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Unlike clustered HOX genes, the role of nonclustered homeobox gene family members in hematopoiesis and
leukemogenesis has not been extensively studied. Here we found that the hematopoietically expressed
homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and
propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement
for Hhex for leukemic growth. Loss of Hhex leads to expression of theCdkn2a-encoded tumor suppressors p16INK4a

and p19ARF, which are required for growth arrest and myeloid differentiation following Hhex deletion.
Mechanistically, we show that Hhex binds to theCdkn2a locus and directly interacts with the Polycomb-repressive
complex 2 (PRC2) to enable H3K27me3-mediated epigenetic repression. Thus, Hhex is a potential therapeutic
target that is specifically required for AML stem cells to repress tumor suppressor pathways and enable continued
self-renewal.
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In the hematopoietic system, self-renewal capacity is nor-
mally restricted to hematopoietic stem cells (HSC) and
must be tightly controlled, since aberrant self-renewal is
a hallmark of cancer (He et al. 2009). Indeed, a number
of leukemia oncoproteins act via inducing self-renewal
of either HSCs or more mature progenitors that have nor-
mally lost this property. Prototypical examples of this are
oncogenic fusion proteins generated by chromosomal
translocations at the MLL locus, which occur in ∼5%–

6% of acute myeloid leukemia (AML) cases, resulting in
reciprocal chromosomal translocations that link MLL to
a vast number of fusion partners (Krivtsov and Armstrong
2007). The resultant fusion proteins activate target genes,
including those in the HOXA cluster (HOXA5–10) and
their essential cofactor, MEIS1, leading to expression of
a “HOX code” that has been implicated in leukemia
maintenance (Ayton and Cleary 2003; Horton et al.
2005). In addition to this self-renewal network, recent

studies have shown that sustained leukaemogenesis by
MLL fusion oncogenes requires expression of epigenetic
modifiers, including the Polycomb-repressive complex 2
(PRC2) (Neff et al. 2012; Tanaka et al. 2012; Shi et al.
2013). PRC2 is composed of core components, including
Suz12 and Eed along with the methyltransferases Ezh1
or Ezh2, which mediate silencing of key target genes via
catalysis of the repressive mark H3K27me3 (Margueron
and Reinberg 2011).

The above studies have identified important roles for
clustered HOX family (class I) homeobox genes in regula-
tion of both normal HSCs and leukemic stem cells (LSCs)
(Argiropoulos and Humphries 2007; Alharbi et al. 2013).
However, the role ofHOX genes inMLL-associated leuke-
mia is complicated by the fact that MLL fusion proteins
activate many HOXA cluster genes, and these exhibit
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partial redundancies in leukemia maintenance (Kumar
et al. 2004; So et al. 2004). Recently, evidence has emerged
that nonclustered (class II) homeobox genes may also play
important roles in MLL-driven leukemia. These include
members of the caudal-type homeobox (CDX) subfamily
of ParaHox genes that are overexpressed in AML and
act upstream of HOX genes to promote their expression
(Bansal et al. 2006; Scholl et al. 2007; Rawat et al. 2012).
In addition, the H2.0-like homeobox (HLX) gene is over-
expressed in most AML cases and promotes leukemogen-
esis (Kawahara et al. 2012). Together, these studies
indicate an important role for both clustered and nonclus-
tered homeobox genes in the initiation and maintenance
of AML.
The hematopoietically expressed homeobox gene

(Hhex, also known as Prh), encodes a member of the
NK-like (NKL) subclass of homeodomain proteins that is
thought to function primarily as a transcriptional repres-
sor (Guiral et al. 2001; Swingler et al. 2004; Soufi and
Jayaraman 2008). It was first identified via its expression
in hematopoietic tissues, being abundantly expressed in
HSCs and progenitors before being down-regulated upon
differentiation (Crompton et al. 1992; Bedford et al.
1993). In the T-cell lineage, down-regulation of Hhex is
crucial, as overexpression causes thymocyte self-renewal
and T-cell leukemia in mouse models and is associated
with early T-cell precursor ALL (ETP-ALL) in humans
(George et al. 2003; McCormack et al. 2010, 2013).
Furthermore, a rare chromosomal translocation [t(10;11)
(q23;p15)] results in the generation of a NUP98-HHEX fu-
sion oncogene in AML (Jankovic et al. 2008).
Loss of Hhex during embryonic development is lethal

due to a failure of liver development, precluding the anal-
ysis of hematopoietic development in knockout mice
(Keng et al. 2000; Martinez Barbera et al. 2000). However,
studies using embryoid body differentiation and blasto-
cyst complementation approaches have defined critical
roles for Hhex in the development of definitive HSCs
and B cells (Bogue et al. 2003; Guo et al. 2003; Kubo
et al. 2005; Paz et al. 2010).
Using Hhex conditional knockout mice (Hunter et al.

2007), we showed recently that Hhex is dispensable for
maintenance of adult HSCs and myeloid lineages but es-
sential for the commitment of diverse lymphoid lineages
at the stage of the common lymphoid progenitor (CLP)
(Jackson et al. 2015). Moreover, Hhex is required for the
radioresistance of LSCs in a mouse model of human
ETP-ALL (Shields et al. 2015). However, the role of Hhex
in myeloid leukemia has not been studied previously.
Here we show that Hhex is overexpressed in human
AML and is essential for myeloid leukemia driven by
the oncogenic fusion protein MLL-ENL as well as its
downstream effectors, HoxA9 and Meis1, while being
dispensable for normal myelopoiesis. Conditional dele-
tion of Hhex results in loss of PRC2-mediated epigenetic
silencing of the Cdkn2a locus, resulting in induction of
the Cdkn2a-encoded tumor suppressors p16INK4a and
p19ARF. Therefore, targeting Hhex is a potential strategy
to induce tumor suppression to specifically inhibit mye-
loid leukemia.

