58A2 TUSC3 N33 Mg2+, Fe2+, Cu2+,
Mn2+

Placenta, pancreas, testis, ovary, heart, prostate NM_006765.4 No

TF TF Transferrin
HEL-S-71p,
PRO1557,
PRO2086,
TFQTL1

Fe2+ Liver NM_001063.4 No

ABCB6 ABCB6 ABC, LAN,
MTABC3, PRP,
umat

Iron Ubiquitous expression in testis, ovary and 25 other tissues NM_005689.4 No

ABCB7 ABCB7 ABC7, ASAT,
Atm1p,
EST140535

Iron Ubiquitous expression in duodenum, heart and 25 other tissues NM_004299.6 No

ABCB8 ABCB8 MITOSUR
M-ABC1
MABC1
EST328128

Organic and
inorganic
molecules

Mitochondria, cardiac NM_
001282291.2

No

(Continued)
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2.2 Brain Iron Transport
2.2.1 Brain Iron Function
Iron in the brain plays a crucial role in maintaining normal
physiological function through its participation in many cellular
activities such as mitochondrial respiration, myelin synthesis,
neurotransmitter synthesis and metabolism (10). Iron is also
essential in enzymes involved in the production of monoamines
(dopamine, epinephrine, norepinephrine and serotonin), which
are involved in social emotional development, executive function
and memory processes. Therefore, maintaining iron homeostasis
is essential for normal physiological activity of the brain (28).

Blood-brain barrier (BBB) and blood cerebrospinal fluid
barrier (BCSFB) are of great significance to maintain the
relative stability of physical and chemical factors in the internal
environment of brain tissue and prevent harmful substances in
blood from entering brain tissue (29). The BBB and BCSFB also
controls iron transport from the bloodstream to the brain
parenchyma, allowing for some independence of brain iron
levels from the total body iron and providing some resistance
to systemic iron toxicity (30, 31). Different cells types in the brain
acquire iron through different pathways, which involving a
myriad iron transporters (Table 2) (29).

Herein we provide a summary of recent literature unveiling the
mechanism of iron transport and regulation across the BBB and
BCSFB, as well as the characteristics of iron transport and
metabolism in different cell types of the central nervous system
(CNS) such as neurons, microglia, astrocytes, and oligodendrocytes.
Frontiers in Oncology | www.frontiersin.org 4
2.2.2 Iron and Iron Transporters in BBB and BCSFB
CNS is tightly sealed from the changeable milieu of blood by the
BBB and the BCSFB (31). BBB is an heterogenous multicellular
complex system. This system includes tightly connected
endothelial cells and a unique basement membrane. In
addition to the parenchymal basement membrane, the
basement membrane also contains an ensheathment of
astrocytic end-feet, pericytes and perivascular antigen-
presenting cells (32). BCSFB lies at the choroid plexuses in the
lateral, third and fourth ventricles of the brain where the choroid
plexus epithelial cells of the nonporous capillary wall contain a
special carrier system for transporting various substances. This
system is responsible for the exchange of substances between
cerebrospinal fluid (CSF) and blood, and transport across BBB
and BCSFB is important for the entry of iron into brain (33, 34).

TF/TFR1 pathway may be the main route of iron transporter
across the luminal (apical) membrane of the BBB. Additionally,
non-transferrin-bound iron (NTBI) uptake from the blood
through luminal DMT1 and H-ferritin uptake may be partly
responsible for iron transport across the BBB. Iron transport
across the abluminal (basal) membrane is a Fpn1/hephaestin
(Fpn1/Heph) and/or Fpn1/ceruloplasmin (CP)-mediated
process (35, 36).

TF/TFR1/DMT1 pathway is an important pathway for iron
transport across the BCSFB. Furthermore, iron export from the
choroid epithelium to the CSF is mediated by the Fpn1/CP or
Fpn1/Heph pathways. Beyond restriction of the access of
TABLE 1 | Continued

Human
gene
name

Protein
name

Aliases Substrates Tissue and cellular expression Sequence
accession ID

Mouse
KO

model

ABCG2 ABCG2 BCRP
ABCP
MXR
EST157481
CD338

Protoporphyrin IX
(PPIX), heme,
sphingosine-1-P

Biased expression in small intestine, duodenum and 12 other tissues NM_004827.3 Yes
April 2022 | V
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TABLE 2 | Proteins Involved in Brain Iron Transport.

