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Medical imaging is an essential technique for the diagnosis and treatment of diseases in modern clinics. Soft computing plays a
major role in the recent advances in medical imaging. It handles uncertainties and improves the qualities of an image. Until now,
various soft computing approaches have been proposed for medical applications. )is paper discusses various medical imaging
modalities and presents a short review of soft computing approaches such as fuzzy logic, artificial neural network, genetic
algorithm, machine learning, and deep learning. We also studied and compared each approach used for other imaging modalities
based on the certain parameter used for the system evaluation. Finally, based on comparative analysis, the possible research
strategies for further development are proposed. As far as we know, no previous work examined this issue.

1. Introduction

Medical imaging offers a noninvasive technique to look at
the practical and structural information of internal organs.
Currently, in medical imaging, a wide number of different
image modalities are used. )ese modalities enable the ra-
diologist to acquire a perfect spatial resolution in a non-
invasive manner, typically providing the three-dimensional
view of the anatomical and functional behaviour of the
internal structure of human bodies like the heart, kidney,
liver, and spleen. More tests are to be conducted to detect
changes in the heart rate, blood supply, chemical compo-
sition, and blood absorption these days because of the
usefulness of imaging devices. )ere are several medical
imaging modalities like “computed tomography (CT), Ul-
trasound, Positron Emission Tomography (PET), Single-
Photon Emission Computed Tomography (SPECT), Optical
Coherence Tomography (OCT), Mammography, Magnetic
Resonance Imaging (MRI), and Microwave Imaging” and so
forth, as illustrated in Figure 1.

1.1. Computed Tomography (CT). CT is a method of mea-
suring an object’s cross-sections using a series of X-ray
measurements taken around the body from various angles.
)e CT system is typically calculated by the X-ray source,
detector, and scanning direction. It is the most popular
modality used in clinical diagnosis to detect abnormalities
such as cancer, tumors, or organ deficiencies [1, 2]. CT has
become an effective method for supplementing X-rays and
ultrasonography in medical imaging. CT eliminates the
superimposition of pictures of an object outside the field of
interest. )e core principles of the X-ray computed to-
mography involve X-ray generation, processing, identifi-
cation, digitization, and image reconstruction which can be
used to represent and analyze objects without physical harm,
which provides several advantages in relevant areas.

First, it illustrates a standard procedure of a medical CT
scan; the patient is to lie on a hospital bed. )e CT system
then moves the patient to find the right location for the
scanning. )en it activates the X-ray source and rotates
around the patient. In the meantime, X-ray detectors are
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located in a field on the other side. While the X-ray source is
spinning, sensors record the scanned patient’s one-dimen-
sional projection. )e data from the projection are recorded
during this process. If the camera system is done spinning,
all the one-dimensional projections are spliced, making a
picture that looks like multiple superimposed sinusoidal
pictures. )is image is called a sinogram and is the most
common source of raw CT scanning data for organizations.
Finally, the sinogram is implemented using an image re-
construction algorithm, generating a tomography repre-
sentation of the patient body.

1.2. Positron Emission Tomography (PET). PET is a type of
nuclear imaging method which produces a 3D image of the
biological process in the human body by measuring the
radiation emitted by photons. In 1975, the first commercial
PETscanner was introduced, and in the 1990s it was used in
clinics regularly [3]. PET is the latest imaging method with a
wide variety of medical uses. Although such techniques are
initially developed for use in studying the brain’s functional
features, they are now commonly used in numerous clinical
applications, including cancer detection, cardiac disease, and
neurological disorders. PET medical imaging can be sub-
categorized in functional and anatomical imagery; the first
obtains anatomical images of a body, and the second pro-
duces images of physiological activity. Constant growth in
algorithm development is taking place over a decade,
intending to analyze 2D and 3D images derived from a PET
scanner.

1.3. Single-PhotonEmissionComputedTomography (SPECT).
It is a standard method of nuclear imaging, increasing its
role in investigating and managing a wide variety of neu-
rological disorders [4]. Radioactive elements and a purpose-
built gamma camera are used to create three-dimensional
images of the organs inside. )is form of imaging offers
physicians a noninvasive way to measure the health of
certain parts of a body, most notably the heart, brain, and

bones. What separates SPECT scans from other imaging
techniques is that the scan will reveal how well those organs
operate. For example, SPECT scan images can help deter-
mine the location of seizures in people with epilepsy and
evaluate if there is enough blood flow to various parts of the
brain.

Purpose of Test. SPECT scans may be used for many pur-
poses, which is why, in most hospitals, clinics, and imaging
centers, they are readily accessible. Some of the reasons your
doctor may decide to order this test involve the concern or
need to monitor

(i) brain and neurological conditions
(ii) cardiac conditions
(iii) bone disorders

Like other nuclear scans, SPECTuses radioactive tracers,
carrier molecules bound with radioactive atoms, to identify,
diagnose, and treat various diseases. Various tracers perform
multiple tasks based on the symptoms or condition being
tested, and the doctor selects the best tracer for you. )e
SPECTmachine is an extensive circular system containing a
camera detecting the radioactive tracer that absorbs the
body. During the scan, you lie on a table, while the SPECT
device rotates around you. )e SPECT computer captures
the internal organs and other structures. )e images are sent
to a machine that produces 3D images of your body using
the details. Since the SPECT scan uses a low dose of radi-
ation, if you have any questions about the risk of exposure,
speak with your doctor. Usage of this imaging approach was
not associated with any long-term health risks.

1.4. Magnetic Resonance Imaging (MRI). MRI is a nonin-
vasive biomedical imaging method that uses a powerful
periodic magnetic field to produce radio waves that can be
detected and used in the MRI scanner to create two- and
three-dimensional pictures of a living object. It is used to
create images of physiological processes, organs, and tissues
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within the body. MRIs are especially used to represent the
body’s nonbony or soft tissue sections. )e most significant
difference compared to CTscans is that it uses ionizing X-ray
radiation. In contrast with X-ray and CT scans, knee and
shoulder injuries are shown with greater precision than MRI
scans. MRI scans would be used in the brain to differentiate
between grey matter and white matter, and that in effect
helps to understand tumor and aneurysms.)eOpen Access
Sequence of Imaging Studies project has collected neuro-
imagery datasets containing more than 2000MRI lessons for
biomedical imaging researchers.