Results

Hhex is overexpressed in human AML and required
for initiation of AML by MLL-ENL

As Hhex regulates the development of definitive HSCs
and is highly expressed in human ETP-ALL, we assessed
whether its expression is altered in AML patient samples.
Using a curatedmicroarray database (HemaExplorer) (Bag-
ger et al. 2013), we found that Hhex is highly expressed in
early progenitors before being down-regulated in all line-
ages exceptmonocytes and B cells (Fig. 1A). Strikingly, ex-
pression was twofold to fourfold higher in AML patient
samples relative to normalHSCs, irrespective of leukemia
subtype, with highest expression found in AML with inv
(16)/t(16;16) or t(8;21) translocations (Fig. 1A). Analysis
of an independent patient cohort (n = 536) (Verhaak et al.
2009) confirmed high HHEX expression in AMLs with
the favorable inv(16)/t(16;16) and t(8;21) karyotypes (Fig.
1B). Consistentwith the above observation, HHEX expres-
sion was highest in the favorable risk group (Fig. 1C). Pa-
tients in this cohort were also assigned into prognostic
groups using the European LeukemiaNetwork (ELN) clas-
sification (Li et al. 2013). Patients within the intermediate
risk groups could be dichotomized into those with better
or worse outcomes based on an automatically determined
(k-means clustering) (Diffner et al. 2013) HHEX ex-
pression threshold (Fig. 1D,E). Five-year survival rates
were∼25%versus∼50% (Int-1; P = 0.01) and∼30%versus
∼50% (Int-2; P = 0.05) in high and low HHEX expressors,
respectively. These data show that HHEX expression in
humanAML is context-dependent and adds value to exist-
ing prognostic classification systems.
We next sought to determine whether Hhex is required

for the development of myeloid leukemia by the MLL-
ENL fusion oncogene. AsAML induced byMLL fusion on-
cogenes is initiated from HSCs and myeloid progenitors
up to and including granulocyte/monocyte progenitors
(GMPs) (Cozzio et al. 2003; Krivtsov et al. 2006), we first
tested whether Hhex loss had any effect on the number
and function of these cells following Hhex deletion in
the bone marrow (BM) of Hhex−/ΔMx mice. Flow cytomet-
ric analysis revealed no defects, with a slightly increased
frequency of long-term HSCs (LT-HSCs), common mye-
loid progenitors (CMPs), and myelo-erythroid progenitors
(MEPs) in Hhex−/ΔMx mice when compared with Hhex+/fl

controls (Supplemental Fig. S1A–C). We next tested the
function of myeloid progenitors in Hhex−/ΔMx mice in
semisolid agar colony assays. When cultured in a mixture
of cytokines (IL-3, stem cell factor [SCF], and EPO), BM
from Hhex−/ΔMx mice showed no defect in colony forma-
tion, with slightly increased frequencies of granulocyte
and macrophage colonies (Supplemental Table S1). Cul-
ture in individual cytokines revealed additional differenc-
es, with increased numbers of granulocyte colonies in the
presence of GM-CSF or IL-3 and a reduction in macro-
phage colonies in response to GM-CSF or M-CSF (Supple-
mental Table S1). Overall, these data indicate thatHhex is
dispensable for the development and function of myeloid
progenitors in vitro and in vivo.
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To assess whether Hhex is required for initiation of
AML, lineage-depleted BM cells from Hhex−/ΔMx mice
were transduced with MSCV-IRES-GFP retroviruses ex-
pressing MLL-ENL and injected into irradiated congenic
(Ly5.1) recipient mice (Fig. 2A). At the time of injection,
Hhex−/ΔMx BM cells showed levels of viral infection (as as-
sessed by GFP fluorescence) comparable with control
(Hhex+/fl) BM cells (Supplemental Fig. S2A). Notably,
MLL-ENL expression in Hhex+/fl BM led to a significant
increase in HhexmRNA expression compared with trans-
duction with control (MIG) retrovirus (Fig. 2B).

All recipient mice, regardless of the genotype of donor
cells, showed complete myeloid repopulation in the
peripheral blood 4 wk after transplantation (Fig. 2C).
Donor-derived lymphoid cells were reduced in recipients
reconstituted with Hhex−/ΔMx BM (data not shown), con-
sistent with our previous report that Hhex is required
for lymphoid development downstream from the CLP
but is dispensable for normal adult HSC function in
transplant assays (Jackson et al. 2015). The levels of trans-
duction with control (MIG) retrovirus was similar in

donor myeloid cells derived from either Hhex−/ΔMx or
Hhex+/fl BM (Fig. 2D). Transduction with MLL-ENL ret-
rovirus was initially low in both Hhex−/ΔMx and Hhex+/fl

BM cells; however, transduced control (Hhex+/fl) BM cells
were rapidly expanded both in vitro (Supplemental Fig.
S2B) and in vivo, with the peripheral blood of recipient
mice containing abundant donor-derived Mac1+GFP+

cells at 4 wk, consistent with the establishment of a pre-
leukemic state (Fig. 2D), which became more severe by
8 wk after transplant (Fig. 2E). In striking contrast,
donor-derived Mac1+GFP+ cells were almost completely
absent in the peripheral blood of Hhex−/ΔMx MLL-ENL re-
cipient mice at 4 wk after transplant and continued to
decline by 8 wk after transplant (Fig. 2D,E). Accordingly,
while all Hhex+/fl MLL-ENL recipients succumbed to
myeloid leukemia within 11 wk, none of the eight
Hhex−/ΔMx MLL-ENL recipients developed leukemia
within a 4-mo observation period (Fig. 2F). Thus, while
Hhex is dispensable for adult HSC function and myeloid
reconstitution, it is essential for the initiation of AML
by MLL-ENL.
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Figure 1. Hhex is overexpressed in human AML and
is associatedwith an adverse outcome in ELN interme-
diate-1 and intermediate-2 classified AML. (A) Expres-
sion of Hhex expression in four AML karyotypes,
hematopoietic progenitors, and differentiated cells us-
ing the HemaExplorer microarray database. Single
points on the graph represent the average HHEX ex-
pression of two individual microarray probes for the
cell types indicated. (∗) P < 0.05; (∗∗∗) P < 0.001, Stu-
dent’s t-test. (B) HHEX expression levels (Robust Mul-
tiarray Average [RMA] normalized; log2) in AML
patients from the HOVON (Hemato-Oncologie voor
VolwassenenNederland ) cohort with frequent cytoge-
netic abnormalities. (NN) Cytogenetically normal
AML. (C ) HHEX expression levels (RMA normalized;
log2) in patients from the HOVON cohort stratified ac-
cording to ELN classes (Li et al. 2013). (D) Five-year
overall survival of patients classified as ELN interme-
diate-1 with high/low expression (k-means clustering)
of HHEX. (E) Five-year overall survival of patients clas-
sified as ELN intermediate-2 with high/low expression
(k-means clustering) of HHEX. InD and E, Pwas deter-
mined using a log rank (Mantel-Cox) test.
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Hhex is essential for maintenance of AML induced
by MLL-ENL

