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Structural assumptions in infectious disease models, such as the choice of network or
compartmental model type or the inclusion of different types of heterogeneity across
individuals, might affect model predictions as much as or more than the choice of input
parameters. We explore the potential implications of structural assumptions on HIV model
predictions and policy conclusions. We illustrate the value of inference robustness
assessment through a case study of the effects of a hypothetical HIV vaccine in multiple
population subgroups over eight related transmission models, which we sequentially
modify to vary over two dimensions: parameter complexity (e.g., the inclusion of age and
HCV comorbidity) and contact/simulation complexity (e.g., aggregated compartmental vs.
individual/disaggregated compartmental vs. network models). We find that estimates of
HIV incidence reductions from network models and individual compartmental models
vary, but those differences are overwhelmed by the differences in HIV incidence between
such models and the aggregated compartmental models (which aggregate groups of in-
dividuals into compartments). Complexities such as age structure appear to buffer the
effects of aggregation and increase the threshold of net vaccine effectiveness at which
aggregated models begin to overestimate reductions. The differences introduced by
parameter complexity in estimated incidence reduction also translate into substantial
differences in cost-effectiveness estimates. Parameter complexity does not appear to play a
consistent role in differentiating the projections of network models.
© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Commu-
nications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A guiding principle in public health modeling stipulates that a model should be only as complex as is necessary. Some
argue that, “Unnecessary complexity … is almost as undesirable as over-simplification” (Basu & Andrews, 2013; Grassly &
Fraser, 2008), yet there is little consensus as to what qualifies as “necessary.” A model should be simple but “not so simple
that realistic violation of simplifying assumptions will change an inference” (Koopman, 2005). As a field, we have not yet
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adopted a consistent evaluation of model complexity nor a protocol for structural sensitivity analysis; consequently, although
taxonomies can provide guidance (Brennan, Chick, & Davies, 2006), structural choices for models are often chosen based on
guesswork, intuition, and computational convenience. While most single-model studies can thoroughly assess first-order
uncertainty (i.e., model sensitivity to input values), they cannot address second-order uncertainty (i.e., how structural as-
sumptions and the construction of the model itself influence model behavior).

Although there is no consensus about how to address structural sensitivity, there is a growing consensus that it is an
essential component of sensitivity analysis that should be addressed (Basu & Andrews, 2013; Bilcke, Beutels, Brisson, & Jit,
2011; Bojke, Claxton, Sculpher, & Palmer, 2009; Caro, Briggs, Siebert, & Kuntz, 2012; Jackson, Bojke, Thompson, Claxton, &
Sharples, 2011; Suen, Goldhaber-Fiebert, & Brandeau, 2017). Consortia of modeling groups like CISNET (the Cancer Inter-
vention and SurveillanceModeling Network) and theMt. Hood Diabetes Challenge Network havemade it commonpractice to
collect and compare predictions across models that vary in scope, parameters, and structure (e.g., Eaton et al., 2012; van de
Vijver et al., 2013). Bilcke et al. (2011) propose a standardized framework for addressing and presenting structural uncertainty
in decision-analytic models, and Jackson et al. (2011) advocate for a comprehensive model that includes all possible pa-
rameters, which can then be pruned back to explore different simplifying assumptions.

In infectious disease modeling, a number of researchers have studied the effect of contact structure assumptions on
epidemic control (Bansal, Grenfell, & Meyers, 2007; Hamilton, Handcock, & Morris, 2008; Huppert & Katriel, 2013; Kong,
Wang, Han, & Cao, 2016). For instance, Bansal et al. (2007) characterize the “epidemiological distance” between network
models and homogeneous-mixing compartmental models and Hamilton et al. (2008) explore how the properties of network
degree distributions affect their ability to replicate disease propagation. The majority of such analyses use stylized examples
to illustrate how different structural make-up affects model prediction and fitting to epidemics but they do not translate these
differences into policy implications.

In the policy context, Rahmandad and Sterman (2008) compare multiple agent-based models with varying network
structures to a dynamic compartmental model, all calibrated to the same targets, and Suen et al. (2017) analyze intervention
effects for compartmental epidemic models with different levels of risk stratification. Both studies find that modeling choices
may lead to different policy choices. Other infectious diseasemodeling studies have called for diversifying contact structures to
improve modeling accuracy (Chick, Adams, & Koopman, 2000; Hellard et al., 2014; Scott, Hellard, & McBryde, 2016) and
improve understanding of models' predictive capacities (Lee et al., 2017) or for adding individual heterogeneity to reduce
predictive bias (Monteiro et al., 2016). Some studies compare parameter complexity across models with otherwise similar
compartmental structure (Silal, Little, Barnes,&White, 2016) or compare the outcomes of simple compartmentalmodels to the
predictions of more complex models (White et al., 2009), demonstrating that models can and should be as simple as possible.

These are mostly isolated analyses; researchers have not employed a consistent framework for categorizing the explo-
ration of structural assumptions in infectious disease modeling. Many studies point out the overwhelming use of dynamic
compartmental models when evaluating policies and emphasize the important role of network effects in disease spread
(Dombrowski et al., 2017; Hellard et al., 2014; Koopman, 2004; Scott et al., 2016) but do not offer further insight intowhen the
use of various structures might be more or less appropriate or even how one might establish such criteria.