1.5. Optical Coherence Tomography (OCT). OCT is a non-
invasive imaging method that acquires high-resolution
cross-sectional 10-micron pictures of the retina and anterior
segments. )is method uses low-coherence light to obtain
two- and three-dimensional micrometre-resolution images
from within the biological tissues. It is used mainly to di-
agnose eye issues by offering a cross-sectional illustration of
the retina, enabling the doctor to see the whole layer. It
allows mapping of the coating and calculating the thickness,
which is helpful for the treatment.

1.6. Ultrasound (US). US imagery includes exposing a body
part with high-frequency sound waves to create an image of
the body’s inside. Because images are taken in real time, they
can reveal the structure and activity of the body’s internal
organs and the blood moving through the blood vessels. )e
US imaging method uses sound waves of high frequency to
create visual representations of internal organs, tissues, and
blood supply. It is the procedure that is mostly included in
pregnancy to control the fetus. It is often used for stomach,
renal, and thyroid scans and is not usually used for the
imaging of air-containing bones or tissues, including lungs.
)e advantage of using the US is that it is quick without any
radiation.

Among the medical imaging modalities, “Ultrasound
(US), computed tomography (CT), Magnetic Resonance
Imaging (MRI), and Positron Emission Tomography (PET)”
imaging have been of great importance in several areas of
research. Both anatomical and functional imaging modali-
ties are incredibly relevant in many medical fields, such as
“computer-aided diagnosis, pathology follow-up, patient
monitoring, and therapy (radiotherapy, chemotherapy,
etc.).” In all these kinds of clinical application, computer
assistance plays a significant role. Due to the technology of
medical image analysis that has overgrown over the last
decades, there have been significant facilities for clinical
examinations.

2. Overview

It is easy to see that researchers have found soft computing
(SC) approaches by conducting a search on the PubMed
website using “biomedical image application using SC
techniques” as the keyword and choosing “article” as the
type of text, since the number of articles has increased
significantly since 2010 (Figure 2), reaching more than 1231

publications in 2019. )is growth is largely explained by the
rise in SC approaches (Figure 2). After that, the sources to be
consulted were chosen. Four well-established databases,
Web of Science, Google Scholar, PubMed, and Springer,
have been used. A combination of the key terms were in-
cluded in the search strings: (genetic algorithm) OR (ma-
chine learning) OR (deep learning) OR (fuzzy logic), CT,
PET, Reconstruction, and Segmentation. By combining
similar entries, the findings were scanned. )ey were then
first screened with titles and abstracts based on them. After
selecting the papers of interest, the main objective of the
work, the anatomical interest, the methodology used, the
evaluation metrics, and the attributes of the dataset used
throughout the experiments, the main results and any other
relevant details were carefully read in order to extract them.
)ese data have been organized, and the current paper has
been prepared.

It should be noted that most articles deal with a re-
construction issue, followed by segmentation and then
denoising. Other forms of issues have been given less
consideration. With regard to the data used, the CT prev-
alence is very high, followed by PET and then the US. )e
per-year evolution of the papers published is shown in
Figure 2.

3. Soft Computing

Soft computing (SC) is introduced in medical imaging be-
cause it is an efficient method to deal with the uncertainties
inherent in acquired image data [5]. SC methods are also
used in the fields such as scientific study, medical science,
management, and engineering. )e inspiration for soft
computing is to obtain artificial intelligence by replicating
the human brain’s thinking ability to solve the ambiguity of
complex real-world problems. SC may be a fusion of
computational methods and biological methods, which give
efficient strategies for a more dynamic, skillful, and optimal
solution. Lotfi A. Zadeh presented the idea of SC in the 1965s
[6]. In this review paper, our focus is on core soft computing
method such as “fuzzy logic, artificial neural network, and
genetic algorithm” [5, 7].

In comparison to hard computing, SC approaches ac-
commodate imprecision, ambiguity, partial truth, and es-
timations. Acting flexibly with their roles makes them more
efficient. Due to its adaptive nature and accuracy, the soft
computing method is mainly used and preferred by re-
searchers. It also has the benefits of cost-effectiveness, good
efficiency, and robust solutions to complex problems. Many
SC approaches are discussed in Figure 3.

3.1. Genetic Algorithm. )e genetic algorithm (GA) method
is motivated by the idea of biological evolution introduced
by Darwin [8]. GA was investigated in this study for image
reconstruction, image denoising, segmentation, image en-
hancement, and visualization. “GA is a technique widely
used to overcome search & optimization problem for both
restricted and unrestricted biological evolution-based data
like mutation, crossover, and selection” [9].
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)e genetic algorithm can solve nondeterministic
polynomial-time hardness (NP-Hard) problems that are
impossible to solve in real time. With the application of the
GA, we overcome complex problems quickly, which cannot
be solved in mathematics. It is a heuristic or randomized
search process that includes an initial solution set and
produces a solution to the problem in an efficient and ef-
fective way.)e preceding example of a person who wants to
spend some cash in the bank is an easy way to understand
these techniques. We understand that different banks have
various policies and schemes are available. )eir private
interests are how much to invest in the fund so maximum
profits can be made. How can he support and benefit from
investing in the bank? )ese conditions can be solved by the
“Evolutional Computing” method such as GA.

3.1.1. A Survey of Genetic Algorithm. P. Lihue (2005) [10]
developed a genetic algorithm for ECT image reconstruc-
tion. Algorithm initialization was based on linear back
projection result. It is used to optimize the threshold and the
minimum and maximum grey value for the image. )e
author stated that it is efficient and capable of reconstructing
a high-quality image. )e genetic algorithm-based method
converges quickly with a small number of iterations.

