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Abstract. Malignant melanoma is one of the most common 
types of cancer worldwide. Efforts have been made to 
elucidate the pathology of malignant melanoma. However, 
its molecular mechanisms remain unclear. Therefore, the 
microarray datasets GSE3189, GSE4570 and GSE4587 from 
the Gene Expression Omnibus database were used for the 
elucidation of candidate genes involved in the initiation and 
progression of melanoma. Assessment of the microarray data-
sets led to the identification of differentially expressed genes 
(DEGs), which were subsequently used for function enrich-
ment analysis. These data were utilized in the construction of 
the protein‑protein interaction network and module analysis 
was conducted using STRING and Cytoscape software. The 
results of these analyses led to the identification of a total of 
182 DEGs, including 52 downregulated and 130 upregulated 
genes. The functions and pathways found to be enriched in 
the DEGs were GTPase activity, transcription from RNA 
polymerase II promoter, apoptotic processes, cell adhesion, 
membrane related pathways, calcium signaling cascade and 
the PI3K‑Akt signaling pathway. The identified genes were 
demonstrated to belong to a set of 10 hub genes biologically 
involved in proliferation, apoptosis, cytokinesis, adhesion and 
migration. Survival analysis and Oncomine database analysis 
revealed that the calmodulin gene family, BAX and VEGFA 
genes, may be associated with the initiation, invasion or recur-
rence of melanoma. In conclusion, the DEGs and hub genes 
identified in the present study may be used to understand the 
molecular pathways involved in the initiation and progression 
of malignant melanoma. Furthermore, the present study may 
aid in the identification of possible targets for the diagnosis 
and treatment of melanoma.

Introduction

Melanoma is a malignant skin tumor derived from melano-
cytes, which has a high degree of malignancy and leads to high 
mortality. During the past 40 years, its incidence, as well as 
the proportion of mid‑ to late‑stage tumors and infeasibility of 
surgery have increased worldwide (1).

Previous studies have demonstrated that abnormal expres-
sion and mutations of genes and proteins, including cell division 
cycle associated 8 (encoded by CDCA8), telomerase reverse 
transcriptase (TERT), B‑Raf proto‑oncogene (BRAF) and 
various tumor suppressor genes are involved in the initiation 
and progression of melanoma. For example, it has been reported 
that the CDCA8 gene is capable of promoting the malignant 
progression of cutaneous melanoma and is associated with 
poor prognosis (2). TERT promoter mutations have also been 
identified in up to 50% of cutaneous melanoma cases in the 
global population; however, their incidence in Asian popula-
tions remains unclear (3). BRAF mutations, particularly those 
located at codon 600, have been observed in 50% of malignant 
melanoma cases worldwide (4). Furthermore, overexpression 
of BRAF and hypermethylation of Ras binding proteins have 
been revealed to be associated with poor prognosis in patients 
with malignant melanoma (5,6). Melanoma mortality remains 
high due to the absence of efficient diagnostic techniques at 
the initial stages of the disease. Therefore, understanding the 
mechanisms involved in the initiation, proliferation and recur-
rence of this type of cancer at the molecular level is essential 
for the development of more effective diagnostic and treatment 
strategies.

Over the past few decades, microarray analyses as well 
as bioinformatics studies have been increasingly favored for 
the screening of genetic changes at the genomic level. These 
identification methods may be employed for the determination 
of differentially expressed genes (DEGs), as well as functions 
that may be involved in melanoma initiation and progres-
sion (7). However, the reliability of independent microarray 
analyses may not be high owing to the rate of false posi-
tives. Therefore, in the present study, three different mRNA 
microarray datasets were obtained from the Gene Expression 
Omnibus (GEO) database. These datasets were analyzed for 
the determination of DEGs between malignant melanoma 
and normal nevi tissues. Thereafter, Gene Ontology (GO) and 
Kyoto Gene and Genomic Encyclopedia (KEGG) analyses, 
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as well as protein‑protein interaction (PPI) network analysis 
were conducted to identify molecular processes associated 
with melanoma development and progression. Altogether, 182 
DEGs and 10 hub genes were indicated as potential biomarkers 
of melanoma.