Towards this goal, Koopman develops a structural taxonomy for transmissionmodels (Koopman, 2004; Koopman, Jacquez,
& Chick, 2001) and a systematized approach, inference robustness assessment, for isolating the effects of structural choices in a
model (Koopman, 2005, 2007; Koopman, Singh,& Ionides, 2016). Inference robustness assessment tests the validity of a given
structural assumption, and the inference it produces, by relaxing that assumption gradually over a family of linkedmodels. The
experiment is thus designed to explicitly assess the extent to which inferences are robust to simplifying assumptions.

In this paper, we present a case study focused on HIV modeling that utilizes some of the key concepts of inference
robustness assessment. Our case study compares the effects of a hypothetical HIV vaccine in multiple subpopulations over
eight related transmission models, all calibrated to the HIV epidemic in King County, Washington, which we sequentially
modified to vary over two dimensions: parameter complexity (e.g., the inclusion of age and hepatitis C virus (HCV) comor-
bidity) and contact/simulation complexity (e.g., compartmental vs. network models).

The introduction of an HIV vaccine could radically shift HIV control policy, and infectious disease modelers can play an
important role in informing policy makers about population-level effectiveness and cost-effectiveness. As of June 2017,
multiple ongoing HIV vaccine trials were in the phase II stage (Choi et al., 2016; National Institutes of Health, 2017). Nomodel-
based study of vaccine effectiveness or cost-effectiveness analysis has addressed structural uncertainty (Adamson, Dimitrov,
Devine, & Barnabas, 2017). Additionally, no study that we are aware of has applied the principles of inference robustness
assessment in infectious disease modeling, nor has any study that we are aware of comparedmodels along the dimensions of
parameter and contact complexity simultaneously.

In Section 2 we describe our modeling approach. In Section 3 we present the results of our analyses. We conclude with
discussion in Section 4.

2. Methods

2.1. Overview

Fig. 1 provides a schematic overview of the eight models in our case study, organized according to the two dimensions of
contact/simulation complexity and parameter complexity. Section 2.2 discusses each model in detail and Table 1 summarizes
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component differences betweenmodels. In brief, a dynamic compartmental model typically capturesmixing at an aggregated
level between groups of individuals (Brennan et al., 2006; Koopman, 2004; Koopman et al., 2001). Every compartment/group
mixes with every other compartment/group with some time-specific probability. An individual compartmental model dis-
aggregates compartments to the individual level but still assumes that every compartment/individual mixes with every other
compartment/individual. A network model captures individuals mixing selectively with some subset of other individuals
according to network structure. These models differ both in terms of contact complexity (how individuals or groups of in-
dividuals mix with each other) and simulation complexity (whether there are multiple, stochastic trials, resulting from
selecting individual transition probabilities from distributions, or fixed, point-estimate parameters pertaining to each
compartment).

The Appendix contains all input data and technical details of the models, consistent with international model reporting
guidelines (Rahmandad & Sterman, 2012). All models were populated with data from King County, Washington and cali-
brated to key epidemiologic targets, such as overdose deaths, HIV incidence, awareness, and treatment in people who inject
drugs (PWID), men who have sex with men (MSM), the PWID/MSM subpopulation, and heterosexual groups, considered
lower risk in terms of their sexual and injecting behaviors (Aleccia, 2016; Buskin, Hanrahan, & Jaenicke, 2016). Each model
included these risk groups and had consistent “macro-network” structure (Koopman, 2007); that is, the distributions over
risk group and sex/sexual orientation by which individuals choose their partners were the same across all models (Table 2).
An illustrative subset of demographic parameters is presented in Table 3. Tables A.1-A.16 document all parameters and
sources.

We consider two broad types of models along the dimension of contact/simulation complexity: compartmental models
(Models 1a e 4) and network models (Models 5a e 5c). Other, subtler differences exist as we move along each dimension of
complexity. The compartmental models vary according to the level at which transmission rates are calculated and applied:
Models 1a, 1b, and 2 assume that contact is aggregated at the subpopulation (risk group) level; Models 3 and 4 assume that
contact is disaggregated at the individual level. The compartmental models also vary according to heterogeneity within
subpopulations: Models 1a, 1b, 2, and 3 assume that individuals within a subpopulation are homogeneous, while Model 4
allows individuals to be distinguished by their event histories.

We consider three levels along the dimension of parameter complexity: models in which we distinguish three population
subgroups (PWID, MSM, and low-risk) andwe include the single disease HIV (Models 1a and 5a); models inwhich individuals
are additionally distinguished by age and HCV infection status (Models 1b, 2, 3, 4 and 5b); and a model that includes persons
who abuse drugs but do not inject (PWUD), distinguishes individuals by race, and tracks incarceration dynamics (Model 5c).

In practice, we began by implementing the most complex model, Model 5c, then iteratively constructed the remaining
models so that each successively less complex model either completely removed structural components (e.g., incarceration)
Fig. 1. Schematic of model types. PWID ¼ people who inject drugs. MSM ¼ men who have sex with men. HCV ¼ hepatitis C virus. HIV ¼ human immunode-
ficiency virus. PWUD ¼ people who abuse drugs but do not inject. The eight models in our case study are organized along two dimensions: contact/simulation
complexity and parameter complexity. Moving from left to right, along the parameter complexity direction, we begin with three basic risk groups (PWID, MSM,
and low risk) and HIV; add age structure and HCV comorbidity; and finally add incarceration structure, the PWUD risk group, and race to the models. Moving
from top to bottom, along the contact/simulation complexity dimension, we begin with a close approximation of a dynamic compartmental model; introduce
heightened stochasticity; move compartment size from a subpopulation to a (homogeneous) individual; introduce heterogeneity of individuals; and finally
include network structure.