Gouicem et al. [11] integrated the fuzzy penalty (FP)
function and GA optimization for penalized-likelihood
image reconstruction. )e image was reconstructed from
few projections in computed tomography. On the synthetic
and real image datasets, this approach was tested and val-
idated. It calculates speedily to a low noisy solution, even if
the number of iterations is high, and provides a global es-
timation of finding object parameters, not a local one as in
classical algorithms like a gradient.

DCruz et al. [12] proposed a system for detecting lung
cancer while using the neural network and genetic algorithm
Backpropagation. In this paper, classification was performed
using Neural Network Backpropagation which would
classify as normal or abnormal the digital X-ray, CT images,
MRIs, and so forth. )e normal condition is that which is
characteristic of a healthy patient. For the study of the
feature, the abnormal image will be considered further. )e
genetic algorithm can be used for adaptive analysis to extract
and assign characteristics based on the fitness of the
extracted factors. )e features selected would be further
classified as cancerous or noncancerous for images previ-
ously classified as abnormal.)is method would then help to
make an informed judgment on the status of the patient.

Liuet al. [13] presented a network evolution method that
relies on the GA which checks for the most suitable genes to
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improve the structure of the networks. We accelerate the
evolutionary process through a greedy discovery approach
based on experience and transfer learning. A GA-based
approach was proposed for automatically denouncing
medical image CNN structures. We test and demonstrate
EvoNet on a perfusion CT dataset.

Bahadure et al. [14] proposed segmentation techniques
to improve tumor detection efficiency and computational
efficiency; the GA is used for automated tumor stage clas-
sification.)e choice in the classification stage shall be based
on the extraction of the relevant features and the calculation
of the area. )e comparative approach is developed to
compare four watersheds, FCM, DCT, and BWT-based
segmentation techniques, and the highest is chosen by
evaluating the segmentation score. )e practical products of
the proposed approach are evaluated and validated based on
the segmentation ranking, accuracy, sensitivity, specificity,
and dice similarity index coefficient for development and
quality evaluation on MRI brain images.

A brief review of the work done by many researchers in
the field of the biomedical image using genetic algorithm is
summarized in Table 1, including a brief description of the
modality, application, software used, and parameter
evaluation.

3.2. Fuzzy Logic. In mathematics and engineering, fuzzy
logic was first introduced by Zadeh in the mid-1965 [6]. A
prosperous, diverse field of research [19] is the use of fuzzy
approaches in image processing. Fuzzy-based approaches
have already been used in various image processing areas,
like filtering, interpolation [6], morphology, and segmen-
tation. )e fuzzy-based approach has already been used and
has many practical applications. )e iterative technique
presented by Mondal et al. [20] using fuzzy potential
function effectively reduces noise without affecting the
image feature reconstructed.

3.2.1. A Survey of Fuzzy Logic. Mondal and Rajan [20]
presented a fuzzy-based method for iterative image recon-
struction in Emission Tomography (ET). In this, two simple
operations, fuzzy filtering and fuzzy smoothing, are

performed. Fuzzy filtering is used for reconstruction to
identify edges, while fuzzy smoothing is used for penalizing
only those pixels for which the edges are missing in the
nearest neighborhood. )ese operations are performed it-
eratively until appropriate convergence is achieved.

Bose [21] developed image segmentation techniques
using fuzzy-based artificial bee colony (FABC). In that re-
search, the author has combined the fuzzy c-means (FCM)
and artificial bee colony (ABC) optimization to search for
better cluster century. )e proposed method FABC is more
reliable than other optimization approaches like GA and
PSO (particle swarm optimization). )e experiment per-
formed on grayscale images includes some synthetic medical
and texture images. )e proposed method has the advan-
tages of fast convergence and low computational cost.

Debas et al. [22] developed an optimized Fuzzy Inference
System (FIS) image reconstruction method to be imple-
mented in capacitance tomography systems. )e proposed
model yields more precise solutions than other explicit
methods but without increasing the computational costs.
)e process of image reconstruction, called “single-stage
fuzzy,” offers improved time and resolution image recon-
struction, making it an appealing model for ECTwhere real-
time imagery is used. )e accuracy and computational cost
of the proposed approach make it a suitable method for the
reconstruction of ECT structures.

Kala and Deepa [23] preserved the useful data; the
suggested adaptive fuzzy hexagonal bilateral filter eliminates
the Gaussian noise. )e local and global evaluation metrics
are used to create the fuzzy hexagonal membership function.
)e recommended method combines the median filter and
the bilateral filter in an adaptive way. )e bilateral filter is
often used to retain the edges by smoothing the noise in the
MRI image and by using a local filter to maintain the edges
and obtain structural information. )e proposed approach
and the existing approach performed a series of experiments
on synthetic and clinical brain MRI data at various noise
levels. )e outcome demonstrates that the proposed method
restores the image to improved quality of the image which
can be used for the diagnostic purpose well at both low and
high Gaussian noise densities.

Genetic algorithm
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Artificial intelligence Soft computing
approaches

Machine learning

Neural network

1
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Figure 3: Soft computing approaches.
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In Ghasemi et al.’s work [24], for medical image clas-
sification, a robust sparse representation is presented based
on the adaptive type-2 fuzzy learning (T2-FDL) method. In
the current procedure, sparse coding and dictionary learning
method are iteratively performed until a near-optimum
dictionary is produced. Two open-access brain tumor MRI
databases, “REMBRANDT and TCGA-LGG,” from the
Cancer Imaging Archive (TCIA), are used to conduct the
experiments.)e research findings of a classification task for
brain tumors indicate that the implemented T2-FDL ap-
proach can effectively mitigate the adverse impacts of am-
biguity in images data. )e outcomes show the performance
of the T2-FDL in terms of accuracy, specificity, and sensi-
tivity compared to other relevant classification methods in
the literature.