Gene name Fe species bound Presence in Function

BBBBCSFB Neurons Microglia Astrocytes Oligodend-rocytes

TF
(Transferrin)

Fe3+ + + + + + Transport iron to cells

DMT1
(SLC11A2)

Fe2+ + + + + + Involved in iron absorption

Zip14
(SLC39A14)

Fe2+ + Transporter of NTBI

FPN1
(SLC40A1)

Fe2+ + + + + + Iron export from cells

CP
(Ceruloplasmin)

Fe2+ + + + Peroxidation of Fe2+ to Fe3+

HEPH
(Hephaestin)

Fe2+ + + + + Peroxidation of Fe2+ to Fe3+

Ferr
(Ferritin)

Fe3+ + + + + Intracellular iron storage protein
"+" refers to the existence of corresponding genes.
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substances from the blood to the CSF, it is possible that the
BCSFB has a bigger impact on iron removal from the brain than
iron uptake into the brain (35–37).

2.2.3 Iron and Iron Transporters in Neurons
Iron is essential for neuron development and function (38). First
iron is an essential cofactor for enzymes involved in energy
metabolism and amino acid biosynthesis. Iron also plays a
significant role for division of embryonic neurons as it is a
cofactor for the enzyme ribonucleotide reductase. In addition,
during early embryonic development, the dysfunction of yolk sac
cells caused by excessive iron uptake leads to the necrotic
degeneration of neuroectodermal cells (39, 40).

The neuronal expression levels of the TFR1 reflects their need
for iron (41). DMT1 is also expressed in neurons, suggesting that
after transferrin binding, iron is transported to the cytoplasm
through DMT1 (42). DMT1 is involved in hippocampal
neuronal iron uptake during development and memory
formation (43). The presence of NTBI in brain extracellular
fluids suggests that neurons can also take up iron as transferrin-
free iron (44). Fpn1 and Heph are involved in the output of iron
from the neuron (45, 46).

2.2.4 Iron and Iron Transporters in Microglia
Microglia have vital roles in brain development and CNS
homeostasis, including programmed cell death, clearance of
apoptotic newborn neurons, as well as pruning developing axons
and synapses (47, 48).Microgliaare immunecells of theCNS,which
are implicated in brain inflammation and can modulate the
transport and metabolism of essential metal iron according to the
anti-inflammatory and pro-inflammatory environment (49).

The mechanism of iron transport in microglia has been
addressed in cell culture. The different sources of cells include
primary adult mouse microglia (49), primary 2-day-old Sprague-
Dawley microglia, primary newborn Wistar rat microglia (50),
primary C57BL/6 mice microglial (51) and BV-2 microglial cells
(52). Microglial cells interact with both TF bound-iron (TBI) and
NTBI. TBI is taken up via the TFR1/DMT1 pathway, and after the
release of iron in the acidic milieu of the endosome, this is
translocated into the cytosol by DMT1 or other transporters (53).
ForNTBIuptake, an endogenous cell surface ferrireductase reduces
Fe3+ to Fe2+ for uptake byDMT1 in a pH-dependentmanner at the
cell surface (54).

2.2.5 Iron and Iron Transporters in Astrocytes
Astrocytes are the most abundant glial cells in the brain (55). In
healthy CNS tissue, astrocytes maintain homeostasis of
extracellular fluids, provide energy substrates to neurons,
modulate local blood flow, and play essential roles in synapse
development and plasticity (56). In addition, astrocytic end-feet
form intimate contacts with the abluminal side of brain capillary
endothelial cells (BCECs) in all brain regions. This close
relationship makes it denotes an important role in nutrient
capture from the circulating blood such as iron (57). Astrocytes
theoretically can transport iron directly from BCECs to neurons
and oligodendrocytes through intracellular transport (58).
Frontiers in Oncology | www.frontiersin.org 5
The TF cycle is probably not the main process by which
astrocytes obtain iron from endothelial cells (59). It is more likely
that DMT1mediates some of this uptake, since this transporter is
strongly expressed in the astrocyte end-feet contacting with
BCECs directly. This suggests that astrocytes can potentially
uptake NTBI directly from BCECs (57).