Table 1
Model complexity: Inclusion of different aspects of parameter, structural, and simulation complexity in the considered models.

Model

1a 1b 2 3 4 5b 5a 5c

Parameter Complexity
CD4 count ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

PWID, MSM, and low-risk groups ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

HCV comorbidity ✕ ✕ ✕ ✕ ✕ ✕

Age structure ✕ ✕ ✕ ✕ ✕ ✕

Incarceration ✕

PWUD risk group ✕

Race ✕

Contact Complexity
Compartment ✕ ✕ ✕ ✕ ✕

Aggregated ✕ ✕ ✕

Individual/disaggregated ✕ ✕ ✕ ✕ ✕

Continuous viral load ✕ ✕ ✕ ✕

Continuous CD4 count ✕ ✕ ✕ ✕

Network ✕ ✕ ✕

Simulation Complexity
Deterministic/reduced stochastic ✕ ✕

Stochastic ✕ ✕ ✕ ✕ ✕ ✕

PWID ¼ people who inject drugs. MSM ¼men who have sex with men. PWUD ¼ people who abuse but do not inject drugs. A ✕ indicates that the indicated
form of complexity is included in the model.

Table 2
Models'’ macro-network structure: Partner choice distribution.

PWID Non-PWID

HF HM MSM HF HM MSM

PWID HF 0.0 0.80 0.0 0.0 0.20 0.0
HM 0.80 0.0 0.0 0.20 0.0 0.0
MSM 0.12 0.0 0.68 0.03 0.0 0.17

Non-PWID HF 0.0 0.0 0.0 0.0 1.0 0.0
HM 0.0 0.0 0.0 1.0 0.0 0.0
MSM 0.0 0.0 0.0 0.15 0.0 0.85

HF¼ heterosexual female. HM¼ heterosexual male. MSM¼menwho have sexwithmen. To identify how amember of a risk group chooses a partner, read a
row from left to right: for example, a female PWID has an 80% chance of choosing a heterosexual male PWID and a 20% chance of choosing a low-risk
heterosexual male. All models except Models 1a and 5a include an additional selection distribution by age. Data sources are shown in Table A.4.

Table 3
Baseline HIV prevalence by risk group, sex/sexual orientation and age.

PWID (0.017)

HF (0.326) HM (0.579) MSM (0.095)

18e29
(0.151)

30e39
(0.249)

40e49
(0.267)

50e59
(0.250)

60e74
(0.083)

18e29
(0.153)

30e39
(0.248)

40e49
(0.263)

50e59
(0.252)

60e74
(0.084)

18e29
(0.126)

30e39
(0.268)

40e49
(0.323)

50e59
(0.212)

60e74
(0.071)

0.038 0.070 0.087 0.041 0.041 0.019 0.035 0.044 0.020 0.020 0.385 0.541 0.599 0.399 0.399

Non-PWID (0.983)

HF (0.503) HM (0.472) MSM (0.025)

18e29
(0.229)

30e39
(0.215)

40e49
(0.211)

50e59
(0.194)

60e74
(0.150)

18e29
(0.228)

30e39
(0.216)

40e49
(0.212)

50e59
(0.195)

60e74
(0.149)

18e29
(0.343)

30e39
(0.281)

40e49
(0.192)

50e59
(0.128)

60e74
(0.056)

0.0004 0.0008 0.0012 0.0014 0.0008 0.0006 0.0013 0.0021 0.0026 0.0015 0.0813 0.1667 0.1995 0.2212 0.2252

HF ¼ heterosexual female. HM ¼ heterosexual male. MSM ¼ men who have sex with men. Parenthetical values correspond to the percent that the current
row's subpopulation makes up of the next highest (sub)population: for example, PWID make up 1.7% of the model population and 32.6% of PWID are
heterosexual female. Models 1a and 5a do not include the age structure. Within each subpopulation, those models take the expected value of HIV prevalence
over its age distributions as the starting prevalence. Data sources can be found in Appendix Tables A.1 and A.2.
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or took the expected value across them (e.g, we took a weighted average of mortality over age groups for models that did not
include age) to determine the appropriate parameters in a simplified context. For instance, in Model 5c, we assumed that no
overdose deaths occurred in the lowest-risk population because we considered a separate PWUD population. In all other
models, the low-risk population subsumed the PWUD population, which meant that net mortality increased across this low-
risk group compared to that in Model 5c. In this way, each model was designed in direct correspondence to its neighbors on
the parameter complexity/contact and simulation complexity plane and explicitly included the same categories, if not the
same sets, of assumptions. The models were programmed in Python™ version 2.7.11. Model code can be obtained by writing
to the authors.
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In summary, Models 2, 3, and 4 are microsimulations that capture the intermediate steps between dynamic compart-
mental models, which Model 1b closely approximates, and network models such as Model 5b. Models 1a and Models 5a and
5c expand or contract Models 1 and 5, respectively, in terms of parameter complexity. Using each of the eight models, we
examined the effect of a hypothetical HIV vaccine with varying levels of coverage and efficacy. We simulated each model over
a five-year time horizon and measured the number of HIV infections averted in each population subgroup.