Materials and methods

Data from the microarray analyses. GEO (http://www.ncbi.
nlm.nih.gov/geo) (8) is a publicly available function‑related 
genomics repository containing high‑throughput gene expres-
sion data, ChIP‑seq data, as well as microarrays. Three gene 
datasets, GSE3189 (9), GSE4570 (10) and GSE4587 (11), were 
downloaded from the GEO database. GSE3189 and GSE4570 
were based on the ArrayGPL96 platform (Affymetrix Human 
Genome U133A Array), whereas GSE4587 was based on the 
GPL570 platform (Affymetrix Human Genome U133 Plus 
2.0). The probes were later converted to their analogous gene 
symbols using platform information. The GSE3189 dataset 
comprised 45 melanoma tissue samples and 18 normal nevi 
tissue samples, GSE4570 contained 6 melanoma samples and 
2 nevi samples, and GSE4587 contained 7 melanoma samples 
and 8 nevi samples.

Identification of DEGs. GEO2R (http://www.ncbi.nlm.nih.
gov/geo/geo2r) was used for the screening of DEGs between 
melanoma and normal nevi tissue samples. GEO2R is a web 
tool used in interaction studies for the comparison of various 
datasets in a GEO series to identify DEGs. As mentioned 
above, the most common limitation of microarray analyses 
is the presence of false positives, which may be limited by 
adjusting the P‑values and calculating the Benjamini‑Hochberg 
false discovery rate (12). These adjustments led to the identi-
fication of statistically significant genes. Probe sets that had 
either no corresponding gene symbols or genes with numerous 
probe sets were eliminated or averaged, respectively. DEGs of 
logarithmic fold change value >1 were selected in the present 
study. P<0.05 was considered to indicate a statistically signifi-
cant difference.

KEGG and GO enrichment analysis of the DEGs. The 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID; version 6.8; http://david.ncifcrf.gov) (13) 
is an online bioinformatics database that integrates biological 
data with analytic tools, and offers substantial gene‑ and 
protein‑related information, thus contributing to the extraction 
of biological data. KEGG database is a online tool used to 
study advanced functions and biological processes of genes via 
high‑throughput sequencing (14). GO, a significant web‑based 
tool used for annotating genes and analyzing the biological 
processes that these genes are involved in, was also employed 
for DEG enrichment  (15). The biological functions of the 
DEGs were analyzed using DAVID. P<0.05 was considered to 
indicate a statistically significant difference.

Construction of a PPI network and module analysis. The 
Search Tool for the Retrieval of Interacting Genes (STRING; 
version  10.5; http://string‑db.org) database was used to 
analyze the PPI network of genes (16). Analysis of function-
ally relevant interactions among the proteins encoded by 

DEGs may provide valuable insights into the mechanisms 
of genesis or progression of various diseases. In the present 
study, the STRING database was used for the construction 
of the DEG PPI network. A statistically relevant interaction 
was defined using STRING (combined score >0.4). Cytoscape 
(version 3.7.0), an open access bioinformatics software, is a 
platform used to study networks of molecular interactions (17). 
Furthermore, Molecular Complex Detection (MCODE; 
version 1.5.1), a Cytoscape plugin, clusters a given network 
based on topology for the determination of compact connected 
portions (18). Cytoscape was used for the identification of the 
PPI network, while MCODE was used to identify the most 
significant interaction. The MCODE selection criteria were 
as follows: i) MCODE score >5; ii) MCODE degree cut‑off 
level=2; iii) node score cut‑off level=0.2; iv) max depth=100 
and v) k‑score=2.

Hub genes selection and analysis. After the construction of the 
PPI network, genes (MCODE degrees ≥10 using Cytoscape) 
were identified as hub genes. The gene network and genes that 
were co‑expressed within this network were determined using 
cBioPortal (http://www.cbioportal.org) (19,20). Investigation 
of the biological processes associated with the hub genes was 
conducted using the Biological Networks Gene Oncology 
(version 3.0.3) Cytoscape plugin (21). The overall survival 
and disease‑free survival analyses of the hub genes were 
conducted using the Kaplan‑Meier function in cBioPortal. The 
gene expression levels of the hub genes between melanoma and 
normal nevi tissues were evaluated using Oncomine, an online 
database (http://www.oncomine.com) (22,23). Differences in 
expression between melanoma and normal nevi tissues were 
analyzed by t‑test. P<0.05 was considered to indicate a statisti-
cally significant difference.