Table 2 summarizes the work done by many researchers
who use fuzzy logic methods in different biomedical
applications.

3.3. Artificial Intelligence. )e term “artificial intelligence”
was first used by mathematician John McCarthy, commonly
known as AI’s father, in 1956 to describe machines that do
things that people would call smart [29]. “Artificial intelli-
gence” (AI) refers to the development of computer systems
that typically allow human intelligence to perform tasks.
)ere are two paradigm shifts: (1) AI replaces people in
problem-solving; (2) AI also replaces the traditional com-
putational science and engineering algorithms. Such artificial
intelligence systems are being created to improve medical
image reconstruction, quality assurance, computer-aided
detection, noise reduction, computer-aided classification,
segmentation, and radio genomics. Machine learning, an AI
subset, includes training techniques that perform work by
learning from patterns and features derived from data. A

neural network that initially comes from brain biology,
passing information between the nodes called as artificial
neurons is one approach employed inmachine learning. Deep
learning (DL) is a machine learning class defined by the use of
DNN with various layers of mathematical concepts to do all
the functions needed; that is, DL is a subset of machine
learning, as shown in Figure 4, and ML is a subset of AI. We
believe that AI is a newway to improve healthcare and achieve
better outcomes at lower costs. So, AI is an excellent tool to
build the future of imaging.

3.4.MachineLearning. Machine learning came into being in
the late eighties and early nineties. Machine learning was
coined by Arthur Samuel in 1959 [30]. )is is a part of
artificial intelligence, which allows the machine to behave
and make data-driven decisions to achieve specific tasks.
)ese programs are designed based on specific algorithms to
learn and evolve themselves when exposed to the new data
over time. In the past few years, the ML method has been
used for image reconstruction, segmentation, classification,
recognition of body organs from medical images, and so
forth.

3.4.1. A Review of Machine Learning. Pelt and Batenburg
[31] introduced a new reconstruction technique in this
research to resolve minimal data problems. In that research,
the authors used the algebraic method to consider a two-
problem high cost of computation and the necessary prior
information which restrict the kinds of images which can be
reconstructed. Neural Network Filtered Back Projection
(NN-FBP) has been developed to solve these problems by the
authors. If the accuracy of the proposed method depends on
hidden layers, then reconstruction quality is not adequate.

Table 1: Overview of papers for biomedical image applications using genetic algorithm methods.

Sr.
no. Reference Techniques/methods Imaging

modality Applications Software used/
system used Parameter evaluation

1 Lihue [10] GA ECT Image
reconstruction MATLAB Correlation coefficient,

image error

2 Qureshi et al.
[15] GA Transmission

tomography Reconstruction MATLAB PSNR, RMSE, EE

3 Miller et al.
2011 [16] GA CT Image

reconstruction MATLAB MSE

4 Gouicem
et al. [11] GA, fuzzy inference CT Image

reconstruction MATLAB SNR, MSE

5 DCruz et al.
2015 [12] GA and BNN Lung CT images Classification ___ ___

6 Chandra
et al. [17] GA MRI brain tumor

detection
Image

segmentation — SNR, segmentation
accuracy

7 Liu et al. [13] Genetic algorithm (GA),
CNN CT Image denoising

TensorFlow platform
with GeForce GTX

TITAN GPUs
PSNR

8 Bahadure
et al. [14]

GA & FCM (fuzzy
clustering means) MRI Segmentation and

classification MATLAB (R2011a)
Accuracy, avg dice

coefficient, specificity,
sensitivity

9 Kodali and
Deb [18] GA

Ultrasonic
tomography

(UT)
Reconstruction

SUNE250 machine with
400 Mhz dual-processor

using MATLAB 7

Avg. reconstruction
times
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)e NN-FBP can provide a more significant reconstruction
than FBP and the computational complexity of NN-FBP
compared to the algebraic method is low. But this paper
restricts tomographic images by only two-dimensional
parallel beams and trains too many hidden layers is a
complex and time-consuming task.

)e authors presented a new Penalized Weighted Least
Squares (PWLS) approach for the LDCT reconstruction
method that inhibits regularization following a prelearned
square transform PWLS-ST and even involved the Union of

Learned Transform (PWLS-ULTRA).)e suggested method
clusters the voxels into various classes and captures features
such as bones, individual soft tissue, and edges. Experi-
mental findings with Zheng et al. 2D and 3D axial CT IEEE
Trans Med Imaging Page 17. Zheng et al. [34] demonstrate
the experimental results of 2D and 3D axial CT tested over
the XCAT phantom, 3D helical chest, and abdomen scans
that indicate that the proposedmethods include high-quality
image reconstructions compared to traditional approaches
like FBP or PWLS reconstruction with a nonadaptive edge-
preserving regularization for both normal and low-dose
levels. Compared with PWLS-ST, the ULTRA device pro-
vides a better transform system that allows significant re-
construction of different bones, individual soft tissues, and
edges. )e authors proposed an efficient iterative PWLS cost
algorithm that would alternate between sparse coding and
clustering step.

Li et al. [32] presented a novel Supervised-Unsupervised
(SUPER) reconstruction framework for LDCT image re-
construction. It combined the advantages of supervised
learning algorithms and transformed (unsupervised)
learning-based techniques like PWLS-ULTRA that require
detailed image-adaptive clustering. )e SUPER model
consists of multiple layers, one of which involves a deep
network learned in a supervised way and an unsupervised
iterative approach involving image-adaptive components.
)e SUPER reconstruction method is greedily known from
the training data. )is study proposed a new paradigm for
LDCT image reconstruction, dubbed Supervised-Unsuper-
vised (SUPER) learning. )e structure allows various types
of large data as a regularization to be leveraged effectively for
CT reconstructions.

In Lee et al.’s work [33], the efficiency of processing CT
projection data sinogram was calculated using a DL method

Table 2: Overview of papers for biomedical image applications using fuzzy logic methods.