2.2. Description of models

Model 1a closely approximates the transmission and transition dynamics of a traditional compartmental model. The
model's subpopulations are categorized by risk group (PWID, MSM, or lower-risk) and sex/sexual orientation (heterosexual
male, heterosexual female, or MSM) with specific demographics supplied from King County, Washington data (Broz et al.,
2014; Buskin et al., 2016; Kingston & Banta-Green, 2016; Monteiro et al., 2016; Seattle and King County Public Health
Department, 2009; US Census Bureau, 2017; Vance-Sherman, 2015). Individuals enter the model as low-risk, HIV-uninfected
18-year-olds and mature out of it at age 75. While active in the model, individuals in uninfected compartments mix with
individuals in infected compartments according to subpopulation characteristics. HIV transmission can occur through either
sexual or injection-based contact. The compartment-specific rates of infection depend on the probability of contact with each
infected compartment and the probability of infection from that compartment given that contact occurred. Community
programs for PWID such as needle/syringe exchange programs (NSP) or substance abuse therapy (SAT), which broadly in-
cludes both drug rehabilitation and opioid agonist therapies, moderate the use and sharing of injecting equipment and
therefore the risk of HIV infection (Bernard et al., 2016). Upon infectionwith HIV, individuals enter a brief but highly infectious
acute phase and then progress through stages characterized by decreasing CD4 count, increased probability of transmitting to
partners, and increased risk of opportunistic infections and mortality (Bendavid, Brandeau, Wood, & Owens, 2010; Bendavid
et al., 2008; Monteiro et al., 2016; Public Health Agency of Canada, 2012; Zhong, Arjmand, Brandeau, & Bendavid, 2017). HIV-
infected individuals can be tested and, once aware of their infection status, are eligible for antiretroviral therapy (ART), which
reduces infectivity and extends life expectancy (Bernard et al., 2016). Background mortality rates adjust for deaths from
overdose (Aleccia, 2016; Bird, Parmar, & Strang, 2015; Degenhardt et al., 2014; Larney, Toson, Burns, & Dolan, 2012; Lee et al.,
2015; Maryland Department of Health and Mental Hygiene, 2014; National Institute on Drug Abuse, 2017; Rich et al., 2015),
comorbidities (Liu, Cipriano, Holodniy, Owens,&Goldhaber-Fiebert, 2012), and differences between sexes (Arias, 2014). Aside
from the characteristics detailed above, individuals are homogenous and cannot be distinguished from one another in the
model. Details of transmission calculations and model equations can be found in the Appendix and in the appendix of two
previously published analyses (Bernard, Owens, Goldhaber-Fiebert, & Brandeau, 2017; Bernard et al., 2016).

Model 1b introduces a greater level of parameter complexity to Model 1a: subpopulations are further divided by age
(Buskin et al., 2016; US Census Bureau, 2017) and HCV comorbidity (Buskin, Hanrahan, & Jaenicke, 2013; Buskin et al., 2016;
Hellard et al., 2014; University of Washington, 2017; Valdiserri & Koh, 2014) according to the demographics of King County,
Washington. HCV infection is modeled as a Markov process. At the time of HCV infection, individuals enter a six-month acute
phase, during which they are not infectious (Chen &Morgan, 2006). If they do no spontaneously clear the HCV infection (Liu,
Watcha, Holodniy, & Goldhaber-Fiebert, 2014; Scott & Chew, 2017), it progresses to a chronic, and infectious, F0 stage, which
is followed by the F1, F2, F3, and F4 stages before end-stage liver disease (ESLD) (Liu et al., 2014). Progression rates depend on
age, sex, HIV comorbidity, and HIV treatment status. HCV treatment is available, although quitting may occur before
completion, and even at the time of completion not everyone achieves a sustained virologic response (Cipriano et al., 2012;
Liu et al., 2014). Mortality rates are disaggregated to separately account for background risk by age and HCV-specific risk,
which is especially high in ESLD (Liu et al., 2012). HCV transmission is modeled concurrently with HIV infection using the
same contact structure as Model 1a with additional macro-network complexity to capture age-based selection; that is, the
distribution over which individuals choose a partner now depends on age as well as risk group and sex/sexual orientation.

Model 2 is identical to Model 1b in parameter complexity. Like Model 1b, it aggregates the calculation of disease trans-
mission at the subpopulation level, but unlike Model 1b, after calculating the transmission probability it applies it at the
individual level, rather than as a compartment-specific rate, thus creating enhanced stochasticity. We introduced Model 2 to
isolate the effects of aggregation from the effects of deterministic modeling and rounding. That is, if the aggregated models
overestimated vaccine effectiveness, as we predicted they would, wewanted to demonstrate with clarity that this came from
structural assumptions and not from the potentially arbitrary effects of model implementation.

Model 3 is identical to Model 2 in parameter complexity, but unlike Model 2, in which compartments are composed of
aggregated individuals, the compartment and the individual are synonymous in Model 3. As in any compartment model, all
compartments (in this case, therefore, all individuals) can potentially mix with all other compartments (individuals), but here
the calculations of transmission probabilities are necessarily disaggregated. While we explicitly track individuals in Model 3,
they remain homogeneous up to the same subpopulation levels as in Model 2.