Results

DEG identification in melanoma. With logarithmic fold 
change value >1 and P<0.05, the DEGs (2,484 in GSE3189, 
1,300 in GSE4570 and 6,759 in GSE4587) were identified. The 
intersection of the 3 datasets comprised of 182 genes, 52 of 
which were downregulated and 130 were upregulated between 
melanoma and normal nevi tissues, as demonstrated in the 
Venn diagram (Fig. 1A).

Enrichment analyses of the DEGs using KEGG and GO. 
Biological classification of the DEGs, achieved via functional 
and pathway enrichment analyses, was performed using 
DAVID. The results of the GO analysis revealed that the DEGs 
in biological processes were enriched in transcription from 
RNA polymerase II promoter, cell adhesion, GTPase activity, 
apoptotic processes and transcription. At the molecular level, 
changes in functions were mainly enriched in actin and protein 
kinase binding. Regarding the ‘cellular component’, DEGs 
were mainly enriched in the cell membrane, cytoskeleton and 
extracellular region (Table I). KEGG pathway analysis demon-
strated that the downregulated DEGs were mostly enhanced 
in the estrogen signaling cascade, melanogenesis and the 
calcium signaling pathway, whereas the upregulated DEGs 
were mostly enriched in microRNAs in focal adhesion and 
pathways in cancer, as well as the PI3k‑Akt signaling pathway.
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Construction of the PPI network and module analysis. The 
DEG PPI network was constructed to find novel protein inter-
actions. A total of 122 nodes and 266 protein interaction pairs 
were identified (Fig. 1B). The most significant interaction of 
10 nodes and 29 protein interaction pairs was identified using 
Cytoscape (Fig. 1C).

Selection and analysis of hub genes. Ten genes (MCODE 
degrees ≥10 using Cytoscape) were revealed as hub genes. The 
names, acronyms and roles of these hub genes are presented 
in Table  II. The cBioPortal online platform was used to 
analyze the hub gene network, as well as their co‑expression 
genes (Fig. 2). The cBioPortal network contains 60 nodes, 
including 10 hub genes and the 50 most frequently altered 
neighbor genes. The results of the hub gene biological process 
analysis are demonstrated in Fig. 3. The biological processes 
‘cell division’, ‘cytokinesis, release of sequestered ion into 
cytosol’, ‘release of sequestered calcium ion into cytosol by 
sarcoplasmic reticulum’, ‘ryanodine‑sensitive calcium‑release 
channel activity’ and ‘ion transmembrane transporter activity’ 
were significantly enriched. Subsequently, survival analysis of 
the hub genes was performed using Kaplan‑Meier analysis, as 
presented in Fig. 4. Melanoma patients with BAX alterations 
were identified to have poor disease‑free as well as overall 

survival (Fig. 4), indicating that BAX may serve a significant 
role in the initiation or progression of melanoma. Oncomine 
analysis of melanoma and normal nevi tissues revealed that 
BAX was significantly overexpressed in melanoma tissues in 
the different datasets (Fig. 5). In the Oncomine database, the 
mRNA expression levels of BAX (P<0.0001), CALM1 [which 
encodes calmodulin (CaM1)] (P<0.0001), CALM3 (CaM3; 
P<0.0001), FN1 (fibronectin 1; P<0.0001), PRKCA (protein 
kinase C α; P=0.0320), RB1 (RB transcriptional corepressor 1; 
(P<0.0001) and VEGFA (vascular endothelial growth factor A; 
P<0.0001) genes were demonstrated to be higher in mela-
noma tissues than in the normal nevi tissues. By contrast, the 
mRNA expression level of IGF1 (insulin‑like growth factor 1) 
was found to be lower in melanoma tissues. There was no 
statistically difference in the expression of DES (P=0.0628) 
and CALM2 (P=0.0552) between melanoma and normal nevi 
tissues.