To determine whether Hhex is required for maintenance
of AML by MLL-ENL, we generated ROSA26-CreERT2;
Hhex−/fl mice (hereafter termed CreERT2;Hhex−/fl mice),
in which deletion of the Hhexfl allele can be induced by
tamoxifen-regulated Cre recombinase (hereafter termed
HhexΔERT2) (Fig. 3A). BM from thesemicewas used to gen-
erate MLL-ENL-induced myeloid leukemias, as above.
Next, 10,000 flow cytometry-sorted leukemia-initiating
cells (LICs; GFP+, Mac1+, Kit+) from primary leukemic
mice were injected into secondary recipients, and the
Hhexfl allele was deleted by two tamoxifen administra-
tions starting at 10 d after transplant (Fig. 3A). Develop-
ment of fatal leukemia in placebo-treated controls
occurred rapidly, within 23 d after transplant (Fig. 3B). Ta-
moxifen administration led to a small delay in the devel-
opment of control Hhex+/fl tumors, likely due to Cre-
mediated toxicity. In contrast, survival of tamoxifen-
treated Hhex−/fl tumor recipients was more than doubled
relative to placebo-treated controls (Fig. 3B). Strikingly,
genomic PCR analysis revealed that while the Hhexfl al-
lele was completely deleted in relapsed MLL-ENL
Hhex+/ΔERT2 leukemias, secondary leukemias developing
in recipients of MLL-ENL Hhex−/ΔERT2 LICs were

completely nondeleted at the Hhexfl locus (Fig. 3C).
Thus, secondary leukemias emanated from a small frac-
tion of Hhexfl (nondeleted) cells that remained after ta-
moxifen treatment. To verify that Hhexfl deletion is not
toxic to normal myeloid cells, mice were reconstituted
with BM from CreERT2;Hhex−/fl mice, and, 1 mo later,
the Hhexfl allele was deleted by tamoxifen treatment.
We saw no selection for nondeleted Hhexfl in myeloid
cells in the peripheral blood or BM of these chimeric
mice up to 4 mo after tamoxifen treatment (Fig. 3D).
Thus, Hhex is dispensable for normal myelopoiesis but
critical for establishment and maintenance of MLL-
ENL-induced myeloid leukemia.
Next, we assessed the impact of Hhex deletion in the

whole animal by administering tamoxifen to CreERT2-
Hhex−/fl mice. These mice were closely monitored for
1 mo, during which time no physical signs of illness
were evident. Furthermore, no significant pathology was
observed in Hhex-null animals (Supplemental Fig. S3),
and genomic PCR analysis of various tissues and organs
demonstrated recombination of the Hhexfl allele in all tis-
sues (Fig. 3E). Thus, systemic loss of Hhex in adult mice
has minimal short-term side effects, further demonstrat-
ing the potential for Hhex as a therapeutic target in AML.
To determine the cellular effects of Hhex deletion on

MLL-ENL-induced leukaemic cells, we established cell
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Figure 2. Hhex is required for initiation of AML by
MLL-ENL. (A) Schematic diagramof experimental de-
sign using Hhex+/fl and Hhex−/ΔMx mice. (B) Hhex ex-
pression in virally transduced BM cells at 2 d after
transduction as assessed by quantitative PCR. (C–E)
Peripheral blood analysis of recipient mice injected
with MSCV-IRES-GFP (MIG) and MIG-MLL-ENL
transduced lineage-depleted BM from mice of the in-
dicated Hhex genotypes. (C ) Percentage of myeloid
(Mac1+) cells that are donor-derived (CD45.2+) at
4 wk after transplant. (D) Percentage of donor-derived
myeloid cells (Mac1+CD45.2+) that are virally trans-
duced (GFP+) at 4 wk after transplant. Lines show
the mean. (E) As in D, showing 4- and 8-wk time
points of MLL-ENL transduced BM recipients of the
indicated Hhex genotypes. Lines connect sequential
samples taken from individual mice. (F ) Kaplan-
Meier survival curve of recipients of MLL-ENL trans-
duced BM of the indicated Hhex genotypes (analyzed
in C–E). Data in C–F are a combination of two sepa-
rate experiments. (∗) P < 0.05; (∗∗∗) P < 0.001, Student’s
t-test. In F, P was determined using a log rank (Man-
tel-Cox) test.
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lines from Hhex-deletable, CreERT2-Hhex−/fl primary leu-
kemias. These were then administered with tamoxifen in
vitro to induce deletion of the Hhexfl allele. This caused a
marked decline in the growth rate of Hhex−/fl leukemia
cell lines, leading to the complete elimination of these
cells by 2 wk after treatment (Fig. 4A). Seven days after ta-
moxifen administration, cells lacking Hhex (Hhex−/ΔERT2)
had reduced numbers of cycling cells (Fig. 4B) and in-
creased expression of myeloid differentiation markers
(Fig. 4C) and showed features of granulocyte/macrophage
differentiation (Fig. 4D). Thus, loss of Hhex causes cell cy-
cle arrest of leukemic blasts accompanied by cellular
differentiation.

Loss of Hhex causes up-regulation of tumor
suppressors in LSCs

To determine the transcriptional alterations caused by
loss of Hhex in AML, we performed high-throughput se-
quencing of RNA derived from MLL-ENL-induced LICs
and cell lines following deletion of Hhex. LICs were de-
rived from the BM of MLL-ENL transduced CreERT2;
Hhex−/fl recipient mice 1 mo after Hhex deletion. At
this point, while the tumor burden had significantly de-
creased relative to control mice (Supplemental Fig. S4A),
we were still able to obtain sufficient numbers of LICs
for RNA sequencing. Cell lines were harvested 7 d after
Hhex deletion. Analysis of genomic DNA and RNA se-
quencing data confirmed that both LICs and cell lines
were completely deleted at the Hhexfl locus (Supplemen-
tal Fig. S4B,C). Differential gene expression analysis dem-
onstrated that 248 geneswere differentially expressed (124
up and 124 down) inHhex-deleted LICs (Supplemental Ta-
ble S2), while 99 genes were differentially expressed (54 up

and 45 down) in Hhex-deleted cell lines (Supplemental
Table S3).