Model 4 captures the same mixing and transmission structures as Model 3 but relaxes the assumption that individuals/
compartments are homogeneous. In Model 4, individuals have heterogeneous event history and unchangeable characteristics
such as adherence to ART (Chen et al., 2013; Monteiro et al., 2016) and genotypes that make it easier or harder to clear HCV
(Cipriano et al., 2012). A random integer is drawn from a negative binomial distribution (Hamilton et al., 2008; Monteiro et al.,
2016) to determine the number of partners an individual has at each time step, which means that, in practice, many in-
dividuals do not mix because they have 0 partners that month. (In Models 1a, 1b, 2, and 3, the number of partners is taken as
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the mean of the partnership distribution.) HIV is no longer modeled as a discrete Markov process. Instead, individuals have
continuous viral load and CD4 count trackers. Starting viral loads are assigned from a distribution with mean 4.02 log10
copies/ml (Bendavid et al., 2010), and CD4 counts begin in a 500e1600 cells/mm3 range. For an HIV-infected individual on
ART, CD4 count rises and viral load decreases during an initial starting period (Zhong et al., 2017). In the absence of ART, CD4
count decreases with a magnitude that depends on viral load.

Model 5b is identical to Model 4 except for contact structure. Model 5b relaxes the assumption of homogeneous
compartmental mixing, and connects individuals through partnerships that form sexual and injecting networks. Partnerships
can be casual or main, which signify different risk behaviors (Broz et al., 2014; Kapadia et al., 2007; Monteiro et al., 2016;
Sionean et al., 2014). (In Models 1a e 4, risk behavior is averaged across all partnerships.) Model 5a contracts the param-
eter complexity of Model 5b in the same way that Model 1a contracts Model 1b: parameters are averaged over age and HCV
comorbidity and these characteristics are no longer explicitly tracked.

Model 5c extends the parameter complexity of Model 5b. A recent systematic review of HCV models for PWID noted the
potential importance for disease transmission dynamics of high incarceration rates that interrupt injecting networks and
called for modeling incarceration (Scott et al., 2016). No infectious disease models for PWID that we are aware of have
incorporated incarceration dynamics. To capture the relevant aspects of the King County, Washington incarceration system,
we introduced the PWUD risk group, disaggregating it from the non-injecting, low-risk population. We further categorized
individuals by race, and explicitly modeled criminal activity and jail and prison structures. In the model, crimes occur on a
weekly basis. When a crime is identified, it is determined to be amisdemeanor or a felony and an appropriate sentence length
is assigned (Berk Consulting, 2014; King County Department of Adult and Juvenile Detention, 2015). All crimes are processed
through the jail structure, with felons awaiting trial and potentially serving a less than one-year sentence there. Otherwise,
after conviction, felons are sent to prison. We assumed there is no HIV or HCV transmission during incarceration. At the time
of release, due to lowered tolerance, PWID have an increased risk of death from overdose (Aleccia, 2016; Degenhardt et al.,
2014; Larney et al., 2012; Maryland Department of Health and Mental Hygiene, 2014; Rich et al., 2015).

2.3. Model instantiation and calibration

We instantiated the models with data to reflect the population of King County, Washington (Table 3, Appendix Tables A.1-
A.15). We manually calibrated Model 5c to multiple epidemiologic targets in the county such as jail and prison populations,
HCV and HIV incidence, prevalence, awareness, and treatment, and overdose deaths, both in the population as awhole and in
each population subgroup (Appendix Figures A.1-A.10). We then calibrated all other models to the output of Model 5c. Fig. 2
shows the distribution of cumulative five-year HIV incidence across subpopulations (PWID, MSM, MSM/PWID, and low-risk)
for each model under the status quo (in the absence of a vaccine intervention).

We associated each state and some transitions with a cost and quality-of-life value and calculated lifetime costs and
quality-adjusted years (QALYs) (Appendix Table A.16). We discounted costs and QALYs at 3% annually (Gold, 1996; Weinstein
et al., 2003). Costs in each model included, where relevant, background healthcare costs by sex and age, costs of criminal
activity and incarceration, community program costs, and disease-specific costs. QALYs included, where relevant, background
quality of life by sex, age, and risk group, and multipliers greater or less than 1 which improved or reduced quality of life
depending on whether they were associated with community programs or infection. At the end of each model run we
included projected future lifetime costs and QALYs for each subpopulation by infection status to capture long-term costs and
health outcomes (details in Appendix).

2.4. HIV vaccine scenarios

We considered a hypothetical protective HIV vaccine given to individuals at the start of the modeled 5-year time horizon.
(Individuals subsequently entering into the model were not vaccinated.) Similar to other analyses of the potential effec-
tiveness of HIV vaccines (e.g., Long & Owens, 2011; Long, Brandeau, & Owens, 2009) we assumed that the vaccine has a fixed
level of efficacy in reducing the chance that an individual acquires HIV (we considered efficacy levels of 25% and 75%) and that
vaccine efficacy does not diminish over the 5-year time horizon. As illustrative examples we considered coverage levels of 25%
and 100% of susceptible individuals in the target population receiving the vaccine. We considered three target populations:
PWID, MSM/PWID, and MSM. For each vaccine scenario (efficacy, coverage level, and target population) and each model, we
calculated the number of HIV infections averted over the time horizon.