Discussion

Melanoma is a highly metastatic type of cancer, which 
exhibits strong resistance to both chemotherapy and radio-
therapy (24‑26). It has been observed to develop rapidly during 
the early phase. Melanoma cells acquire mutations during this 

Figure 1. Venn diagram of the three gene microarray datasets, PPI network obtained using bioinformatics algorithms and statistically significant DEG module. 
(A) DEGs with a fold change >2 and P<0.05 were selected among the gene expression profiling GSE4587, GSE3189 and GSE4570 datasets. A common set 
of 182 genes was identified at the intersection of the 3 datasets. (B) Cytoscape was used for the construction of the PPI network of the DEGs. (C) Module of 
maximum relevance, consisting of 10 nodes and 29 edges, extracted from PPI network. Genes with upregulated expression are shown in pink, whereas genes 
with downregulated expression are shown in blue. PPI, protein‑protein interaction; DEG, differentially expressed gene; DES, desmin; VEGFA, vascular 
endothelial growth factor A, CALM1, calmodulin 1; CALM2, calmodulin 2; CALM3, calmodulin 3; FN1, fibronectin 1; PRKCA, protein kinase C α; IGF1, 
insulin‑like growth factor 1; RB1, retinoblastoma transcriptional corepressor 1.
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Table I. Enrichment study of DEGs between malignant melanoma tissue and normal nevus tissue.

A. Downregulated DEGs

Term and description	 Count in gene set	 P‑value

GO:0030801~Positive regulation of cyclic nucleotide metabolic process	 3	 3.39x10‑5

GO:0005980~Glycogen catabolic process	 4	 4.72x10‑5

GO:0051343~Positive regulation of cyclic‑nucleotide phosphodiesterase activity	 3	 1.12x10‑4

GO:0001975~Response to amphetamine	 4	 1.56x10‑4

GO:1901841~Regulation of high voltage‑gated calcium channel activity	 3	 2.35x10‑4

GO:1901844~Regulation of cell communication by electrical coupling involved in	 3	 3.13x10‑4

cardiac conduction
GO:0007190~Activation of adenylate cyclase activity	 4	 3.35x10‑4

GO:0060316~Positive regulation of ryanodine‑sensitive calcium‑release channel activity	 3	 4.01x10‑4

GO:0006936~Muscle contraction	 5	 4.75x10‑4

GO:0043647~Inositol phosphate metabolic process	 4	 5.41x10‑4

GO:0021762~Substantia nigra development	 4	 6.12x10‑4

GO:0019233~Sensory perception of pain	 4	 7.28x10‑4

GO:0060315~Negative regulation of ryanodine‑sensitive calcium‑release channel activity	 3	 7.31x10‑4

GO:0032516~Positive regulation of phosphoprotein phosphatase activity	 3	 8.62x10‑4

GO:0005513~Detection of Ca2+	 3	 1.00x10‑3

GO:0010801~Negative regulation of peptidyl‑threonine phosphorylation	 3	 1.00x10‑3

GO:0051412~Response to corticosterone	 3	 1.67x10‑3

GO:0010880~Regulation of release of sequestered Ca2+ into cytosol by sarcoplasmic reticulum	 3	 1.67x10‑3

GO:0010881~Regulation of cardiac muscle contraction by regulation of the release of 	 3	 1.87x10‑3

sequestered Ca2+

GO:0060314~Regulation of ryanodine‑sensitive calcium‑release channel activity	 3	 1.87x10‑3

GO:0055117~Regulation of cardiac muscle contraction	 3	 2.28x10‑3

GO:0035307~Positive regulation of protein dephosphorylation	 3	 2.28x10‑3

GO:0031954~Positive regulation of protein autophosphorylation	 3	 2.28x10‑3

GO:0051000~Positive regulation of nitric‑oxide synthase activity	 3	 2.50x10‑3

GO:0032465~Regulation of cytokinesis	 3	 2.50x10‑3

GO:0043547~Positive regulation of GTPase activity	 8	 3.00x10‑3

GO:0001822~Kidney development	 4	 3.11x10‑3

GO:0043065~Positive regulation of apoptotic process	 6	 3.45x10‑3

GO:0050999~Regulation of nitric‑oxide synthase activity	 3	 3.49x10‑3

GO:0010800~Positive regulation of peptidyl‑threonine phosphorylation	 3	 3.76x10‑3