Sr.
no. Reference Techniques/methods Imaging modality Applications Software used/

system used Parameter evaluation

1 Mondal and
Rajan [20] Fuzzy logic PET Image

reconstruction MATLAB Residual error,
log-likelihood test

2 Sowmya and
Raniet [25]

Fuzzy c-means (FCM),
competitive neural

network

Colour satellite, aerial
images Segmentation MATLAB 7 MAE, PSNR

3 Devi et al. [26] NLM fuzzy CD CT Image denoising MATLAB 2018b PSNR, CP, MSSIM,
RMSE

4 Anand [27] Fuzzy logic Grayscale images Noise reduction MATLAB PSNR, MSE, execution
time

5 Debas et al.
[22]

Fuzzy Inference System
(FIS), GA ECT Image

reconstruction MATLAB Sensitivity matrix

6 Nithila and
Kumar [28] FCM CT Segmentation MATLAB Error rate, similarity

measure, RMSE

7 Bose [21] FCM, artificial bee
colony

MRI, images, grayscale
images, synthetic

images

Image
segmentation MATLAB R2012b

8 Kala and
Deepa [23] Fuzzy logic MRI Denoising MATLAB 2013 PSNR, RMSE, SSIM

9 Ghasemi et al.
[24] Fuzzy dictionary learning MRI Image

classification

MATLAB
(R2017b) on
window 10

Accuracy, sensitivity,
specificity, convergence

speed

Artificial 
intelligence

Machine 
learning

Neural 
network

Deep 
learning

Figure 4: Artificial intelligence.
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for recognition of human anatomy and the detection of
pathology. )e authors developed a modified CNN called
SinoNet, configured for sinogram analysis, and illustrated its
ability by evaluating its output with previous CNN-based
systems using reconstructed CT images. A square coevo-
lutionary flap in the initial convolution layer was replaced by
different rectangle convolution layer flaps of various sizes,
including large and heightwise flaps. SinoNet’s custom ar-
chitecture has substantially better performance in human
body recognition and ICH identification than sinogram’s
trained Inception-v3 models because of the sampling den-
sity.)e outcomes indicate how nonsquare filters can enable
systems to know the interactions among projection views
and detector pixels through sinusoidal curves and extract
salient classification aspects from the sinogram domain, a
role those human experts find hard to understand. )is
method accelerates edge computing by allowing the rapid
identification of the essential findings through actual data
even without the time-consuming process of image recon-
struction. )is might enable us to build simpler scanner
devices to detect critical results directly via SinoNet alone.

Table 3 lists some of the papers relevant to machine
learning and its application in biomedical imaging.

3.5. Neural Network. Neural networks have gained high
popularity in recent years, specifically for a method called
deep learning, which uses extensive, complex neural net-
works [39]. AI techniques like deep learning and neural
network have created a novel framework with novel ap-
proaches in inverse problems which could change the area.

3.5.1. A Survey of Neural Network. Kartheeswarn [40] de-
veloped a sequential and parallel data decomposition
technique based on PSO-ANN (particle swarm optimization
with artificial neural networks). Generally, ANN training
takes a long time; therefore, the author decomposes the
dataset into a subset and assigned the weight of each subset
optimized by PSO.)en, the training time is reduced using a
similar strategy. However, the sequential approach con-
sumes more training time.

Souza et al. [41] presented an algorithm to perform
automatic CXR lung segmentation. It is used to solve the
reconstruction of the “closed” lung areas due to pulmonary
anomalies. )e proposed approach uses two DNN convo-
lution methods, and the proposed work has four stages
named image acquisition, initial segmentation, recon-
struction, and final segmentation. )is approach was tested
on 138 chest X-ray images from the tuberculosis prevention
strategy of Montgomery County and obtained average
sensitivity, specificity, accuracy, dice coefficient, and Jaccard
index. )us, dense abnormality in chest X-rays is being
solved effectively in the lung segmentation system by exe-
cuting a reconstruction step based on a DNN model.

Chan et al. [42] proposed the first efficient and con-
vergent INN framework, Momentum-Net, by generalizing a
block-wise MBIR approach using momentum and NN-re-
gression majorizers. Momentum-Net uses momentum ter-
minology in estimation components for fast MBIR and

noniterative MBIR components for every layer via major-
izers. Every other layer of Momentum-Net comprises three
core components: image refinement, estimation, and MBIR.
It ensures that they converge to a fixed point, under two
asymptomatic conditions, for specific nonconvex MBIR
variables and convex optimal sets. Also, a regularization
parameter selection method based on the statistical radius of
major matrices is suggested to understand the data-fit dif-
ferences between training and testing sets. As a result, it
achieves a quicker and more effective MBIR than traditional
CNNs. Wu et al. [40] presented a deep CNN for CT image
reconstruction. )is study aims to decrease the memory and
time usage of CTreconstruction network training to make it
realistic for new processors while preserving the quality of
the images reconstructed. )e authors used DeepUNet here
as CNN and implemented separate quadratic substitute with
aggregate data fidelity subsets to solve the local-minimum
problem of greedy learning to avoid simple local minima and
obtain good image quality. )is approach obtains better
performance than iterative reconstruction based on total
variation and dictionary learning for both two-dimensional
and three-dimensional issues.

Table 4 summarizes a brief assessment of the work of
various researchers in the field of biomedical image pro-
cessing utilizing neural networks.

3.6. Generative Adversarial Network (GAN). GAN, pre-
sented by Ian Goodfellow et al. in 2014 [50], is a class of AI
algorithms commonly used in ML. A standard GAN
structure comprises two neural networks contesting each
other. )e GAN system produces target data, and the other
tries to separate it from ground reality. During this method,
the efficiency of these two networks is enhanced continu-
ously. )e discriminator network makes GAN handle too
complex data generation issues compared to traditional
simple neural networks. It is commonly utilized in image
processing problems due to its ability to produce data. It has
significant benefits in image synthesis, semantic image
processing, and design transfer over other networks. GAN
has a generator network for generating a clean image from a
reconstructed image from low-dose/sparse view/limited-
angle data and a discriminator network for evaluating the
generated image. GAN is structured as a generative model to
create new data based on the information given rather than
deleting or extracting data [51].