In addition, the zinc transporter Zip14 and resident transient
receptor potential channels have been suggested to be involved in
the uptake of NTBI by astrocytes (60). Fpn1 and CP are highly
expressed on astrocytic cell membranes, and both proteins may
be essential in iron mobilization from these cells into the
extracellular brain space (61, 62).

2.2.6 Iron and Iron Transporters in Oligodendrocytes
Oligodendrocytes create myelin sheaths for CNS axons, assist in
the jumping and efficient transmission of bioelectric signals,
maintain and protect the normal function of neurons (63, 64).
Oligodendrocytes are the cells with the highest iron levels in the
brain. Oligodendroglia cells require iron as a cofactor for several
enzymes involved in the proliferation and differentiation of
oligodendrocyte precursor cells (OPCs), as well as enzymes
required for the production of cholesterol and phospholipids,
which are essential myelin components (65, 66).

In oligodendrocytes, TF/TFR1/DMT1 pathway plays a
significant role in iron transport in immature oligodendrocytes,
however the proportion of iron transported by this pathway may
decrease with the beginning of myelination (36). DMT1 is
essential for OPC maturation and normal myelination in
mouse brain, which is considered to be a crucial pathway for
many cells to uptake NTBI (67). Extensive literature suggests that
H-ferritin is the main source of iron in oligodendrocytes,
conferring high buffering capacity for iron (68). Heph is
expressed by mature oligodendrocytes and plays a role in iron
efflux from these cells , but white and gray matter
oligodendrocytes can regulate iron efflux differently; while
white matter oligodendrocytes upregulate the expression of Cp
in the absence of Heph, likely as a fail-safe mechanism, gray
matter oligodendrocytes lacks such compensatory pathway (69).
3 FERROPTOSIS AND TRANSPORTERS IN
MALIGNANT BRAIN TUMORS

3.1 The Transport Mechanisms in
Ferroptosis
Ferroptosis is a form of iron-dependent regulatory cell death
distinguished from necrosis, apoptosis and autophagy (70),
which can be triggered by the small-molecule compound
erastin and RSL3 (71, 72). Iron and polyunsaturated fatty acids
(PUFAs) act as raw materials for lipid peroxidation to promote
the occurrence of ferroptosis (73, 74). While glutathione
peroxidase 4 (GPX4) using glutathione (GSH) as the substrate
effectively removes excess ROS through antioxidant mechanism
and inhibits ferroptosis (75). The increase of intracellular iron
content, the accumulation of ROS and excessive lipid
peroxidation are crucial to induce ferroptosis (76). Ferroptosis
April 2022 | Volume 12 | Article 861834
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is closely related to iron metabolism, amino acid metabolism and
lipid metabolism in cells. Therefore, iron transporters and amino
acid transporters involved in metabolism have a marked effect on
the cell sensitivity to ferroptosis (70, 77).

3.1.1 Iron Transporters in Ferroptosis
DMT1 andTfR1 are involved in the absorption of intracellular iron
(78, 79), while Fpn1 transports iron from the cell to the blood (27).
They are both ubiquitous and crucial proteins that regulate the iron
content in cells and are essential for the maintenance of iron
homeostasis (Table 3). Iron is essential for cell growth, but it can
promote the formation of toxic ROS during ferroptosis. In the case
of excessive iron in cells, Fe2+ and H2O2 can generate hydroxyl
radicals (OH-) throughFenton reaction, promoting theoxidationof
PUFAs on the cell membrane, greatly accelerating lipid
peroxidation and ultimately causing cell damage or death (80).
Therefore, increasing the expression of TFR1 or decreasing the
expression of Fpn1will increase the accumulation of iron in the cell
and result in ferroptosis. DMT1 located on the lysosomal
membrane mediates iron transfer and the inhibitors of DMT1
cankill cells byaccelerating lysosomal ironoverloadandan increase
of ROS production (81).

Recently identified ferroptosis-related iron transporters ZIP14
(SLC39A14) can transport manganese, iron and zinc (Table 3).
However, its main function is to transport manganese ions, while
iron ions are not the main transport substrate of ZIP14 under
normal physiological conditions (82, 83). Only in the state of iron
overload, ZIP14 exhibits the function of transporting iron ions and
mediating ferroptosis (84).