GO:0043388~Positive regulation of DNA binding	 3	 4.04x10‑3

GO:0022400~Regulation of rhodopsin‑mediated signaling pathway	 3	 4.33x10‑3

GO:0002027~Regulation of heart rate	 3	 5.59x10‑3

GO:0071902~Positive regulation of protein serine/threonine kinase activity	 3	 6.27x10‑3

GO:0007223~Wnt signaling pathway, calcium‑modulating pathway	 3	 7.74x10‑3

GO:0045893~Positive regulation of transcription, DNA‑templated	 7	 7.81x10‑3

GO:0034704~Calcium channel complex	 3	 2.75x10‑3

GO:0030017~Sarcomere	 3	 6.61x10‑3

GO:0005876~Spindle microtubule	 3	 8.36x10‑3

GO:0043274~Phospholipase binding	 4	 2.72x10‑5

GO:0031997~N‑terminal myristoylation domain binding	 3	 3.24x10‑5

GO:0072542~Protein phosphatase activator activity	 3	 1.61x10‑4

GO:0030235~Nitric‑oxide synthase regulator activity	 3	 2.99x10‑4

GO:0008440~Inositol‑1,4,5‑trisphosphate 3‑kinase activity	 3	 4.78x10‑4

GO:0031996~Thioesterase binding	 3	 9.59x10‑4

GO:0031432~Titin binding	 3	 9.59x10‑4

GO:0043539~Protein serine/threonine kinase activator activity	 3	 1.60x10‑3

GO:0015276~Ligand‑gated ion channel activity	 3	 6.33x10‑3
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phase. Subsequently, mutant cells invade the dermal layer 
and trigger angiogenesis. This ‘angiogenic switch’ is involved 
in invasiveness and is characterized by the regulation of 

genes, including VEGFA, VEGF receptor genes and related 
angiogenic signaling pathways (27). However, the molecular 
pathways underlying melanoma remain largely unknown. 

Table I. Continued.

Term and description	 Count in gene set	 P‑value

GO:0001105~RNA polymerase II transcription coactivator activity	 3	 6.68x10‑3

GO:0019901~Protein kinase binding	 6	 8.04x10‑3

hsa05010:Alzheimer's disease	 6	 9.66x10‑4

hsa04915:Estrogen signaling pathway	 5	 1.07x10‑3

hsa04922:Glucagon signaling pathway	 5	 1.07x10‑3

hsa04916:Melanogenesis	 5	 1.11x10‑3

hsa04020:Calcium signaling pathway	 6	 1.28x10‑3

hsa04728:Dopaminergic synapse	 5	 2.75x10‑3

hsa05214:Glioma	 4	 3.29x10‑3

hsa05031:Amphetamine addiction	 4	 3.43x10‑3

hsa04720:Long‑term potentiation	 4	 3.43x10‑3

hsa04744:Phototransduction	 3	 6.84x10‑3

B, Upregulated DEGs

Term and description	 Count in gene set	 P‑value

GO:0007155~Cell adhesion	 13	 1.02 x10‑4

GO:0007010~Cytoskeleton organization	   7	 1.01x10‑3

GO:0001501~Skeletal system development	   6	 2.92x10‑3

GO:0045944~Positive regulation of transcription from RNA polymerase II promoter	 16	 3.94x10‑3

GO:0008584~Male gonad development	   5	 4.48x10‑3

GO:0002576~Platelet degranulation	   5	 6.18x10‑3

GO:0042475~Odontogenesis of dentin‑containing teeth	   4	 6.96x10‑3

GO:0090190~Positive regulation of branching involved in ureteric bud morphogenesis	   3	 7.87x10‑3