We first asked whether Hhex regulates expression of
HoxA cluster genes and their cofactors, Pbx3 and Meis1,
which are well-characterized drivers of MLL-induced leu-
kemia (Krivtsov et al. 2006). We found that these genes
were up-regulated inMLL-ENL LICs and cell lines relative
to normal HSC-enriched Lin−Sca+Kit+ (LSK) cells and
were not significantly altered by loss of Hhex (Fig. 5A).
However, consistent with the loss of self-renewal and en-
hanced differentiation of MLL-ENL cell lines after Hhex
loss, gene set enrichment analysis (GSEA) showed that
Hhex-deleted cell lines down-regulate Myc-associated
self-renewal programs and up-regulate a myeloid differen-
tiation signature along with p53 target genes (Supplemen-
tal Table S4).

The above results suggest that Hhex acts indepen-
dently of HoxA/Meis1 genes to maintain the self-
renewal capacity of MLL-ENL-induced leukemias. To
test this directly, BM cells from Hhex−/ΔMx mice were
transduced with MSCV-HoxA9-Meis1 retroviruses as
above and injected into irradiated recipient mice. All con-
trol (Hhex+/fl) HoxA9-Meis1 recipient mice succumbed
to leukemia within 9 wk; however, leukemia develop-
ment in Hhex−/ΔMx HoxA9-Meis1 recipients was signif-
icantly delayed (Supplemental Fig. S5A). PCR analysis of
the BM of Hhex−/ΔMx HoxA9-Meis1 leukemic mice re-
vealed selection of undeleted Hhexfl leukemia cells (Sup-
plemental Fig. S5B). Thus, Hhex is also required for
HoxA9/Meis1-driven AML, indicating that it acts inde-
pendently of HoxA/Meis1 to maintain self-renewal of
AML stem cells.

A comparison of differentially expressed genes between
Hhex-deleted LICs and cell lines showed that genes up-

Figure 3. Hhex is required for maintenance of
AML but not normal myeloid cells. (A) Schematic
diagram of experimental design to test the role of
Hhex in leukemia maintenance. (B) Kaplan-Meier
survival curve of recipient mice injected with puri-
fied LICs (10,000 CD45.2+, Mac1+, GFP+, Kit+ cells)
and administered with either tamoxifen (Tam.) or
placebo (Plac.). P < 0.001 between Hhex−/fl and
Hhex−/ΔERT2 recipient mice using a log rank
(Mantel-Cox) test. (C ) Hhexfl is selected for in
Hhex−/ΔERT2 MLL-ENL secondary leukemias. Ge-
nomic DNA was extracted from whole BM from
leukemic mice (>95% CD45.2+, Mac1+, GFP+ cells)
of the indicated Hhex genotypes and analyzed by
PCR. (D) Hhexfl is not selected for in normal my-
eloid cells. Recipient mice were injected with line-
age-depleted CreERT2;Hhex−/fl BM and then
administered with either tamoxifen or placebo af-
ter 4 wk. Four months later, BM and peripheral
blood (PB) were harvested from placebo-treated
(−/fl) and tamoxifen-treated (−/ΔERT2) recipients,
and CD45.2+, Mac1+ cells were sorted and used
for genomic PCR. (E) Hhexfl deletion is tolerated
in the whole animal. Eight-week-old mice of the

indicated Hhex genotypes were administered tamoxifen, and, 4 wk later, organs were harvested and processed for genomic PCR
analysis. (LN) Lymph node.
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regulated inHhex-deleted LICswere generally also up-reg-
ulated following Hhex deletion in cell lines (Fig. 5B). In
contrast, genes down-regulated in Hhex-deleted LICs
and cell lines showed only weak correlation (data not
shown). Of the genes up-regulated after Hhex deletion in
both LICs and Hhex−/fl cell lines, we noted the cell cycle
inhibitorsCdkn2a andCdkn2b (Fig. 5B,C). As these genes
encode potent cell cycle inhibitors, we hypothesized that
they may be responsible for the growth arrest following
Hhex withdrawal. Furthermore, analysis of LSK cells
from Hhex−/ΔMx mice revealed that the levels of Cdkn2a
and Cdkn2b expression induced in these cells were ex-
tremely small when compared with LICs and cell lines,
which may explain why loss of Hhex causes specific loss
of LICs while sparing normal HSCs (Fig. 5C).
Wenext performed immunoblotting experiments to test

whether loss of Hhex results in induction of the Cdkn2a-
encoded tumor suppressor proteins p16INK4a and p19ARF.
This showed abundant expression of both p16INK4a and
p19ARF in Hhex−/ΔERT2 MLL-ENL cell lines following ta-
moxifen treatment (Fig. 5D) thatwere inducedwith kinet-
ics similar to the loss of cycling cells (S and G2/M phases)
in Hhex-deleted cell lines (Fig. 5E). To determine whether
the growth inhibitory effects of Hhex deletion inAML cell
lines could be reversed by Hhex re-expression, we trans-
duced pools of Hhex-null AML cells (4 d after tamoxifen
treatment)with retroviruses bearingHhexwith aC-termi-
nal Flag epitope tag (termed Hhex-F). Overexpression of
Hhex-F in Hhex-null MLL-ENL cells was associated with
significant toxicity (Supplemental Fig. S6A).However, sta-
ble Hhex-F-rescued cell lines expressing physiological lev-
els ofHhexwere selected over timeandused in subsequent
assays. Hhex-F transduced cells displayed myeloid-specif-
ic marker expression profiles similar to Hhex-nondeleted
AML cells (Supplemental Fig. S6B) and did not show the
up-regulation of p16INK4a and p19ARF observed in Hhex-
null AML lines (Fig. 5F). Together, these data suggest
that loss ofHhexmay restrict growthofAMLcells by caus-
ing the induction of tumor suppressor pathways.