3.1.2 Amino Acid Transporters in Ferroptosis
The amino acid transporter system Xc− on the cell membrane is
composed of two core components, SLC7A11 (Solute Carrier
Family 7 Member 11, xCT) and SLC3A2 (Solute Carrier Family
3 Member 2, 4F2hc), involved in the exchange of extracellular
cystine (Cys2) by transporting intracellular glutamate (Glu)
(Table 3) (70). Intracellularly, Cys2 will be reduced to cysteine
(Cys), thereby promoting the synthesis of GSH, the cofactor of
GPX4. As a central regulatory protein for ferroptosis, GPX4 can
convert GSH to oxidized glutathione (GSSG) whilst also reducing
lipid hydroperoxides (L-OOH) to lipid alcohols (L-OH), which is
Frontiers in Oncology | www.frontiersin.org 6
the main mechanism to prevent lipid peroxidation and inhibit
ferroptosis (85). In fact, knockout and inactivation of GPX4 both
contribute to ferroptosis (86). Ferroptosis inducer erastin can
result in GSH depletion and GPX4 inactivation by inhibiting
system Xc− transport of cystine (71), while RSL3 directly
induces ferroptosis by inhibiting the activity of GPX4 (72). Cys
is the crucial limiting amino acid for intracellular GSH synthesis
and GSH depletion directly affects the function of GPX4.
Therefore, system Xc− that participates in the uptake of Cys2 is
considered to be one of the most critical regulators of ferroptosis.
Recent studies suggest that regulation of TP53 (87), Nrf2 (15),
ATF4 (88), BECN1 (89) or interferon g(IFNg) released by CD8+ T
cells (90) significantly inhibits the system Xc−, leading to a
decrease in GSH synthesis and ferroptosis.

The transmembrane transport of glutamine (Gln) is
dependent on SLC1A5 (Solute Carrier Family 1 Member 5)
and SLC38A1 (Solute Carrier Family 38 Member 1) (Table 3).
After entering the cell, Gln is catalyzed by glutaminase (GLS) and
broken down into Glu and ammonia in the mitochondria (91).
Subsequently, Glu can be converted to a-ketoglutarate (a-KG)
that is involved in the oxidative energy supply as an important
intermediate for the tricarboxylic acid (TCA) cycle (92). Glu is an
indispensable molecule for generating GSH, which can effectively
scavenge intracellular ROS. In cancer cells, inhibition of
ferroptosis has been shown to be associated with high levels of
Gln (93). Although glutaminolysis promotes cancer cell growth,
this metabolic process can also induce ferroptosis toward cell
death (94). The pivotal role of dihydrolipoamide dehydrogenase
(DLD) in prompting ferroptosis induced by cystine deprivation
or cystine import inhibition has been recently confirmed. Apart
from stimulating DLD to produce hydrogen peroxides, a-KG
can be further converted into acetyl-CoA, facilitating fatty acid
synthesis and lipid peroxidation-dependent ferroptosis (95).
MIR137 (microRNA137) has also been recently identified as a
negative regulator of erastin or RSL3-induced ferroptosis
through down-regulation of SLC1A5 in melanoma cells (96).

3.2 Ferroptosis and Malignant
Brain Tumors
In 2021, the World Health Organization (WHO) released the
fifth edition of the Classification of Tumors of the Central
TABLE 3 | The characteristics of ferroptosis-related transport protein associated with malignant brain tumors.

Gene symbol Alias Protein name Subcellular Substrates Related Brain Cancer

SLC7A11 xCT Cystine/glutamate
transporter

Plasma membrane Cystine, Glutamate Glioblastoma, Neuroblastoma

SLC3A2 4F2hc 4F2 cell-surface antigen
heavy chain

Lysosome, Plasma membrane L-type amino Glioblastoma, Neuroblastoma

SLC1A5 ASCT2 Neutral amino acid
transporter B (0)

Plasma membrane Glutamine Glioblastoma

SLC38A1 SNAT1 Sodium-coupled neutral amino acid transporter 1 Plasma membrane Glutamine Glioblastoma
SLC11A2 DMT1 Natural resistance associated macrophage

protein 2
Plasma membrane,
Endosome, Mitochondrion

Fe2+ Glioblastoma

SLC40A1 Fpn1 Solute carrier family 40-member 1 Plasma membrane Fe2+ Glioblastoma, Neuroblastoma
SLC39A14 ZIP14 Metal cation symporter ZIP14 Plasma membrane Mn2+, Fe2+, Zn2+