GO:0050679~Positive regulation of epithelial cell proliferation	   4	 8.85x10‑3

GO:0016020~Membrane	 29	 8.21x10‑4

GO:0005886~Plasma membrane	 45	 8.97x10‑4

GO:0005856~Cytoskeleton	 10	 1.05x10‑3

GO:0031012~Extracellular matrix	   8	 4.34x10‑3

GO:0005925~Focal adhesion	   9	 5.57x10‑3

GO:0031093~Platelet α granule lumen	   4	 6.37x10‑3

GO:0005576~Extracellular region	 21	 6.61x10‑3

GO:0005913~Cell‑cell adhesion junction	   8	 6.92x10‑3

GO:0043034~Costamere	   3	 7.39x10‑3

GO:0005887~Integral component of plasma membrane	 19	 7.89x10‑3

GO:0003779~Actin binding	 11	 2.55x10‑5

GO:0005200~Structural constituent of cytoskeleton	   5	 7.42x10‑3

GO:0050839~Cell adhesion molecule binding	   4	 9.33x10‑3

hsa04510:Focal adhesion	   9	 9.83x10‑4

hsa04512:ECM‑receptor interaction	   6	 1.72x10‑3

hsa04151:PI3K‑Akt signaling pathway	 11	 2.13x10‑3

hsa05205:Proteoglycans in cancer	   8	 3.71x10‑3

hsa05200:Pathways in cancer	 11	 5.44x10‑3

hsa05206:MicroRNAs in cancer	   9	 7.47x10‑3 

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; MM, malignant melanoma.
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The development of biomarkers with improved accuracy is 
essential for the effective diagnosis and treatment of mela-
noma. Genetic changes in melanoma may be observed using 
microarray technology, which may also be beneficial for the 
identification of novel biomarkers in other diseases.

The present study used 3 mRNA microarray datasets to 
identify DEGs between malignant melanoma tissues and 
normal nevi tissues. A total of 182 DEGs were identified, 
which included 52 downregulated and 130 upregulated 
genes. DEG interactions were studied using GO and KEGG 
enrichment analyses. The upregulated genes were found to 
be associated with the cell membrane, cytoskeleton, extracel-
lular region, actin binding, mitotic cell cycle and PI3K‑Akt 
signaling cascades, while the downregulated genes were 
found to be involved in progressive regulation of transcrip-
tion, protein kinase binding, melanogenesis, and the estrogen 
and calcium signaling pathways. Literature retrieval results 
indicated that the associations between malignant melanoma 
and these molecular mechanisms (oocyte meiosis, protein 
kinase binding and estrogen signaling pathway) have not been 
reported widely. A total of 10 DEGs with degrees ≥10 in the 
PPI network were selected as hub genes. The PPI network 
revealed that BAX directly interacts with MYCN, IGF1, 
RUNX1 (runt‑related transcription factor 1), MSH6, PRKDC 
(protein kinase, DNA‑activated, catalytic subunit), CALM1, 

CALM2, CALM3, TP63, VEGFA and RB1, indicating a key 
role for BAX in melanoma. Furthermore, the PPI network in 
DEGs is a novel gene interaction observed in malignant mela-
noma. It is well known that VEGFA and BAX are involved in 
tumor malignancy (28,29), a finding confirmed in the present 
study. VEGFA is related to angiogenesis, a process which is 
required for tumor growth and metastasis (30). Vasculogenic 
mimicry (VM) is an endothelial vessel supply system in 
cancers that VM reflects the aggressive ability of tumor 
cells (31). Recently, the c‑Myc gene was reported to promote 
tumorigenesis of melanoma by promoting vasculogenic 
mimicry via the Bax signaling pathway (24). VEGFA overex-
pression has also been observed in lung, pancreatic and other 
cancers (32‑34). In addition to its role in cell cycle progression, 
VEGFA is a potent angiogenic factor, which is required for 
oncogenesis (35,36). CALM1, CALM2 and CALM3 belong to 
the CaM gene family (37,38). They all encode a similar CaM 
protein, with differences at the nucleotide level. CaM serves 
an essential role in disease pathogenesis via the Ca2+ signaling 
pathway (39,40). Furthermore, it is involved in apoptosis by 
balancing the expression levels of the proapoptotic protein, 
BAX, with those of the antiapoptotic protein, Bcl‑2 (41).