Given the different structural complexities of each model, the transmission calculations, and thus total run time, varied
greatly. Computational constraints dictated that we could not run every model for the standard 10,000 runs typical for
microsimulations. Consequently, we employed a different standard: for each scenario, we ran enough trials for the number of
HIV infections averted to weakly converge. In particular, we ran two sets of trials until the means of the sets (projected
number of HIV infections averted) converged to within 1% of each other. This was largely insufficient for the costs and QALYs
to converge. Therefore, we performed an economic analysis with a limited subset of models (Models 1a and 1b) to examine
whether parameter complexity affects not only a dynamic compartmental model's predictive capacities but also its ultimate
policy recommendations, which we report in terms of the incremental cost-effectiveness ratio (ICER), the additional cost for
each additional unit of benefit gained by a scenario compared to the next best alternative (Gold, 1996). As most infectious
disease policy models rely on dynamic compartmental models, this analysis has particular relevance.



Fig. 2. Model calibration: Distribution of projected HIV incidence over five years across subpopulations in the absence of a vaccine intervention. PWID ¼ people
who inject drugs. MSM ¼ men who have sex with men. The eight models were calibrated to a number of epidemiologic targets from King County, Washington
(Appendix Figures A.1-A.10), including the distribution of HIV incidence across risk groups as shown here.
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3. Results

3.1. Overview

Figs. 3e5 summarize the results from the scenario runs. Because the models are calibrated to similar targets but differ
slightly in terms of total HIV incidence predicted under the status quo, we present standardized results in terms of percent of
HIV infections averted rather than absolute number of infections averted. Because the models also differ slightly in terms of
the distribution of HIV incidence over risk groups, we also calculated the percent of infections averted divided by the percent
of infections contributed under the status quo by each risk group (Appendix Figures A.11-A.13); results were qualitatively
similar to those in Figs. 3e5. From Figs. 3e5, we observe that the level at which infection force is calculated is the most
substantial differentiator between model performance. While the network models and individual compartmental models
vary within and across their categories, those differences are overwhelmed by the differences between them and the
aggregated compartmental models (Models 1a,1b, and 2). This difference is especially pronounced in risk groupswith smaller
population size (the PWID and the PWID/MSM populations). Sections 3.2e3.4 provide detailed analysis and model-to-model
comparisons.

3.2. Contact/simulation complexity

Moving along the dimension of contact/simulation complexity (Models 2, 3, 4, and 5b), projected vaccine effectiveness in
the target population generally increases as we increase complexity from network to aggregated compartmental models.
However, this trend is not consistent. Across the majority of vaccine scenarios and target populations, Model 4, which in-
cludes individual event histories, projects higher reductions in HIV incidence than both network Model 5b (more complex)
and homogeneous individual compartmental Model 3 (less complex). In fact, under most circumstances, the network model
(Model 5b) and the homogeneous individual compartmental model (Model 3) perform similarly. Thus, we cannot conclude
from these results that adding simulation/complexity would necessarily improve or change results.

The most consistent differences in projected HIV incidence occur in the transition from disaggregated to aggregated
models. Models 1b and 2 (which are aggregated compartment models) often project reductions in HIV incidence far sur-
passing estimates from the other models, regardless of other forms of complexity, especially in smaller target populations and
under assumptions of higher vaccine coverage or efficacy. At lower coverage or efficacy, Models 1b and 2 may generate
incidence reductions in line with the disaggregated models or over-predict to a lesser extent (e.g., when evaluating vacci-
nation targeted to the MSM population at 25% coverage and 25% efficacy). This suggests the notion of a threshold net
effectiveness of a vaccination program below which an aggregated model performs similarly to a disaggregated model and
above which transmission is over-damped and an aggregated model substantially over-predicts HIV incidence reductions
relative to a disaggregated model. The threshold also appears to depend on population size (e.g., note the performance of
Models 2 and 5b at 100% coverage and 75% efficacy in the MSM versus PWID populations).



Fig. 3. Vaccine scenarios in the PWID target population: percent decrease in HIV incidence over five years. PWID ¼ people who inject drugs. The figure presents
the results of all vaccine scenarios targeted to the PWID population across the eight models. The figure shows the percent of total HIV infections averted.

Fig. 4. Vaccine scenarios in the PWID/MSM target population: percent decrease in HIV incidence over five years. PWID ¼ people who inject drugs. MSM ¼ men
who have sex with men. The figure presents the results of all vaccine scenarios targeted to the PWID/MSM population (that is, individuals who fall into both
categories) across the eight models. The figure shows the percent of total HIV infections averted.
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Finally, we note the role of stochasticity in the projections of aggregated models. While Models 1b and 2 both over-predict
the reduction in HIV incidence relative to the disaggregated models, Model 2 does so to a lesser extent in the smaller target
populations. Recall that Models 1b and 2 approximate the differences between a dynamic compartmental model with and
without rounding, respectively (Model 1b only picks up integer values of infections while Model 2's stochasticity allows
infection to occur evenwhen population size and transmission probability are low). Thus, we see the large, and compounding,
role that rounding e a relatively minor assumption e can play in estimating the effectiveness of an intervention (in this case,
HIV vaccination).