TFR1 TFRC Transferrin receptor protein 1 Plasma membrane Fe3+ Glioblastoma, Neuroblastoma
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Nervous System (CNS) (WHO CNS5). Among various brain
tumors, childhood brain tumors, adult gliomas and
meningiomas are currently the most common brain neoplasia.
Neuroglioma is one of the common primary central nervous
system tumors that originate from glial cells. GBM is the most
malignant and deadliest type of neuroglioma (97). Neuroblastoma
is the most common extracranial tumor in children and nearly
half of neuroblastomaoccurs in infants and young children under 2
years of age (98). Meningiomas are tumors originating from
arachnoid cap cells, most of which are benign. However,
about 3% meningiomas are malignant, including invasive
meningiomas (99). The current treatment methods for malignant
brain tumors mainly include surgical resection, radiotherapy
and chemotherapy.

Recently increasing numbers of studies have shown that
ferroptosis is associated with the pathological process of a
variety of neurological diseases, including neurodegenerative
diseases, neurotrauma and brain tumors (100). Nevertheless,
there has been less research on brain tumors compared to the
other types of tumors so far. It is undeniable that ferroptosis, a
new form of non-apoptotic cell death, will open up new
therapeutic avenues for eliminating brain tumor cells (101).

Soon after ferroptosis was defined, researchers injected iron-
containing water into the rats transplanted with glioma-35 cells
and then focused on treating the tumor site with radiotherapy
(102). They found that the tumor volume in the experimental
group was significantly smaller than that in the control group.
Mechanistically, in a separate report, it is suggested that iron-
containing water treatment before radiation induces glioma cell
death through the combination of apoptosis and ferroptosis
(103). Furthermore, ferroptosis is proved to be involved in the
GBM cell death which can be induced by neutrophils. It appears
that this process requires activation signals given by the tumor
microenvironment. When mature neutrophils infiltrating into
the tumors are activated, they will trigger lipid peroxidation by
transferring myeloperoxidase into GBM cells and increase
cellular ROS, finally causing tumor cell ferroptosis (104).

Although most ferroptosis-related studies have concentrated
on gliomas, neuroblastoma, another malignant brain
tumor, is gradually coming into focus. Research suggests
that overexpression of Mitochondrial ferritin (FtMt) in
dopaminergic neuroblastoma cell line SH-SY5Y cells can
significantly inhibit erastin-induced ferroptosis (105). This is
mainly due to FtMt-mediated inhibition of cellular labile iron
pool (LIP) and the accumulation of cytoplasmic ROS which
protects against effects of ferroptosis. In another study with SH-
SY5Y, the ferroptosis inhibitor Ferrostatin-1 (Fer-1) was found
to have a neuroprotective effect under Rotenone-induced
oxidative stress conditions (106).

In a recently published study, researchers evaluated the
expression of Merlin/Neurofibromin2 (NF2) and the
ferroptosis regulator GPX4 in patients with primary
meningioma and found a positive correlation between them.
They speculated that the inactivation of NF2 in meningiomas
may be more likely to cause ferroptosis. Furthermore, it has been
determined that inhibition of NF2 and E-Cadherin can promote
Frontiers in Oncology | www.frontiersin.org 7
ferroptosis-related cytotoxicity and lipid peroxidation in
meningioma cell lines. The transcription factor MEF2C has
been shown to regulate the transcription of NF2 and E-
cadherin genes. Silencing MEF2C, the expression levels of NF2
and E-cadherin in meningiomas decreased, which inhibited the
growth of meningiomas mediated by ferroptosis (Figure 1).
Therefore, MEF2C can be used as a potential molecular target
for the treatment of aggressive meningiomas through
modulating ferroptosis (107).

3.3 The Role of Transporters
Associated With Ferroptosis in
Malignant Brain Tumors
Ferroptosis plays a key role in the development of malignant
brain tumors. As an important part of ferroptosis, relevant
transporters can regulate amino acid metabolism and iron
metabolism and are essential for the maintenance of iron
homeostasis. Disorders of iron homeostasis in the brain will
increase the risk of tumors, which may be one of the factors
leading to the increased incidence of brain tumors (108). In
addition, a group of ferroptosis-related genes have been
discovered that may predict the prognosis of glioma patients
based on clinical databases (109). In terms of iron metabolism,
CDGSH iron-sulfur domain-containing protein 1 (CISD1) (110),
poly r(C) binding protein 1 (PCBP1) (111) and transferrin (TF)
(94) have a marked impact on ferroptosis by regulating the
cellular content of iron. Here we compared the survival curve of
brain tumor patients with the expression of ferroptosis-related
genes and the results showed that the decrease in survival rate
was related to the high-level expression of the protein required
for iron intake (Figure 2). These data indicate that a better
understanding of the role of ferroptosis-related transporters in
malignant brain tumors may help provide more options for the
treatment and prevention of brain tumors.