Deletion of p16INK4a and p19ARF tumor suppressors
restores AML growth in the absence of Hhex

To assess the role of tumor suppressor pathways in the
growth arrest seen upon Hhex deletion in AML cells, we
cloned lentiviral CRISPR vectors (pLentiCRISPR) (Sha-
lem et al. 2014) with guide sequences against Cdkn2a,
Cdkn2b, and p53 (Supplemental Table S5). As Cdkn2a
encodes both p16INK4a and p19ARF tumor suppressors,
we designed guide sequences to target each alternative
transcript-coding region independently through their
unique first exons as well as together via their shared sec-
ond exon. A guide sequence against firefly luciferase
served as a control. These constructs were used to stably
transduce CreERT2;Hhex−/fl cell lines and Hhexfl deleted
by tamoxifen treatment. Immunoblotting analysis of
Hhex-deleted cells showed a complete absence of
p16INK4a and p19ARF upon CRISPR–Cas9-mediated dele-
tion (Fig. 6A). We next tested whether loss of these pro-
teins was sufficient to restore growth of Hhex-deleted
MLL-ENL cell lines. CRISPR–Cas9-mediated targeting
of p15INK4b, encoded by Cdkn2b, did not rescue the
growth of leukemia cells after Hhexfl deletion, with
growth arrest occuring after 2 wk (Fig. 6B). While deletion
of p16INK4a caused a partial rescue of cell numbers follow-
ing Hhex deletion, these cells still showed eventual
growth arrest (Fig. 6B). In contrast, deletion of p19ARF or
combined deletion of both p16INK4a and p19ARF led to an
almost complete rescue of cell growth uponHhex deletion
(Fig. 6B). As p19ARF acts in part via the p53 pathway, we
also designed guide sequences to target p53. This showed
a partial rescue of growth in Hhex-deleted cells, which
was less than that seen upon p19ARF deletion, suggesting
that p19ARF functions largely independently of p53 in
inhibiting AML growth. Furthermore, and consistent
with the importance of Hhex-dependent suppression of
p16INK4a and p19ARF for the maintenance of AML growth,
Hhex−/ΔERT2 cells lacking p16INK4a and p19ARF continued
to proliferate and maintained normal levels of myeloid-
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specific markers (Supplemental Fig. S7A) and blast cell
morphology (Supplemental Fig. S7B). Hence, growth ar-
rest of AML cell lines following Hhex deletion is due to
induction of tumor suppressors encoded by Cdkn2a.

To assess the role of Hhex-dependent suppression
of Cdkn2a in the attenuation of MLL-ENL-induced
AML in vivo, we generated CreERT2;Hhex−/fl mice on
the Cdkn2a knockout background. BM from these mice
was used to generate MLL-ENL-induced myeloid leuke-
mias, as above. Next, LICs from leukemic mice were in-
jected into secondary recipients, and Hhexfl was deleted
by tamoxifen administration 7 d later. Strikingly, MLL-
ENL-induced leukemia developed from Hhex−/ΔERT2

LICs lacking Cdkn2a, in contrast to Cdkn2a wild-type
cells that never developed leukemia up to 4mo after trans-
plant (Fig. 6C). Furthermore, we sawno selection for unde-
leted Hhexfl in Hhex-deleted, Cdkn2a-null leukemias

(Fig. 6D). Thus, loss of Cdkn2a allows maintenance of
AML in the absence of Hhex, indicating that the primary
effect of Hhex in AML is to repress Cdkn2a.

Hhex represses p16INK4a and p19ARF expression
via regulation of PRC2 function

Previous studies have indicated an important role for
homeobox transcription factors, including Hoxa9 and
Hlx1, in the recruitment of PRC2 to the Cdkn2a/b locus
to facilitate transcriptional repression and the main-
tenenace of self-renewal potential (Martin et al. 2013;
Collins et al. 2014). We therefore tested whether Hhex
mediates repression of this locus in AML cells via PRC2-
mediated epigenetic silencing using antibodies directed
against the PRC2-encoded repressive mark H3K27me3
as well as the activating mark H3K4me3 for chromatin
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immunoprecipitation (ChIP) sequencing. H3K27me3
marks were abundant in Hhex−/fl MLL-ENL cell lines
bothwithin the gene bodyofCdkn2a (Fig. 7A; Supplemen-
tal Fig. S8A) and Cdkn2b (Fig. 7A) and at an enhancer
∼50 kb upstream that has been previously shown to be im-
portant for HoxA9-mediated repression of Cdkn2a (Fig.
7A; Collins et al. 2014). Conversely, the H3K27me3 mark
was greatly reduced in Hhex-null MLL-ENL cells (Fig.
7A; Supplemental Fig. S8A), including the upstream en-
hancer region, with re-expression of Hhex-F rescuing the
deposition of this mark (Fig. 7A; Supplemental Fig. S8A).
To determinewhether Hhex binds to theCdkn2a locus,

we performed ChIP sequencing on Hhex-F transduced
Hhex−/ΔERT2 cells (Supplemental Fig. S8A) using an anti-
body against the Flag epitope. This revealed a peak over-
lapping a bivalently marked region encompassing
Exon1α (Supplemental Fig. S8B) that has been previously

shown to be subject to antagonistic regulation by Poly-
comb and SWI/SNF complexes to modulate the expres-
sion of p16INK4a (Wilson et al. 2010). Subsequent ChIP-
PCR experiments confirmed that this region is bivalently
marked, with loss of Hhex causing a decrease in repressive
marks and a reciprocal increase in active marks (Supple-
mental Fig. S8C), and that Hhex binds directly (Supple-
mental Fig. S8D).
To establish whether Hhex regulates PRC2-repressed

target genes globally, we performed GSEA of our RNA se-
quencing data from MLL-ENL cell lines using gene sets
from two separate studies that have described critical
PRC2 targets inMLL-AF9-induced leukemia (Supplemen-
tal Table S6; Shi et al. 2013; Xu et al. 2015).We found that,
in both cases, loss of Hhex caused significant reactivation
of PRC2 targets, including five genes (Cdkn2b, Zmat3,
Igf1, Ryk, and Serpine2) that are in common between the

Figure 6. Loss of p16Ink4a and p19ARF rescues leukae-
mogenesis in the absence of Hhex. (A) Immunoblot of
p16Ink4a and p19ARF expression in CreERT2;Hhex−/fl

CRISPR/Cas9 cell lines after 7 d in the presence or ab-
sence of tamoxifen. (B) Growth of CreERT2;Hhex+/fl

and CreERT2;Hhex−/fl CRISPR/Cas9 cell lines in the
presence or absence of tamoxifen. In A and B, C1
and C2 refer to individual cell lines generated with
unique CRISPR guide sequences for each target
gene. (C ) Kaplan-Meier survival curve of recipient
mice injected with purified LICs (5000 CD45.2+,
Mac1+, GFP+, Kit+ cells) of the indicated genotypes
and administeredwith either tamoxifen (Tam.) or pla-
cebo (Plac.). P < 0.01 betweenCdkn2a+/+;Hhex−/ΔERT2

and Cdkn2a−/−;Hhex−/ΔERT2 recipient mice using a
log rank (Mantel-Cox) test. (D) Genomic PCR analy-
sis of BM from leukemic mice in C.
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two gene sets (Supplemental Fig. S9). Thus,Hhex regulates
a subset of PRC2 target genes in addition to Cdkn2a.