Among the identified hub genes, BAX overexpression was 
found to be associated with the lowest survival rate. The protein 
encoded by this gene is a part of the Bcl‑2 protein family that 

Table II. Functional roles of the 10 hub genes with a degree ≥10.

No.	 Gene symbol	 Full name	 Function

  1	 VEGFA	 Vascular endothelial growth factor A	� Induction of proliferation and migration of vascular 
endothelial cells; essential for both physiological as 
well as pathological angiogenesis.

  2	 BAX	 BCL2‑associated X, apoptosis regulator	� It acts as either an anti‑ or proapoptotic regulator and is 
involved in several cellular activities.

  3	 CALM1	 Calmodulin 1	� Expression of a member of the EF‑hand calcium‑binding 
protein family

  4	 CALM2	 Calmodulin 2	� Role in proliferation, cell cycle progression, and 
signaling cascades.

  5	 CALM3	 Calmodulin 3	� Calcium binding; enzymatic co‑factor; role in cell cycle 
regulation as well as cytokinesis.

  6	 FN1	 Fibronectin 1	� Fibronectin expression; involvement in cell adhesion 
and migration processes.

  7	 PRKCA	 Protein kinase C α	� Essential roles in numerous cellular processes, including 
cell volume control, checkpoints of the cell cycle, cell 
adhesion, as well as cell transformation.

  8	 IGF1	 Insulin‑like growth factor 1	� Expression of protein with similar structure as well 
as function to insulin; member of a family of proteins 
involved in regulating growth and development.

  9	 RB1	 RB transcriptional corepressor 1	� Expression of negative regulatory protein of the cell 
cycle; the first tumor suppressor gene to be identified.

10	 DES	 Desmin	� Expression of a muscle‑specific class III intermediate 
filament. Homopolymers of this protein form a stable 
intracytoplasmic filamentous network which connects 
myofibrils to each other as well as to the plasma 
membrane.
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consists of antiapoptotic and proapoptotic members. BAX 
gene expression is associated with shorter patient survival, 
chemoresistance and recurrence in melanoma (42,43). Thus, 
it is regarded as a target for anticancer agents. The expression 
of the hub genes in relation to both overall and disease‑free 
survival was evaluated. BAX alteration was found to signifi-
cantly affect both overall survival and disease‑free survival. 
BAX could induce the decrease in overall survival and 
disease‑free survival. Moreover, clinical studies have reported 

that a shorter survival period is significantly associated with 
BAX gene overexpression (44,45). However, the expression 
levels of the other hub genes in overall survival were not 
statistically significant compared to BAX. This result may have 
occurred due to the fact that survival analysis in cBioPortal is 
performed based on a relationship between gene mutation and 
prognosis. However, gene overexpression may arise via either 
mutation or amplification. Accordingly, hub gene overexpres-
sion in melanoma may occur due to gene amplification rather 

Figure 2. Hub gene interaction network. cBioPortal was used to examine the hub genes and their co‑expression genes. Blue arrows represent controlling state 
change of genes, green arrows represent controlling expression of genes and brown lines represent complex with other genes. Nodes with a bold black outline 
represent the hub genes, while nodes with a thin black outline represent co‑expression genes. DES, desmin; VEGFA, vascular endothelial growth factor A; 
CALM1, calmodulin 1; CALM2, calmodulin 2; CALM3, calmodulin 3; FN1, fibronectin 1; PRKCA, protein kinase C α; IGF1, insulin‑like growth factor 1; RB1, 
retinoblastoma transcriptional corepressor 1.
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than mutation, thus creating the need for further research in 
order to confirm the association between melanoma and the 
hub genes. Oncomine analysis demonstrated that mRNA 
expression levels of BAX, CALM1, CALM3, FN1, PRKCA, RB1 
and VEGFA were higher in melanoma tissue than in normal 
nevi tissues, whereas the mRNA expression level of IGF1 was 
lower in melanoma tissues. Previous studies have reported that 
CALM2 levels in gastric, breast and other cancer tissues are 
higher than those in normal tissues, and that this gene may 
subsequently be used as a prognostic target (46‑48). Oncomine 
analysis in melanoma indicated that CALM2 expression in 
melanoma was not higher. Further investigation is therefore 
required to confirm CALM2 expression in cancers. The DES 
gene encodes desmin, one of the first muscle‑specific proteins 
to be expressed during the early phases of skeletal and cardiac 
muscle differentiation (49). Certain studies have suggested that 
desmin expression is elevated in colorectal cancer, and that 
it may be used as a novel prognostic predictor (50,51). DES 
expression is increased in osteogenic melanoma, however the 
expression of DES is low in other types of melanoma (52). 