The obvious increase of lipid and cytoplasmic ROS is an
important feature of ferroptosis and part of its regulatory factors
have been used as small molecule drug targets to induce the
death of cancer cells. Fpn1 can inhibit ferroptosis by reducing the
accumulation of iron-dependent lipid ROS. Studies have found
that in neuroblastoma cells, erastin induces the accumulation of
iron and the low expression of Fpn1 involved in iron outflow
(112). Furthermore, hepcidin, an amino acid peptide hormone
(113) that binds with Fpn1 and stimulates Fpn1 degradation,
increases antitumor activity of Erastin. This suggests that Fpn1
can be used as a potential therapeutic target for neuroblastoma in
the future and Fpn1 inhibitors may provide a new approach for
the treatment of neuroblastoma.

In neuroblastoma, gene amplification of the oncogenic
transcription factor MYCN makes tumor cells more malignant
and difficult to eliminate. Increased TFR1 expression and
decreased Fpn1 expression in MYCN-amplified neuroblastoma
cells results in high intracellular iron content. Overexpression of
MYCN activates Xc−/GPX4 pathway, resulting in increased
intracellular cystine and enhanced antioxidant protection
(114). Therefore, the use of system Xc− selective inhibitors or
TFR1 agonists to treat MYCN-amplified neuroblastoma will
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increase the level of lipid peroxidation and eventually lead to
ferroptosis of tumor cells (Figure 1).

In addition to neuroblastoma, GSH depletion caused by system
Xc− inhibition is associated with other malignant brain tumors
(115). Nuclear factor (erythoid-derived)-like 2(Nrf2)
overexpression or Kelch-like ECH associated protein 1(Keap1)
knockdown can accelerate the growth of glioblastoma and
promote the development of glioma cells (15). Similarly, xCT is
positively regulatedbyNrf2 and plays a crucial role in the inhibition
of ROS accumulation during the ferroptosis process of glioma cells.
Drug inhibitors targeting system Xc− can rescue ROS generation,
thereby increasing the sensitivity of glioma cells to ferroptosis and
achieving the goal of treating malignant gliomas (Figure 1) (15).

The first-line treatment anti-tumor drug Temozolomide can
inhibit the growth of glioblastoma. In order to explore the role of
ferroptosis in this process, researchers treated human glioblastoma
cell line TG905 cells with siRNA and found that knockdown of
DMT1 reduced the level of ROS and iron production induced by
Temozolomide (116). In addition, down-regulation of DMT1 also
increased the expression of GPX4, Nrf2 and HO-1, thereby
preventing the occurrence of ferroptosis. Temozolomide induces
ferroptosis of some glioblastoma cells by increasing the expression
of DMT1, so the divalent metal transporter DMT1 can be used as a
drug target in glioblastoma.
4 THERAPEUTIC STRATEGY

Mounting evidence suggests ferroptosis plays a beneficial role in
tumors treatment. With the need for new treatments for
malignant brain tumors, increased attention has been paid to
Frontiers in Oncology | www.frontiersin.org 8
drugs inducing ferroptosis that designed based on the regulatory
pathways of ferroptosis. The main types of malignant brain
tumors targeted by the novel Ferroptosis-based include GBM
(117), fibrosarcoma (118), head and neck carcinoma (119).