3.3. Parameter complexity in aggregated compartmental models

Models 1a and 1b differ only in their parameter complexity. It is useful to compare their “thresholds” directly. While there
are scenarios under which Model 1b generates projections in line with the disaggregated models, Model 1a over-predicts the
reduction in HIV incidence in every scenario; andwhen bothModels 1a and 1b over-predict, Model 1a tends to over-predict to
a greater extent (e.g., observe the progression of net vaccine effectiveness along the x-axis in the PWID target population). We
hypothesize that age structure, rather than HCV comorbidity, makes the key difference in terms of parameter complexity in
our models. Age structure can pool prevalence into highly concentrated groups so that high transmission probabilities



Fig. 5. Vaccine scenarios in the MSM target population: percent decrease in HIV incidence over five years. MSM ¼ men who have sex with men. The figure
presents the results of all vaccine scenarios targeted to the MSM population across the eight models. The figure shows the percent of total HIV infections averted.
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compensate for small compartment size. Dispersing prevalence throughout each subpopulation in Model 1a exacerbates the
over-prediction of Model 1b. It appears that parameter complexity in some circumstances has the potential to act as a buffer
against the effects of model aggregation.

While Models 1a and 1b differ in their projections of HIV incidence in the presence of vaccination, it does not necessarily
follow that this difference matters from a policy perspective. If the purpose of infectious disease modeling is to inform in-
vestment in public health investments, then the cost and QALY findings of an analysis aremore important for decisionmaking
than potentially arbitrary incidence estimates. Table 4 shows an illustrative subset of economic comparisons betweenModels
1a and 1b. Although we performed a relatively small number of trial runs, results converged sufficiently to detect dis-
tinguishing features between the two models.

Overall, we observe trends that are consistent with the projected reductions in HIV incidence: for example, in the larger
target population (MSM) and with higher net vaccine efficacy, parameter complexity differentiates the estimates to a lesser
extent. We also observe that ICERs can vary substantially, in terms of both absolute value and sign. In the scenarios we
considered, these differences would not lead to substantially different policy recommendations: while Model 1b is less likely
to find the interventions cost-saving, all scenarios are considered highly cost-effective at a $50,000 willingness-to-pay
threshold. However, the example illustrates the potential for different policy recommendations arising from models with
different structures. Note also that, while the findings in Table 4 are intuitive, they cannot necessarily be predicted in the
absence of simulation. The difference in projected reductions in HIV incidence suggests that incremental QALYs would be
lower in Model 1b, but it is not obvious that incremental costs would be higher as well, since the inclusion of costs associated
with HCV comorbidity and age might have made the value of preventing an HIV infection higher, thus displacing the dif-
ference in savings that comes from preventing more infections.

3.4. Parameter complexity in network models

While we found parameter complexity to strongly differentiate aggregated models, we did not find this to be the case for
network models. Not only did parameter complexity fail to consistently distinguish between mean projected reductions, it
also did not substantially alter the standard deviations of each model's projections (Table A.17). Models 5a, 5b, and 5c do not
always agree in their predictions, but they do not differ in a clearly recognizable pattern that suggests that, given this level of
contact/simulation complexity, increased parameter complexity refines model predictions.

4. Discussion

It has been conjectured that structural assumptions in infectious disease models, such as the choice of network or
compartmental model type or increased heterogeneity across individuals, might affect model predictions as much as or more
than the choice of input parameters (Brisson & Edmunds, 2006; Koopman, 2004, 2005, 2007). Yet, because of computational
and time constraints, and because of the current focus of most modeling studies on calibration and first-order uncertainty,
these structural assumptions are rarely explored in a policy context.

Koopman (2007) underscores the importance of exploring the effects of both contact and simulation complexity (e.g.,
aggregated compartmental model versus stochastic network model with gradations in between) as well as parameter



Table 4
Effects of parameter complexity on estimated cost-effectiveness of an HIV vaccine.

Scenario Model 1a Model 1b

Fraction of HIV
Infections Averted

Incremental
Costs
($,
Thousand)

Incremental QALYs
(Thousand)

ICER Fraction of HIV
Infections Averted

Incremental
Costs
($,
Thousand)

Incremental QALYs
(Thousand)

ICER

PWID: [L,
H, L]

0.23 �1645 203 -$8103 0.12 638 77 $8286

PWID: [L,
H, H]

0.23 120 203 $591 0.12 1935 77 $25,130

PWID: [H,
H, H]

0.45 �337 362 -$931 0.32 2058 188 $10,947

MSM: [L,
H, L]

0.28 �2565 243 -$10,512 0.22 �1804 166 -$10,867

MSM: [L,
H, H]

0.28 �557 243 -$2292 0.22 361 166 $2175

MSM: [H,
H, H]

0.82 �7018 743 -$9445 0.80 �5712 664 -$8602

PWID ¼ people who inject drugs. MSM¼menwho have sex with men. ICER¼ incremental cost-effectiveness ratio, expressed as incremental cost per QALY
gained. Scenarios are presented as “target population: [vaccine efficacy, vaccine coverage, vaccine cost].” “L” and “H” denote low or high. Low vaccine efficacy
is 25%; high is 75%. Low coverage is 25%; high is 100%. Low cost is $300; high is $1000. All results are compared to the status quo over a five-year time
horizon.
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complexity (i.e., increasing model realism by including progressively more risk factors). In our case study, we consider one
policy, HIV vaccination, and explore the potential implications of such structural assumptions (contact/simulation complexity
and parameter complexity) on our conclusions using the protocols of inference robustness assessment (Koopman, 2005,
2007; Koopman et al., 2016).