Thus, the reason why there was no significant difference 
in the Oncomine database analysis results may be that the 
Oncomine database did not include the classification of 
melanoma. Similarly, FN1, PRKCA, RB1 and IGF1 had been 
reported to influence tumorigenesis and initiation in other 
types of cancer (53,54), which was consistent with our study in 
melanoma. It was speculated that the Ca2+ signaling pathway 
is associated with malignant melanoma. The disruption of the 
homeostasis of this pathway during tumorigenesis leads to 
abnormal expression of BAX (55). Disruption of Ca2+ signaling 
pathway homeostasis also promotes tumor angiogenesis via 
the overexpression of VEGFA.

There were certain limitations in the present study. Firstly, 
the GES3189 dataset comprised 45 melanoma samples and 
18 normal nevi samples, whereas the sample quantity of the 
other two databases was insufficient. However, since three 
databases were used to choose the overlap in Venn diagram as 
DEGs, this may improve the credibility of the analysis results. 
Secondly, certain biomarkers associated with melanoma were 
identified; however, further experimental studies, including 

Figure 3. BiNGO analysis of the biological process of genes with a degree ≥10. BiNGO was used for hub gene biological process analysis. The color depth 
of the nodes represents the corrected P‑value of the ontologies. The magnitude of the nodes represents the genes that participate in the ontologies. BiNGO, 
Biological Networks Gene Oncology.
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Figure 4. Disease‑free survival and overall survival analyses of the hub genes using Kaplan‑Meier analysis on the cBioPortal online platform. (A) Disease‑free 
survival and (B) overall survival. P<0.05 was considered to indicate a statistically significant difference. DES, desmin; VEGFA, vascular endothelial growth 
factor A; CALM1, calmodulin 1; CALM2, calmodulin 2; CALM3, calmodulin 3; FN1, fibronectin 1; PRKCA, protein kinase C α; IGF1, insulin‑like growth 
factor 1; RB1, retinoblastoma transcriptional corepressor 1.



LIN et al:  PROGNOSTIC BIOMARKERS FOR MALIGNANT MELANOMA5252

immunohistochemistry, animal testing and clinical trials, are 
required to validate these findings. Despite these limitations, 
there is few report that upregulation of the CALM gene family 
(CALM1, CALM2 and CALM3) in malignant melanoma was 
associated with poor prognosis. In addition, the present study 
was the first to report associations between the identified 
DEGs and hub gene interactions in malignant melanoma.

In conclusion, the present study identified DEGs that 
may be associated with the initiation or progression of 
melanoma. The 182 DEGs and 10 hub genes that were 
identified may be considered as potential biomarkers of 
melanoma. Nonetheless, additional research is required to 
further understand the biological functions of these genes 
in melanoma.

Figure 5. Expression of the hub genes in the GSE3189 dataset obtained using Oncomine online analysis. 0, No value (normal skin); 1, Skin nevus; 2, Cutaneous 
melanoma. DES, desmin; VEGFA, vascular endothelial growth factor A; CALM1, calmodulin 1; CALM2, calmodulin 2; CALM3, calmodulin 3; FN1, fibro-
nectin 1; PRKCA, protein kinase C α; IGF1, insulin‑like growth factor 1; RB1, retinoblastoma transcriptional corepressor 1.
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