Next, to determine whether Hhex affects the PRC2-en-
coded epigenetic mark H3K27me3 globally, we analyzed
this mark in Hhex-null cell lines. Remarkably, we found
that loss of Hhex caused a significant change in the depo-
sition of H3K27me3 at only nine separate gene-coding loci
containing 13 genes (Fig. 7B). Two genes demonstrated
significantly increased H3K27me3 deposition, and 11
genes, including Cdkn2b, showed significantly decreased
H3K27me3 deposition (Fig. 7B). All of these genes showed
a strong inverse correlation between H3K27me3 marking
and RNA expression, confirming them as bona fide Hhex-
dependent PRC2 target genes (Fig. 7C). Re-expression of
Hhex (Hhex-F) restored the H3K27me3 status of all 13
genes but also resulted in significant changes in the
H3K27me3 status of previously unregulated genes, sug-
gesting that Hhex can cause aberrant epigenetic regula-
tion when ectopically expressed (Fig. 7D). However, loss
of Hhex did not alter the overall level of H3K27me3, as as-
sessed by Western blotting (Fig. 7E), indicating that Hhex
is not required for PRC2 function generally but regulates

its function at specific loci that are required for leukemic
growth.

To determine whether Hhex interacts with the PRC2
complex, we performed coimmunoprecipitation assays
using Flag-tagged Hhex (Hhex-F). This showed that
Hhex coprecipitates with the PRC2 core component
Suz12 (Fig. 7F). Furthermore, using Suz12 ChIP quantita-
tive PCR analysis, we observed Hhex-dependent enrich-
ment of Suz12 at the Hhex-binding site identified above
(Supplemental Fig. S8E). However, the observation that
only a small proportion of Suz12 was bound to Hhex
may explain why loss of Hhex does not affect PRC2 func-
tion globally. Together, these data suggest a model in
which Hhex mediates the recruitment of PRC2 to key
loci, including Cdkn2a to facilitate epigenetic repression
and enable continued cycling of LSCs in AML (Fig. 7G).

Discussion

AsHhex is a critical regulator of HSC development during
embryogenesis that is overexpressed in human AML, we
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by recruitment of PRC2.
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assessed the requirement for this factor in MLL-ENL-in-
duced myeloid leukemia using a conditional knockout
model. We found that Hhex is required to initiate MLL-
ENL-driven AML and that deletion of Hhex in established
leukemia invariably leads to selection for nondeleted
clones, indicating that Hhex is essential for development
and sustained growth of leukemia. Transcriptome analy-
sis showed that MLL-ENL-induced HoxA overexpression
was not affected by Hhex deletion, indicating that Hhex
is required independently of the MLL-induced “Hox
code” to maintain leukemogenesis. Accordingly, leuke-
mogenesis by collaborating HoxA9 and Meis1 also re-
quired Hhex. Together, these results indicate that Hhex
acts independently of HoxA/Meis1 genes, which are es-
tablished drivers of MLL fusion leukemia in this setting
(Krivtsov et al. 2006).
By transcriptome analysis, we found that loss of Hhex

causes up-regulation of cell cycle inhibitors encoded by
Cdkn2a and Cdkn2b in MLL-ENL transformed LICs and
cell lines. Remarkably, loss of Cdkn2a, which encodes
both p16INK4a and p19ARF, restored the growth of MLL-
ENL-induced AML both in vitro and in vivo, with individ-
ual targeting indicating that p19ARF is the major mediator
of growth arrest following Hhex deletion. As p53 gene
disruption only partially rescued growth of AML cells
when Hhex was deleted, our data also suggest that the
cell cycle inhibitory action of p19ARF is largely indepen-
dent of its canonical ability to inhibitMDM2 and stabilize
p53. Indeed, several p53-independent p19ARF functions
have been reported, including sequestration of Myc and
E2f1 and attenuation of ribosomal RNA transcription
and processing (Sherr 2006; Lessard et al. 2010).
In HSCs and AML stem cells, suppression of Cdkn2a

and Cdkn2b is facilitated by Polycomb group (PcG) pro-
teins contained within PRC1 and PRC2 (Lessard and Sau-
vageau 2003; Hidalgo et al. 2012; Tanaka et al. 2012).
PRC2-dependent silencing of Cdkn2a is critical for main-
tenance of self-renewal capacity, as loss of the core PRC2
component Eed or both of the PRC2 enzymatic compo-
nents Ezh1 and Ezh2 leads to loss of AML stem cells
(Neff et al. 2012; Tanaka et al. 2012; Shi et al. 2013). Fur-
thermore, chemical inhibition of PRC2 function inhibits
growth of leukemia driven by MLL fusion proteins (Kim
et al. 2013; Xu et al. 2015). However as, PRC2 is also re-
quired for normal HSC function, the therapeutic potential
of targeting this complex is presently unclear (Xie et al.
2014).
Homeobox transcription factors, including the Hhex-

related Hlx1 protein and HOXA9, have recently been im-
plicated in the recruitment of PRCs to theCDKN2A locus
inhuman fibroblast cell lines,whichprevents p16INK4a-de-
pendent cell cycle arrest (Martin et al. 2013). Our findings
identifyHhex as a crucial homeoboxprotein that similarly
enables PRC2 function at the Cdkn2a locus to maintain
the self-renewal capacity of MLL-ENL-induced AML.
Hhex is also required for maintaining the H3K27me3
mark across an enhancer region ∼50 kb upstream of
Cdkn2b, which was shown to be essential for HoxA9/C/
EBPα-dependent suppression of Cdkn2a and Cdkn2b in
HoxA9;Meis1-driven AML (Collins et al. 2014). We found

that the magnitude of induction of Cdkn2a in AML cell
lines and LICs following Hhex loss greatly exceeds that
in normal LSK cells. This implies that Hhex-independent
mechanisms maintain epigenetic silencing of Cdkn2a in
normal HSCs but not LICs, potentially explaining the spe-
cific requirement for Hhex in AML stem cells.
In AML patient blasts, Cdkn2a/b is often repressed

via H3K27me3 in combination with Cdkn2b promoter
methylation (Paul et al. 2010), and low expression of
the Cdkn2a-encoded tumor suppressors p16INK4a and
p14ARF correlates with poor outcome (Muller-Tidow et
al. 2004; de Jonge et al. 2009; Paul et al. 2009). However,
as Cdkn2a/b are rarely mutated in AML, targeting epige-
netically silenced Cdkn2a is an attractive therapeutic op-
tion (LaPak and Burd 2014). This study highlights
inhibition of Hhex as a potential strategy to relieve
PRC2-mediated epigenetic suppression of Cdkn2a and
specifically inhibit self-renewal of AML stem cells.