Ferroptosis can be induced by increasing intracellular iron or
ROS level (11). Inhibition of the glutathione peroxidase GPx4 or
glutamate/cystine antiporter system Xc− through the drugs is
beneficial, promoting ferroptosis though increased ROS
accumulation. Nrf2-Keap1 pathway promotes cell proliferation
and diminishes ferroptosis (15). Although some studies have
reported that inhibiting ferroptosis by activating Nrf2 pathway
can play a neuroprotective role, for example, astrocytes protect
neurons from ferroptosis by activating the Nrf2 pathway to
supply neurons with GSTM2 and other antioxidants, inhibiting
Nrf2 pathway in tumor cells to promote ferroptosis plays
a therapeutic effect (120). ATF4 and Pseudolaric acid B
promotes ferroptosis in a xCT-dependent manner (89, 121).
Dihydroartemisinin initiates ferroptosis through GPx4 inhibition
(122). Ibuprofen induces ferroptosis via downregulation of Nrf2-
Keap1 signaling pathway (123).

Other mechanisms of promoting ferroptosis have also been
reported, including activating the transcription factor BACH1
(BTB domain and CNC homology 1) (124) or Nox4 (121) to
promote oxidative stress, inhibition of autophagy (125), vitamin
C deficiency to reduce proliferation (126) and targeting ACSL4
which suppresses proliferation (127). Based on these
mechanisms, related drugs have been found, such as 2-
Nitroimidazoles, temozolomide, artemisinin and its derivatives.

Ferroptosis inducers may expand our arsenal of frontline
therapeutic agents for combinatory approaches. Temozolomide
toxicity operates is boost by ferroptosis (128). Androgen receptor
FIGURE 1 | Impacts of ferroptosis-related transport proteins in three malignant brain tumor cells. In GBM cell, iron transport-related proteins DMT1 (SLC11A2),
Fpn1 (SLC40A1), TFR1 and amino acid transporters system Xc– (SLC7A11/SLC3A2), ASCT2 (SLC1A5) regulate the occurrence of ferroptosis all together. In MYCN-
amplified neuroblastoma cell, lipid peroxidation and cell death are promoted due to increased expression of TFR1 and System Xc– and lower expression of Fpn1. In
meningioma cell, MEF2C mediated upregulation of NF2 and E-cadherin inhibits Erastin-induced ferroptosis. Arrows indicate promotion and blunt-ended lines indicate
inhibition. Cys, cysteine; Cys2, cystine; GSH, glutathione; GPX4, glutathione peroxidase 4; Glu, glutamate; Gln, glutamine; TF, transferrin; TFR1, transferrin receptor
1; PUFA, polyunsaturated fatty acid; ACSL4, acyl-CoA synthetase long-chain family member 4; TCA, tricarboxylic acid cycle; a-KG, a-ketoglutarate; NCOA4, nuclear
receptor coactivator 4; ATF4,activating transcription factor 4; Nrf2, nuclear factor erythroid-2-related factor; MYCN, BHLH Transcription Factor; MEF2C, Myocyte
Enhancer Factor 2C; NF2, neurofibromatosis type 2; BSO, buthionine sulphoximine.
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(AR) ubiquitination is induced by the curcumin analog which
suppresses growth of temozolomide-resistant GBM through
disruption of GPX4-mediated redox homeostasis (129).
Furthermore, T cell-promoted tumor ferroptosis is an anti-
tumor mechanism, and targeting this pathway in combination
with immunotherapy is another potential therapeutic approach
(91, 130, 131). Nivolumab therapy revealed that clinical benefits
correlate with reduced expression of SLC3A2 and increased IFNg
and CD8 (91).

Although many anticancer compounds that promote
ferroptosis have been found, there are still many treasures to
be discovered. Drugs targeting other mechanisms of ferroptosis
need to be explored, such as targeted iron accumulation. A
systematic assessment of the relationship between ferroptosis
related genes (FRGs) expression profiles and the occurrence and
development of tumors based on the Cancer Genome Atlas
(TCGA), Chinese Glioma Genome Atlas (CGGA) datasets and
FerrDb datasets may unveil new targets (77, 132). In fact, the
Frontiers in Oncology | www.frontiersin.org 9
potential impact of Acetaminophen in ferroptosis through
interaction with CD44, HSPB1, and SLC40A1 was found this
way (132).