3.6.1. A Survey of Generative Adversarial Network. In
Pathak et al.’s work [52], the authors presented a new in-
tegrated low-dose CT reconstruction algorithm. )is ap-
proach uses the “Global Dictionary-based Statistical Iterative
Reconstruction (GDSIR) and Adaptive Dictionary-based
Statistical Iterative Reconstruction (ADSIR)” method. In
this situation, dictionary (D) is predetermined, and GDSIR
can also be used if D is adapted. Instead, ADSIR is suitable
for selecting and using the gain-based intervention filter to
remove artefacts in low-dose CT. In this first input, CT
images then apply dictionary learning, GDSIR or ADSIR.
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)is proposed method solves different problems, including
oversmoothing, artefacts, and noise.

Deora et al. [53] developed a new generative adversarial
network (GAN) framework for reconstructing CS-MRI. It
improves the quality by combining the patch-based GAN
discriminator and the structural similarity index loss. )e
authors aimed to preserve high-frequency information in

the reconstructed image and adequate textural data. In a
U-Net-based generator architecture, dense and residual
connections were integrated to support more direct data
transmission and variable network length. )e authors
showed that the proposed method performs well compared
to other techniques in aspects of reconstruction efficiency
and reliability to noise.

Table 4: Overview of papers for biomedical image applications using neural network methods.

Sr.
no. Reference Techniques/methods Imaging

modality Applications Software used/system used Parameter evaluation

1 Srinivasan et al.
[43] Hopfield neural network CT Image

reconstruction MATLAB SNR

2 Cierniak [44] Hopfield-type neural
network CT Image

reconstruction — MSE, SNR

3 Cierniak [45] Recurrent neural
network CT Image

reconstruction MATLAB MSE

4 Chen et al. [46]
Residual encoder-

decoder convolution
neural network

CT Denoising
MATLAB 2015b and

training was performed on
GTX 1080

RMSE, PSNR, SSIM

5 Wu et al. [47] Artificial neural network
(ANN) CT Image

reconstruction TensorFlow SSIM, CNR (contrast
to noise ratio)

6 Kartheeswarn
[40]

PSO (particle swarm
optimization), ANN CT Image

reconstruction
MATLAB R2010a Parallel
computing toolbox (PCI) MSE, PSNR

7 Chen [48] Convolution neural
network CT Noise reduction MATLAB 2015b, GTX 980

Ti graphics card PSNR, RMSE, SSIM

8 Souza et al. [41] CNN Chest X-
ray (CXR)

Lung segmentation
and reconstruction

NVIDIA GeForce GTX
1080 Ti graphics card

Average sensitivity,
specificity, accuracy,
and dice coefficient

9 Chan et al. [42] Iterative neural Network
(INN), DL CT MBIR MATLAB RMSE, PSNR

10 Wu et al. [49] CNN CT Image
reconstruction

Realized NN with
TensorFlow &

reconstruction with CUDA
9.2

RMSE, SSIM

Table 3: Overview of papers for biomedical image applications using machine learning methods.

Sr.
no. Reference Techniques/

methods
Imaging
modality Applications Software used/system used Parameter evaluation

1
Pelt and
Batenburg

[31]
ML, ANN CT Image reconstruction Python 2.7.3 & NumPy

1.6.3 Mean absolute error

2 Li et al. [32] ML CT Image reconstruction
For training and testing

GTX TITAN GPU graphic
processor

SSIM, RMSE, PSNR

3 Zheng et al.
[34]

Transform
learning LDCT Image reconstruction __ RMSE, SSIM, ROI

4 Lee et al. [33] ML CT Image reconstruction
MATLAB 2018a, Keras with
a TensorFlow backend, and

4 TITAN-X GPUs
Test accuracy

5 Liu et al. [35] ML/AI CT Image reconstruction
and segmentation Python 3.5.2

Correlation coefficient, mean
absolute error (MAE), and dice
similarity coefficient (DSC)

6 Kang [36] ML/transfer
learning MRI Classification Python Accuracy

7 An-Liu [37] ML PET/CT Image segmentation Python, TITAN-X GPU Jaccard similarity, accuracy

8 Roth [38] ML Multiorgan
images Image segmentation NVIDIA Clara train SDK Dice score
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Jiang et al. [54] developed a method that retrieves high-
resolution CT images from low-resolution ones using a
modern semisupervised adversarial generative network
technique. Constructing the generator and creating a dis-
criminator based on a supervised system uses a deep un-
attended network of 16 residual blocks in that paper. A
parallel 191 convolution operation is also implemented to
minimize the dimensionality of the performance of each
hidden layer. )e authors performed an objective and
subjective systematic study of many standard methods as
regards experiments. )e analysis results indicate that the
proposed network is more robust in the reconstruction of
images with a superresolution.

In Table 5, we summarize the papers based on GAN,
which are employed in a variety of applications such as
image reconstruction, segmentation, and noise reduction.

3.7. Deep Learning. Deep learning is an extension of the
neural network or ML technique that learns features and
tasks directly from data. Data can be images, text, or sound.
DL is the sophisticated algorithm of high-performance
GPUs due to lots of datasets everywhere. )ese days, the
deep learning algorithm is getting a lot of attention to solve
different medical imaging issues such as image recon-
struction, segmentation, superresolution, and classification.
Deep learning approaches using iterative neural networks
and cascaded neural networks have been reported to obtain
state-of-the-art results concerning many quantitative quality
measures such as PSNR, NRMSE, and SSIM across different
imaging modalities. DL-based approaches have been suc-
cessfully implemented for many applications like image

reconstruction, denoising, segmentation, classification, and
other image processing applications.