We found that complexity did not consistently differentiate network models but had a substantial effect in aggregated
compartmental models. The aggregated compartmental models we considered over-predicted the incidence reductions of an
HIV vaccine compared to the disaggregated models. These effects were especially pronounced in smaller target populations,
but were mitigated by the inclusion of parameter complexity such as age structure. These findings have several implications
for infectious disease modelers in the policy context. The concept of a threshold intervention effectiveness below which
aggregated and disaggregated models have substantial overlap suggests the possibility of future model-selection guidelines.
If a modeler's intended analysis explores the cost-effectiveness of a relatively low-impact intervention or a higher-impact
intervention in a large population, a compartmental, mass-action model may be sufficient.

The finding that parameter complexity can reduce the over-prediction of an aggregated compartmental model suggests
that modelers should attempt to capture mixing-relevant aspects of their population, as we hypothesize that appropriately
capturing mixing patterns may have greater impact than incorporating other differentiating characteristics such as comor-
bidities. At a certain point, the amount of complexity required to appropriately capture the macro-network of a population
might make defaulting to a network model more efficient in terms of implementation, although computational constraints
still point to the value of a dynamic compartmental model. Finally, depending on the intervention being analyzed, modelers
already using a network model may not necessarily want to include further parameter complexity given the substantial time
investment versus the potential gains in model prediction, and this may in turn guide surveillance data collection.

Our case study has relatively narrow scope, and we emphasize that our findings are illustrative and not prescriptive. We
consider a set of stylized policy scenarios under a constrained number of trial runs. We made every effort to isolate the
structural assumptions between linked models, but no two models, even ones as closely developed as ours, can entirely
control for certain inherent differences that arise during their implementation. Our models are closely but not perfectly
calibrated to each other, and slightly differently tuned parameters may have outsized effects not accounted for given the
“black-box” nature of model dynamics (more discussion in Appendix). Finally, Models 1a and 1b were designed to approx-
imate aggregated compartmental models but they have a slightly different implementation and their projections are
therefore not definitive.

Nonetheless, while our quantitative findings are specific to the particular set of models and scenarios we considered, our
qualitative findings are illustrative of broader phenomena and can provide insight for modelers as they consider the
appropriate balance of simplicity versus complexity in model structure. Comparative model simulation is the first step in a
long process of engagement around structural sensitivity. Our case study suggests several directions for future work.

First, although the models we created are specific to HIV, further simulations can help illustrate the importance of
structural uncertainty analysis in other contexts. For example, the World Health Organization has goals for eradication of
certain infectious diseases. Comparing the level of intervention required to eliminate transmission across models could be of
particular interest and help to inform the appropriate complexity of models used for future goal-setting. Models are also
commonly used to estimate real-world parameters from observed data in non-endemic settings (Koopman et al., 2016). A
case study similar to ours could “work backwards,” fitting eachmodel to data to estimate the same known parameter in order
to document how structural complexity can affect a model's capacity for inference.
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Second, we hypothesize that the value of parameter complexity in network models may be higher when analyzing other
interventions, such as NSP, whose value would likely be directly affected both by the inclusion of HCV comorbidity and by
quit-rates associated with incarceration. Our current analysis suggests that the impacts of differences in parameter
complexity are subsumed by differences in contact/simulation complexity and this further analysis would help to elucidate
whether that inference holds across varied policies. Inference robustness assessment can also be applied tomodeled network
distributions themselves to inform epidemiologists about the value of collecting precise data on social networks.

Finally, our case study provides descriptive analysis of howmodel inferences can vary across dimensions of complexity but
it does not answer why. We observe from our simulations that smaller populations are more vulnerable to over-estimates of
intervention efficacy in models of reduced complexity (Figs. 3e5). Aggregated compartmental models predict that trans-
mission can be suppressed in those populations to such an extent that falling prevalence drives down transmission to and
within other, larger populations (Figures A.11-A.13). One hypothesis for this is that aggregation weakens the extent to which
small but high-prevalence compartments can concentrate transmission within their own group. Focused exploration be-
tween Models 2 and 3 would help test this hypothesis. By examining individual trajectories, one could track how different
populations “experience” infection risk over time (e.g., fromwhich groups and towhat extent), in the presence and absence of
intervention.

More generally, experimentation on howmacro-network structure affects the performance of aggregated compartmental
models can help to isolate the underlying mechanisms of the threshold property that we observed. A macro-network
structure where small populations like PWID/MSM are more or less insular in their mixing or an assumption of sero-
sorting might mitigate or worsen the over-prediction effects we currently observe. Increasing our understanding of the
link between macro-network assumptions, population size, and thresholds for aggregated compartmental models through
simulation can help to inform modelers as to when a given macro-network property in a population would necessitate the
use of a non-aggregated model. It may also informwhen it is appropriate to ignore geographical heterogeneities and reduce
compartments and when it is necessary to explicitly model subpopulations in order not to overestimate intervention
effectiveness. Further inference robustness assessment targeted to the areas where we observe the most striking disparities
between aggregated compartmental models can help tease apart the relative impact of often bundled assumptions and may
lead to valuable analytic insights.

Our analysis contributes to the effort of identifying what makes a model “as detailed as necessary to represent all
potentially relevant aspects of the [modeled] process” (Jackson et al., 2011). In models with sufficient contact/simulation
complexity, a high level of parameter complexity may not be needed, whereas in models with lower contact/simulation
complexity, higher parameter complexity may be called for. Our experiment elucidates the implications of structural as-
sumptions in policy analysis of infectious disease control interventions, and illustrates the value of inference robustness
assessment and the importance of further work in this direction.
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