To find out the potential correlation of GBM with
transporters involved in ferroptosis. Here we compared the
expression of several ferroptosis related transporters
(SLC7A11, SLC3A2, SLC1A5, SLC38A1, SLC11A2, SLC40A1,
SLC39A14, TFR1, TF) in normal people and GBM patients based
on TCGA data. It is worth mentioning that the differentially
expressed genes (DEGs) covered the majority of the transporters
that we screened related to ferroptosis. Box-plot shows the
expressions of SLC3A2, SLC1A5, SLC40A1, SLC39A14 and
TFR1 increased significantly, the expression of SLC38A1
decreased significantly (Figure 2A). The effect of DEGs on the
survival curve of GBM patients was further explored based on
TCGA data (Figure 2B). As shown in the Kaplan‐Meier survival
curve, median survival of GBM patients changed significantly
according to the expression of SLC39A14 (p = 0.016) and
A

B

FIGURE 2 | (A) Expression level of transporters (TFR1, SLC39A14, SLC1A5, SLC38A1, SLC40A1, SLC3A2) in tumor patients and normal people. Data mined from
TCGA (https://cancergenome.nih.gov/). *p < 0.05, **p < 0.01, ***p < 0.001, compared with tumor patient group. (B) Survival curves of GBM patients mined from
GEPIA2 (http://gepia2.cancer-pku.cn/). GBM patients were stratified into high or low expression groups based on the expression level of transporters (TFR1,
SLC39A14, SLC1A5, SLC38A1, SLC40A1, SLC3A2) of patients. p<0.05 in Log‐rank test. OS, overall survival in months.
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SLC40A1 (p = 0.035), but the mechanism behind it remains to be
explored. The above analysis further proves the potential of
targeting these transporters and ferroptosis in the treatment
of GBM.

Ferroptosis induction may prove as an effective therapeutic
strategy against malignant brain tumors, yet a wide range of
ferroptosis inducers are prone to off-target effects and may cause
significant damage to normal cells. Therefore, it is urgent to
develop tumor targeting delivery strategies of ferroptosis
inducers. At present, many research are focusing on this
aspect. Class I histone deacetylase (HDAC) inhibitors can
selectively inhibit ferroptosis in neurons, but promote
ferroptosis in tumor cells, which may be due to its different
epigenetic regulation on the two cells. The combination of
HDAC inhibitors and ferroptosis inducers can not only reduce
the dosage of ferroptosis inducers to reduce toxicity, but also
protect neurons (133, 134). Nano-targeting of WA allows
systemic application and suppressed tumor growth due to an
enhanced accumulation at the tumor site (135, 136).

At present, the treatment strategy targeting ferroptosis has
been widely studied in various tumors, among which the
advanced treatment strategy can potentially use for malignant
brain tumors as well. Some new therapeutic mechanisms are
worth learning. For example, gene interference by transferring
genes with adeno-associated virus and iron nanoparticles
enhance ferroptosis and inhibit tumor growth (137);
ferroptosis inducer erastin or rsl3 is used independently or in
combination with standard-of-care second-generation for the
treatment of advanced prostate cancer (138); and activating
ferroptosis by sequestering iron in lysosomes kills cancer stem
cells (139). Studies have showed that targeted ferroptosis can
used to overcome drug resistance of tumors. For example,
Vorinostat promotes ferroptosis to overcome the resistance to
epidermal growth factor receptor-tyrosine kinase inhibitors
(EGFR-TKIs) (140); and artesunate inhibits growth of therapy-
resistant renal cell carcinoma through induction of ferroptosis
(141). Some advanced strategies are for targeted therapy. For
example, Photodynamic therapy site-specifically produces
reactive oxygen species for the Fenton reaction, which
promotes ferroptosis and suppresses tumors (142); and
Frontiers in Oncology | www.frontiersin.org 10
catalytic nanomedicine that contains natural glucose oxidase
and ultrasmall Fe3O4 nanoparticles selectively and effectively
strengthens ferroptosis of tumor cells (143). In short, the essence
can be drawn from the treatment of other tumors and used in the
treatment of malignant brain tumors.

Inducing ferroptosis of tumor cells is a newly discovered
strategy for the treatment of malignant brain tumors, but many
problems remain to be solved, including elucidating the
mechanism of ferroptosis in different malignant brain tumors,
discovering new therapeutic targets for inducing ferroptosis of
tumor cells, and increasing the tumor cell targeting of ferroptosis
inducers. It is worth noting that the regulation of iron transport
in tumor cells and the expression of transporters related to
ferroptosis may have good therapeutic potential. Many
transporters have become drug targets in recent years (144,
145). At the same time, clarifying iron transport under
physiological conditions also provides an important research
basis for targeted therapy of tumor cells, crucial to avoid the
damage of normal tissues through off target effects.
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