Material and methods

Mice

All mice used were on a C57BL/6 background. The Hhexfl

(Hunter et al. 2007), Hhex− (Bogue et al. 2003), Mx-Cre
(Kuhn et al. 1995), ROSA26-CreERT2 (Seibler et al. 2003),
and Ink4a/Arf−/− (Serrano et al. 1996) mouse strains have
been described. Four-week-old to 6-wk-old CD45.1+

C57BL/6 mice (Ly5.1; Walter and Eliza Hall Institute)
were used as recipients in chimeric transplant experi-
ments. To induce expression of the Mx1-Cre allele, polyi-
nosinic–polycytidylic acid sodium salt [poly(I:C); Sigma]
dissolved in salinewas administered tomice (12mg per ki-
logram of mouse body weight) intraperitoneally at 7 wk of
age at least 3 wk prior to their use in experiments. To in-
duce expression of the ROSA26-CreERT2 allele, mice
were administered 70 µL of tamoxifen (4.2 mg [Sigma] in
vehicle; 10% ethanol, 90% peanut oil [Sigma]) by oral ga-
vage on two consecutive days, whereas placebo-treated
mice received 70 µL of vehicle control. All experiments
were approved by the Walter and Eliza Hall Institute Ani-
mal Ethics Committee.

Flow cytometry

Antibodies used in experiments for lineage marker deple-
tion included rat anti-mouse B220 (RA3-6B2), CD3 (KT3-
1-1), CD4 (GK1.5-7), CD8 (53.6.7), CD19 (1D3), Gr-1 (RB6-
8C5), Mac-1 (M1/70), and TER119 (Ly76), all from the
Walter and Eliza Hall Institute Monoclonal Antibody
Facility. The exclusion of hematopoietic lineage cells
from murine BM was performed using anti-rat antibodies
in combination with sheep anti-rat IgG-coated immuno-
magnetic beads (Invitrogen). Antibodies used for analysis
and sorting by flow cytometry included goat anti-rat
IgG-Alexa680 (Invitrogen, A21096) and the following rat
anti-mouse biotinylated or flurophore-conjugated anti-
bodies purchased from either eBiosciences, Biolegend,
BD Pharmingen, or Invitrogen or produced by the Walter
and Eliza Hall Institute Monoclonal Antibody Facility:
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B220 (RA3-6B2), c-Kit (ACK-4), CD4 (GK1.5-7), CD8α
(53.6.7), CD16/32-Biotin (24G2), CD19 (1D3), CD34
(RAM34), CD45.1 (A20.1), CD45.2 (S450-015-2), F4/80
(BM8), Flt-3 (A2F10), Gr-1 (RB6-8C5), IL-7Rα (A7R34),
Mac-1 (M1/70), Sca-1 (D7), and TER119 (Ly76). Streptavi-
din-PE-Cy7 and Streptavidin-PerCP-Cy5.5 were pur-
chased from eBiosciences. An FcγR-blocking step was
performed prior to staining using 1 mg/mL rat γ-globulin
(Jackson ImmunoResearch). For cell cycle analysis, cells
were fixed and permeabilized using Cytofix/Cytoperm
(BD Pharmingen) and then stained with 10 µg/mL DAPI
and, on occasion, anti-Ki67-PE-Cy7 (BD Biosciences,
clone 56). Data were acquired on a LSR Fortessa (BD Phar-
mingen) or LSR II W (BD Pharmingen) flow cytometer and
analyzed using FlowJo software (version 9.4.3, Tree Star).
Flow cytometric cell sorting was performed using an
Aria (BD Pharmingen) device.

Genomic PCR

The efficiency of inducible Hhex deletion was verified by
extraction of genomic DNA from fractionated samples
lysed in DirectPCR (Viagen Biotech) containing protein-
ase K (Sigma) overnight at 55°C and subsequent PCR anal-
ysis using the 5′-GGTGGGGAGAGGTATTTCTGA-3′,
5′-AGACGCACCACCATCATTTT-3′, and 5′-GAACTA
AATTAAGAGGCTGC-3′ oligonucleotides. The pres-
ence of floxed, wild-type, and deleted Hhex alleles was
evident by the amplification of the 1429-base-pair (bp),
1229-bp, and 929-bp DNA fragments, respectively.

Retroviral transduction and BM transplantation

Lineage-depleted BM was transduced with ecotropic
MSCV retroviruses immobilized on 15 µg/mL retronectin
(Takara Biosciences) coated nontissue culture-treated
plates and cultured in StemPro-34 medium (Invitrogen)
supplemented with StemPro nutrient supplement,
10 ng/mL mouse IL-3 (mIL-3), 10 ng/mL mouse IL-6
(mIL-6), 50 ng/mL mouse SCF (mSCF), and 50 ng/mL
mouse Flt3 ligand (mFlt3). All cytokines used were pro-
duced in-house (Walter and Eliza Hall Institute) with the
exception of mIL-3 (Peprotech). Two days after transduc-
tion, cells of the equivalent of one-twelfth of the original
volume of lineage-depleted BMwere injected into lethally
irradiated (9.5 Gy) Ly5.1 recipient mice via the tail vein.
For leukemia transplantation experiments, BM was har-
vested from leukemic mice, and LICs (CD45.2+, Mac1+,
GFP+, Kit+) were sorted by flow cytometry and injected
into sublethally irradiated (6.5 Gy) Ly5.1 recipient mice
via the tail vein.

Quantitative PCR

MLL-ENL andMIG control transduced BM cells were har-
vested 2 d after transduction, washed, and resuspended in
RLT buffer (Qiagen). RNA was purified using the RNeasy
minikit (Qiagen) with on-column DNase digestion using
the RNase-free DNase set (Qiagen) and then reverse-tran-
scribed using the Transcriptor first strand cDNA synthe-

sis kit (Roche) using 60 μM random hexamer primers.
PCR was performed using the SYBR Green PCR master
mix (Applied Biosystems) using the following primer pairs
for Hhex (5′-CCTCTGCACAAAAGGAAAGG-3′ and 5′-
ATTTAGCTCGGCGATTCTGA-3′) and 18S (5′-GTAA
CCCGTTGAACCCCATT-3′ and 5′-CCATCCAATCGG
TAGTAGCG-3′) at 200 μM.Amplification was performed
in a LightCycler 480 real-time PCR system (Roche) using
standard curves obtained from FDC-P1 cell line cDNA as
a reference, and expression valueswere normalized to 18S.