3.7.1. A Survey of Deep Learning. Alder et al. [60] partially
learned approach to solving an ill-posed problem. )is
approach is based on a system of gradient descents. Deep
learning is done while using the inverse problem with prior
knowledge, providing an increase of 5.4 dB in PSNR over the
overall reconstruction of variance. Choosing the error
function is not that good, extending it to another iterative
scheme.

Kang et al. [61] developed a novel low-dose X-ray CT
technique based on DL approach. A novel CNN architecture
optimized to denoise CT was proposed to identify and
eliminate unique noise patterns from CT. )is proposed
network divided the work into three parts: (a) counterlet
transform can effectively evaporate the directional compo-
nent of noise to allow better training of deep network; (b)
low-dose CTcontains complicated noise and to remove such
noise CNN has huge prospective; (c) a DNN is suitable for
collecting different kinds of data from the large quantity of
data. Moreover, the reconstruction time is now much better
than those of the existing methods of MBIR.

Wei et al. [62] proposed a joint reconstruction and
segmentation method (JRSM) for limited-angle CT scans,
which is directly performed on projection data. In their
paper, the primal-dual hybrid gradient approach is modified
for nonconvex piecewise constant Mumford-Shah (PCMS)
model used for discrete value segmentation. )e Mumford-
Shah model consists of minimization of energy function:

minΩ(u − I)2dx +ΩSI|Δu|2dx + Υ|SI|. (1)

Table 5: Overview of papers for biomedical image applications using generative adversarial network methods.

Sr.
no. Reference Techniques/

methods
Imaging
modality Applications Software used/system used Parameter evaluation

1 Wolterink
et al. [55]

Generative
adversarial

network (GAN)
CT Noise reduction NVIDIA TITAN-X GPU,

12GB RAM
PSNR, standard

deviation ROI (HU)

2 Pathak et al.
[52]

GAN with
Wasserstein
distance

CT Denoising
Python with TensorFlow

library, NVIDIA TITAN Xp
GPU

PSNR, SSIM, MSE

3 Mardani et al.
[56] GAN, CNN, DL MRI Image

reconstruction
TensorFlow NVIDIA TITAN

Xp GPU, 12GB RAM

SNR, SSIM,
reconstruction time

(sec)

4 You et al. [57] GAN, DL, residual
learning CT Noise reduction TensorFlow library, NVIDIA

TITAN Xp GPU PSNR, SSIM

5 Hussain et al.
(2019) [58] GAN MRI Reconstruction - MSE, PSNR

6 Mri et al. [53] GAN Compressive
sensing MRI

Image
reconstruction

Implement using Karras
framework, NVIDIA PSNR, MSSIM

7 Dang et al.
2020 [59] GAN CT Image

reconstruction

Karras framework with
TensorFlow and training with 4
NVIDIA TITAN-X GPUs

Generator loss, average
loss, real and fake score

8 Jiang, 2020
[54]

GAN, residual
blocks CT Image

reconstruction

64-bit Ubuntu OS, TensorFlow
V1.2, CUDA tool development

kit V8.0, and Python 3.1

Inception score (IS),
Frechet Inception
Distance(FID)
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Table 6: Overview of papers for biomedical image applications using deep learning methods.

Sr.
no. Reference Techniques/

methods Imaging modality Applications Software used/system
used

Parameter
evaluation

1 Milletari et al. [66] CNN (convolution
neural network) MRI Image segmentation Python Caffe framework Average dice

coefficient

2 Kumar et al. [67] Deep transfer
learning

X-ray CT,
COVID-19 Reconstruction ResNet152V2, VGG16,

DenseNet201

Recall,
precision, F-
measure,
accuracy

3
A deep learning

architecture (2017)
[68]

CNN CT Reconstruction For training L-BFGS-B
optimization PSNR, SSIM

4 Chen et al. [69] DL, CNN CT Noise reduction MATLAB 2015b on a PC PSNR, RMSE,
SSIM

5 Alder et al. [60] DL CT Reconstruction Python using ODL &
TensorFlow PSNR, runtime

6 Mccann et al. [70] DCNN CT, MRI Image
reconstruction

CNN performed on GPU
CuDNN (NVIDIA and

MATLAB U-Net
Toolbox)

SNR

7 Moesdkopset al. [71] DL, CNN Brain MRI, breast
MRI Image segmentation Dice coefficient

8 Kang et al. [61] DL, CNN CT Reconstruction MatConvNet on
MATLAB

PSNR,
NRMSE, MSE,

RMSE

9 Gu [72] Deep residual
learning CT Reconstruction MATLAB R2015a PSNR,

NRMSE, SSIM

10 Liuet al. [73] DCNN CT, MRI Image
reconstruction

MATLAB 2014a and
NVIDIA GeForce GTX

1080 GPU
PSNR, SSIM

11 Gupta [74]
CNN projected
gradient descent

(PGD)
CT Image

reconstruction MATLAB SNR, SSIM

12 Jeelani [75] CNN MRI Image
reconstruction PSNR, SSIM

13
Iterative PET image
reconstruction using

CNN (2018)
CNN PET Reconstruction

14 Kim [76] CNN CT Reconstruction
Trained using

TensorFlow on NVIDIA
GeForce GTX 1080 Ti

PSNR, SSIM

15 Chen and Davies [77] CNN CT Image
superresolution

Implemented in PyTorch
and trained on NVIDIA

2080 Ti GPUs
PSNR, GE

16 Aggarwal and Jacob
[78] CNN MRI Reconstruction PSNR, SSIM

17 Chenet al. [42]
INN (iterative

neural network),
deep learning

CT Image
reconstruction

MATLAB, training on
PyTorch

RMSE, PSNR,
ROI

18 Wei et al. [62] DNN CS-MRI Segmentation and
reconstruction PSNR, NRMSE

19 Priyanka Wang [79]
Fully symmetric
convolution
network

Noisy image Denoising
MATLAB (R2015b) and
NVIDIA CuDNN 5.1
deep learning library

PSNR

20 Ding [80] DNN X-ray CT Image
reconstruction

PyTorch & trained on
NVIDIA TITAN GPUs

PSNR, RMSE,
SSIM

21 Gohodratiet al. [81] DL residual NN,
CNN MRI Cardiac image

reconstruction
TensorFlow on windows,
NVIDIA TITAN Xp SNR, SSIM

22 Huang et al. [63] DL X-ray microscopy Image
reconstruction Adam optimizer RMSE, SSIM

23 Kofler et al. [82] CNN MRI, CT Image
reconstruction

Adam optimizer, ODL
library GPU

NRMSE,
PSNR, SSIM
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)e following optimization problem can be written as a
PCMS model:

min i � 1KΥ|zΩ i| +Ωi(u − ci)2. (2)

)is paper proposes a JRSM combined with TV-based
regularization for CT imaging. )e reconstruction with
segmentation is much more stable and effective than the
alternate approach. But this proposed algorithm is time-
consuming.

In Huang et al.’s work [63], for the first time in the thesis,
DL is implemented for restricted-angle reconstruction in
TXMs. Furthermore, the training of a DNN from synthetic
data is being explored for adequate real data in training. In
general, U-Net, the standard biomedical imaging CNN, is
trained to minimize artefacts in FBP image reconstruction
from simulated ellipsoid data and multiattribute data. )e
proposed technique is tested in 100 ranges of limited-angle
tomography on simulated and real data. )e proposed
approach significantly increases the 3D visualization of the
subcellular structures in the Chlorella cell for real test results,
suggesting its significant importance in the biology, nano-
science, and materials sciences for nanoscale imaging.

To learn a customized scanning strategy, Shen et al. [64]
recommended using Reinforcement Learning (RL) to
choose the angle and the dose at every desired angle for every
different subject. Firstly, the authors formulated CT scan-
ning as anMDP and used amodern in-depth RL approach to
overcome that. )e CT scanning process was conceived as a
Markov decision process, and this was solved using the PPO
algorithm. After training on 250 real 2D CT images, the
learned custom scanning strategy was validated for 350 CT
images. More validation showed that the custom scanning
policy led to better overall PSNR reconstruction perfor-
mance, and it was generalized well to be combined with
different reconstruction algorithms. It also showed that the
adaptive strategy could change its selection angle and dose
assignments to suit other subject areas. One limitation of the
proposed approach is the long training period (about
24 hours), even for 2D images, since RL algorithms usually
require lots of simulation samples to converge. Furthermore,
calculating the reward in our formulated MDP requires

running a reconstruction algorithm at every stage. )ere-
fore, it could restrict the application of our system to 3D
cases.

Wang et al. [65] first used the SART approach for the
restricted-angle TCT projection data. After that, the image
reconstructed by the SARTapproach was imported to a well-
trained CNN to remove the artefacts and retain the struc-
tures to achieve an improved reconstructed image. )en, the
authors used the restricted-angle TCTscanning method and
introduced a TCT image reconstruction algorithm based on
deep learning. Experimental findings indicate that the
proposed technique’s performance is good compared to the
FBP approach into TCTscanning mode with a limited angle.
)e proposed method is also efficient in suppressing noise
and limited-angle artefacts, maintaining the image

Table 6: Continued.

Sr.
no. Reference Techniques/

methods Imaging modality Applications Software used/system
used

Parameter
evaluation

25 Whitely et al. [83] CNN PET Image
reconstruction

Implemented in PyTorch
version 1.3 and trained
on NVIDIA TITAN RTX

GPU

MAE, SNR

26 Shen et al. [64]
Deep

reinforcement
learning

CT
Measure angle

selection and dose
allocation

PSNR, SSIM

27 Chen et al. [84] DNN CT Noise reduction MATLAB PSNR, RMSE,
SSIM

28 Wang et al. [85] DL, CNN

Transactional
computed
tomography

(TCT)

Image
reconstruction

MATLAB R2016b on PC,
NVIDIA GTX 1080, 8 GB

RAM

PSNR, MSE,
SSIM

2016

2017

2018

2019

2020

Deep learning
Generative adversarial network
Neural network

Machine learning
Fuzzy logic
Genetic algorithm

2 4 6 8 100

Figure 5: Comparison of soft computing approaches, that is,
genetic algorithm, machine learning, neural network, generative
adversarial network, and deep learning.
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structures. )e critical issue with the proposed technique is
that it requires a large training dataset, and it requires a
powerful computer.

Deep learning has been widely applied to biomedical
image processing in various applications, as indicated in
Table 6.

After studying and comparing the application of each
approach, different techniques/methods employed, different
imaging modalities, a system used, and parameter evaluated,
we surveyed all the soft computing techniques in detail, as
shown in Tables 1–6. A comparison of all soft computing
methods is shown in Figure 5, which includes genetic al-
gorithms, machine learning, neural networks, generative
adversarial networks, and deep learning. )is comparison
reveals that papers based on deep learning algorithms are
being published at an increasing rate to address a variety of
difficulties in the areas of medical imaging.

4. Conclusion

A short review of fuzzy logic, genetic algorithm, neural
network, machine learning, generative adversarial network,
and deep learning has been discussed in this paper. Also, we
studied and compared the application of each approach,
different technique/method used, various imaging modali-
ties, system used, and parameter evaluated. After over-
coming all the techniques, we discovered that the deep
learning algorithm is getting a lot of attention these days to
solve several medical imaging issues. In the medical imaging
world, these properties have attracted the attention of re-
searchers. We have seen rapid adoption in many conven-
tional and novel applications, such as image reconstruction,
segmentation, detection, and classification. Biomedical re-
searchers can take advantage of this survey for inspiration in
future CT and PET research. In the coming years, DL with
image input is predicted to be the standard in medical
imaging technology.
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