Cell culture

MLL-ENLHhex−/fl andMLL-ENL Hhex+/fl leukemia cells
were harvested from leukemic recipient mice and cul-
tured in growth medium (IMDM supplemented with
10% FCS with 10 ng/mL mIL-3). Recombination mediat-
ed by CreERT2 was induced by adding 10−9 M 4-hydroxy-
tamoxifen to the growth medium. After 7 d, cells were
harvested for flow cytometric analysis or centrifuged
onto a microscope slide and stained with May-Grünwald-
Giemsa stain. For viable cell counts, cells were mixed
with Accucheck beads (Invitrogen), stained with 1 μg/mL
propidium iodide (Sigma), and enumerated by flow
cytometry.

HHEX expression in human AML

Expression data and clinical annotations from human
AML samples were obtained from Verhaak et al. (2009)
and downloaded from Gene Expression Omnibus (GEO;
GSE6891). Classification of these samples into prognostic
groups following the recommendation of the ELNwas ob-
tained from Li et al. (2013). The raw expression files were
preprocessed, including background subtractions, quan-
tile normalization, and log2 transformation using Partek
Genomics suite (version 6.6). HHEX expression levels
were compared between patients of different cytogenetics
and with different risk profiles (ELN) using the Mann-
WhitneyU-test inGraphpad Prism (version 6.05). Patients
with high/low HHEX expression levels were identified
using an unsupervised k-means clustering approach in
Matlab (version R2014b), and their overall survival was
compared and visualized using Kaplan-Meier statistics
(log rank test) in Graphpad Prism (version 6.05).

CRISPR–CAS9 gene disruption

The first 250 coding nucleotides of mouse p15Ink4b,
p16Ink4a, p19ARF, and p53 and firefly luciferase were used
for optimized CRISPR design (http://www.crispr.mit.
edu) of guide sequences (Supplemental Table S5). Where
possible, guide sequences that target the first exon of
each gene (shared exon 2 of Cdkn2a was targeted for dis-
ruption of both p16Ink4a and p19ARF) were selected with
limited probability of off target effects (quality score
>50). To generate the BsmBI-adapted ends and the
5′ PAM (NGG) site, the sequence CACCG was added to
the 5′ end of the forward oligonucleotide, the sequence
ACCC was added to the 5′ end, and a single C was added
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to the 3′ end of the reverse oligonucleotide. Forward and
reverse oligonucleotide pairs for each target were an-
nealed and ligated with BsmBI-restricted lentiCRISPR
(Shalem et al. 2014) and confirmed by Sanger sequencing.
Ecotropic lentiviruses bearing CRISPR guides were pro-
duced in 293T cells and used to transduce MLL-ENL
Hhex−/fl and MLL-ENL Hhex+/fl cell lines. Virally trans-
duced cells were selected for by the addition of 1 µg/mL
puromycin (Sigma).

Western blotting

Protein samples were prepared from washed cell pellets,
lysed in RIPA buffer (1% Triton X-100, 1% sodium deox-
ycholate, 0.1%SDS in 10mMTris-HCl at pH 7.5, 150mM
NaCl, 1 mM PMSF, 2 mM sodium vanadate, 50 mM
sodium fluoride, protease inhibitor cocktail [Roche Ap-
plied Bioscience]), and diluted in reducing Laemmli buffer
or lysed directly in 4× Laemmli buffer. Proteins were re-
solved on precast 4%–20% bis-acrylamide gels (Bio-Rad),
transferred to PVDF, and immunoblotted with rabbit
anti-p16 (M-15; Santa Cruz Biotechnology), rat anti-p19
(p19ARF exon 2; Rockland), rabbit anti-H3K27me3 (Milli-
pore, 07-449), rabbit anti-H3 (Millipore, 05-928), rabbit
anti-Hhex, and mouse anti-HSP70 (N6; Walter and Eliza
Hall Institute).

ChIP

H3K27me3, H3K4me3, and M2-Flag ChIP was performed
using a protocol based on Nelson et al. (2006) with some
modifications. Briefly, cells were fixed in 1.42% parafor-
maldehyde and lysed in immunoprecipitation buffer (1%
Triton X-100, 0.5% NP40 in 50 mM Tris-HCl at pH 7.5,
150 mMNaCl, 5 mM EDTA, protease inhibitor cocktail),
and the chromatin pellet was harvested by centrifugation.
DNAwas fragmented in a Covaris Sonicator for 30 min at
4°C, and then protein–DNA complexes were immunopre-
cipitated from clarified chromatin fractions using 2 µg of
H3K27me3 (Millipore, 07-449) or 2 µg of H3K4me3 (Milli-
pore, 07-473) antibodies and 30 µL of protein A-sepharose.
For Hhex-Flag ChIP, 30 µL of anti-Flag (M2)-agarose beads
(Sigma) was added directly to clarified chromatin frac-
tions. Following reversal of cross-links and RNase I and
proteinase K treatments, extracted DNA was purified us-
ing the QIAquick purification kit (Qiagen).

RNA sequencing

For RNA sequencing, see the Supplemental Material.

ChIP sequencing

For ChIP sequencing, see the Supplemental Material.

Coimmunoprecipitation

Whole-cell lysates were prepared by resuspending cell
pellets in hypotonic buffer (20 mM Tris-HCl at pH 7.5,
10mMKCl, 3mMMgCl2, 1mMPMSF, protease inhibitor

cocktail) followed by 20 strokes of a dounce homogenizer.
Supernatants were harvested by centrifugation, and nu-
clear extracts were collected in nuclear extraction buffer
(20 mM Tris-HCl at pH 7.5, 300 mM NaCl, 0.5% NP40).
Next, 30 µL of anti-Flag (M2)-agarose beads was incubated
with pooled fractions for 2 h at 4°C, and beads were
washed extensively and resuspended in 2× reducing
Laemmli loading buffer. Input (In.) and immunoprecipita-
tion samples were subjected to SDS-PAGE and immuno-
blotting with the indicated antibodies.
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